
Flashtools 3 DMInterface

Page 1

Description for Integration of FlashTools in a Customer Application. As of
10/23/2003
Modifications:

Section 1.1: Description, parameters and return values for all functions revised.

Section 1.1: New function DmCheckOldFlashTools added.

Section 1.1: New function DmGetProgress added.

Description for Integration of FlashTools in a Customer Application. As of
03/26/2003
Modifications:

Section 2.2 Hint for using the Pragma pack when declaring structures.

Description for Integration of FlashTools in a Customer Application. As of
06/11/2002
Modifications:

Section 1.1 Modifications of the function DmGetGeneralInfo in DmGetGeneralInfos

Section 1.1 new function DmGetHexFileInfo added

Section 2 typedef tMemType added

Sectoin 2 typedef tPLProgFlash added

Section 2 typedef tRLReadFlash added

Section 2 typedef tRLFileInfo added

Section 2 typedef for return values updated

Modifications of previous versions:

Section 1.1 – Description of the function DmLoadFile:

The parameter dwStartAddress no longer exists (the address is now given with

DmProgFlash)

Section 1.1 – Description of the function DmSaveFile:

Parameter added for thread structure.

Flashtools 3 DMInterface

Page 2

Section 1.1 – Description of the function DmProgFlash

The parameter dwOffsetToAddress was added.

Section 1.1 – New function DmFreeMemory added.

This function is used to free the memory allocated in the DLL

Section 3 Implementation Hints, paragraph 1: Parameter values

The description for freeing the memory allocated in the DLL is expanded by

the function DmFreeMemory.

Flashtools 3 DMInterface

Page 3

1. Using the FlashTools Library

1.1 Integrating the DLL in a User Application

This section contains an explanation of how you can integrate the DLL PHYDm.DLL in your

own application program.

The DLL enables access to the external Flash populating a PHYTEC Single Board Computer

(SBC) module.

The following description refers to the programming environment Microsoft Visual C++ 6.0.

Place the DLL in the Window system folder or copy the DLL to your application folder. Use

the API function LoadLibrary(…) to load the DLL and thereby enable access to the functions

contained within the DLL.

 HINSTANCE hLib;

 hLib = LoadLibrary(„PHYDm.dll“);

A function pointer is required for each function to access the DLL functions.

Example:

Function to be used:
tReturnCode DmProgFlash (sThread *sProgFlashThread)

Declaration of the Function Pointer:

 tReturnCode (PASCAL *lpfn_DmProgFlash) (sThread *);

In order to determine the starting address of the function within the DLL, the API

function GetProcAddress(…) is used.

lpfn_DmProgFlash = (tReturnCode (PASCAL)(sThread) GetProcAddress (hLib,

„DmProgFlash“);

Flashtools 3 DMInterface

Page 4

Now the function can be called as follows:

lpfn_ProgFlash(&sProgFlashThread);

If the DLL is no longer required, it must be removed from the memory. This is

accomplished with the API function FreeLibrary(…).

 FreeLibrary(hLib);

Additional information about the API functions used can be found in the documentation for

your development environment.

Interfaces

tReturnCode DmLogin (char szIniFileName, tRLLogin *pRetList_p, sThread *sLoginThread) ;

Function This function establishes a connection to a module

Parameter szIniFileName: Name of the *.ini file that contains information

about the module characteristics.

tRLLogin *pRetList: Information about the module

(Firmware version, TxBufferSize)

sThread: Information for communication with the thread

(ThreadID, Handle..)

Return kSuccessful: Command was executed without error

kFailed: Aborted by user

kCommandDllNotFound: Command module not found

kCommandDllError: Function CmmLogin not found

kInvalidFileFormat: Faulty entry in the *.ini file

kNetworkDllNotFound: The network DLL given in the *.ini file

was not found

kNetworkDllError: Faulty network DLL

Flashtools 3 DMInterface

Page 5

tReturnCode DmExitFlashTools (tPLExitFlashTools* pParamList_p) ;

Function If the variable bStartUserApp in the structure tPLExitFlashTools is

1, then the application's start address specified in dwLogStartAddr

is used for start-up. Normally this address is set to 0x00000000. In

this case the address is called with the reset vector of the current

controller.

If the variable bStartUserApp = 2, then a software reset will be

generated on the module.

If the variable bStartUserApp = 3, then a hardware reset will be

generated on the module. This requires hardware support on the

Development Board or custom carrier board to control the BOOT

and RESET signals via RTS/DTR modem lines.

Parameter tPLExitFlashTools: bStartUserApp and start address of the user

program

Return kSuccessful: Command was executed without error

kNetworkDllError: Faulty network DLL

kNetworkReceiveFailed: Error during communication with the

module

kNetworkSendFailed: Error during communication with the

module

kInvalidFileFormat: Faulty entry in the *.ini file

Flashtools 3 DMInterface

Page 6

tReturnCode DmFindFlashLib (tPLGetFlashLibInfo* pParamList_p,

 tRLGetFlashLibInfo* pRetList_p) ;

Function This function demands information from the SBC about the

libraries present. It is possible to determine whether the first Lib

from the chain list or the next Lib is desired. Thus the list of all

Libs present on the SBC can be checked.

Parameter tPLGetFlashLibInfo: Structure with information about FlashLib (0

= first FlashLib, 1 = next FlashLib).

This enables a list with all FlashLibs on the SBC to be searched.

The parameter dwFlashAddress determines the start address of the

Flash.

tRLGetFLashLibInfo: Structure with manufacturer, device and

additional ID

Return kSuccessful: Command was executed without errors

kCommandDllError: CommandDLL was not loaded or was faulty

kInvalidFileFormat: The required information could not be

acquired from the *.ini file.

KnetworkReceiveFailed: Error during communication with the

module

KNetworkSendFailed: Error during communication with the

module

Flashtools 3 DMInterface

Page 7

tReturnCode DmSelectFlashLib (tPLSelectFlashLib* pParamList_p);

Function This function selects the Flash library on the SBC for the active

Flash.

Parameter tPLSelectFlashLib: structure with LibId, AdditionalID, read via

DmFindFlashLib

Return kSuccessful: Command was executed without error

kCommandDllError: Command DLL did not load or is faulty

kNetworkReceiveFailed: Error during communication with the

module

kNetworkSendFailed: Error during communication with the

module

Flashtools 3 DMInterface

Page 8

tReturnCode DmEraseSectors (tPLEraseSectors* pParamList_p , tRLEraseSectors* pRetList_p,

 sThread* sEraseSectorsThread) ;

Function This function erases all sectors located between dwStartAddress

and dwEndAddress. Only the return codes of the sectors for which

errors occurred while they were erased are written to the send

buffer.

The DLL allocates memory for each sector that couldn´t be erased

and returns it in the structure tRLEraseSectors. The pointer

tEraseStatus points to this memory. If this memory is no longer

required by the application it must be released. This must be done

by calling the DLL function DmFreeMemory().

Parameter tPLEraseSectors: Structure with information about start and end

sectors.

tRLEraseSectors: Structure with information about sectors that

could not be erased.

sThread: information for communication with the thread

(ThreadID, Handle..)

Return KSuccessful: command was executed without error

KFailed: user abort

KNetworkReceiveFailed: error during communication with the

module

KNetworkSendFailed: error during communication with the

module

KNoLibSelected: no FlashLibrary was selected yet

Flashtools 3 DMInterface

Page 9

tReturnCode DmEraseChip (tRLEraseSectors* pRetList_p) ;

Function This function erases the entire Flash.

Parameter TRLEraseSectors: Structure with Errorcode.

The DLL allocates memory for each sector that couldn´t be erased.

The pointer to this memory is returned in tEraseStatus in the

structure tRLEraseSector. This memory must be released when it is

no longer required by the application. This has to occur by a call of

the DLL function DmFreeMemory().

Return KSuccessful: command was executed without error

KNetworkReceiveFailed: error during communication with the

module

KNetworkSendFailed: error during communication with the

module

KNoLibSelected: no FlashLibrary was selected yet

KSoftwareProtected: a portion of the Flash is protected. Therefore

the command cannot be executed

tReturnCode DmLoadFile (char* pszFileName_p, BYTE bType, sThread* sLoadFileThread) ;

Function This function loads a hex file or a binary file to the memory on the

host computer. Thus it is possible to program the hex/binary file on

multiple targets without having to continually reload it from the

hard drive.

Parameter pszFileName_p: Name of the hex or binary file

btype: Type of file (1 = Bin/0 = Hex)

sThread: Information for communication with the Thread

(ThreadID, Handle..)

Return kSuccessful: command was executed without error

kFileNotFound: file could not be opened

kInvalidFileFormat: no Hex or Bin file

Flashtools 3 DMInterface

Page 10

tReturnCode DmSaveFile (char* pszFileName_p, BYTE bType, sThread* sSaveFileThread) ;

Function The function stores the data read by DmReadFlash in a file.

Parameter pszFileName_p: Name of the output file.

btype: Type of the file (1 = bin/0 = hex)

sThread: information for communication with the Thread

(ThreadID, Handle..)

Return kSuccessful: Command was executed without error

kFailed: user abort

kFileNotFound: no data in internal buffer

kLoadFileError: file could not be opened for writing

tReturnCode DmProgFlash (DWORD dwOffsetToAddress, sThread *sProgFlashThread);

Function This function programs a hex/bin file in the Flash.

The hex/bin file must be loaded with the function DmLoadFile()

prior to this.

Parameter dwOffsetToAddress: address where the program is downloaded

(e.g. for bin files or hex files that were loaded to another bank.)

sThread: information for communication with the Thread

(ThreadID, Handle..)

Return kSuccessful: OK

kFailed: user abort

kCommandDllError: command DLL not loaded or faulty

kFileNotFound: no hex/bin file loaded

kNoLibSelected: no FlashLib was selected yet

kNetworkReceiveFailed: error during communication with the

module

kNetworkSendFailed: error during communication with the module

Flashtools 3 DMInterface

Page 11

tReturnCode DmReadFlash (tPLReadFlash* pParamList_p, sThread* sReadFlashThread);

Function The function reads a byte sequence from the Flash and stores it in

the internal buffer.

Parameter tPLReadFlash: Structure with address and number of bytes to be

read.

sThread: information about communication with the Thread

(ThreadID, Handle..)

Return kSuccessful: command was executed without error

kFailed: user abort

kCommandDllError: command DLL not loaded or faulty

kTimeout: timeout of the network layer or error code received from

SBC

kNoAccess: no read access to the Flash

kSoftwareProtected: Flash sector(s) is protected

kNetworkReceiveFailed: command during communication with the

module

kNetworkSendFailed: error during communication with the module

tReturnCode DmSendPassword (tPLSendPassword* pParamList_p) ;

Function This function sends a password to the SBC in order to activate the

Upload/Update functionality.

Parameter tPLSendPassword: structure with password

Return kSuccessful: Upload/Update activated

kInvalidPassword: password invalid

kNetworkReceiveFailed: error during communication with the

module

kNetworkSendFaild: error during communication with the module

Flashtools 3 DMInterface

Page 12

Information functions:

tReturnCode DmGetSectorStatus (tPLGetSectorStatus* pParamList_p , tRLGetSectorStatus*

 pRetList_p, sThread *sGetSectorStatusThread) ;

Function The function returns the sector status.

This function returns the status (Blank/NotBlank) for all sectors

that are located between dwFirstSectorNumber and

dwLastSEctorNumber.

The DLL allocates memory for every sector that is returned in the

structure tRLGetSectorStatus. The pointer tSectorStatus points to

this memory. This memory must be released when it is no longer

required by the application. This is done by calling the DLL

function DmFreeMemory().

Parameter tPLGetSectorStatus: structure with start and end sector

tRLGetSectorStatus: structure with status of each individual sector.

SThread: information for communication with the Thread

(ThreadID, Handle..)

Return kSuccessful: command was executed without error

kFailed: user abort

kCommandDllError: Command DLL was not loaded or was faulty

kSectorInvalid: address is not a valid sector

kNetworkReceiveFailed: error during communication with the

module

kNetworkSendFailed: error during communication with the module

kNoLibSelected: no FlashLib was selected yet

Flashtools 3 DMInterface

Page 13

tReturnCode DmGetSectorInfos (tRLGetFlashLibInfo *pParamList_p,

 tRLFlashInfo* pRetList_p) ;

Function The function returns the sector structure from the active Flash

Parameter tRLGetFlashLibInfo: Structure with ManufacturerID, DeviceID,

…(return value of FindFlashLib), or NULL.

tRLFlashInfo: structure with sector information that is read from

the Flash and module *.ini file.

The Flash is specified by the tRLGetFLashLibInfo specification. If

NULL is given for this parameter, then the DLL uses the

information from the currently selected Flash.

The DLL allocates memory for the information, which is returned

in the structure tRLGetFLashLibInfo. The pointer tBLockInfo

points to this memory. This memory must be released when it is no

longer required by the application. This must be done by calling the

DLL function DmFreeMemory(). Before this function can be

executed a module must be selected with the DmLogin.

Return KSuccessful: command was executed without error

KNoModulSelected: no connection could be established with a

module

KInvalidFileFormat: the required information could not be found in

the *.ini file.

Flashtools 3 DMInterface

Page 14

tReturnCode DmGetGeneralInfos (tRLGeneralInfo* pRetList_p) ;

Function The function returns general information about the target module

and the active Flash.

Parameter tRLGeneralInfo: structure with module information retrieved from

the module's *.ini file. Before this function can be executed, a

module must be selected with DmLogin.

Return kSuccessful: command was executed without error

kNoModulSelected: no connection could be established with a

module

kInvalidFileFormat: the required information could not be found in

the *.ini file.

tReturnCode DmGetProtectedAreas (tRLGetProtAreas* pRetList_p) ;

Function The function returns all of the module’s protected Flash areas.

Parameter tRLGetProtAreas: structure with information about the protected

areas of the Flash.

The DLL allocates memory for the protected or NoAccess areas,

which is returned in the structure tRLGetProtAreas. The pointer

tAddrRange point to this memory. This memory must be released

when it is no longer required by application. This must occur by

calling the DLL function DmFreeMemory().

Before this function can be executed, a module must be selected

with the DmLogin.

Return KSuccessful: command was executed without error

KNoModulSelected: no connection to the module could be

established

KInvalidFileFormat: the required information could not be found in

the *.ini file.

Flashtools 3 DMInterface

Page 15

Thread:

tReturnCode DmStopCurrentThread () ;

Function The function ends the currently running thread.

Parameter -

Return kSuccessful: command was executed without error

kFailed: no thread available

kCommandDllError: command DLL did not load or is faulty

tReturnCode DmGetCurrentThreadStatus () ;

Function The function returns the status of the current thread.

Parameter -

Return KThreadRunning: thread is still running

KCommandDllError: command DLL did not load or is faulty.

Error status of the thread.

BYTE DmGetProgress()

Function This function reports the progress of the running thread as a

percentage

Parameter -

Return Progress

Flashtools 3 DMInterface

Page 16

Memory:

tReturnCode DmFreeMemory(void* Buffer)

Function The function releases the passed memory area. This memory area

must be allocated by the DLL before passed to internal functions.

Parameter Buffer: pointer to the memory area

Return kSuccessful: Ok

kFailed: memory area not valid

kCommandDllError: command DLL did not load or is faulty

tReturnCode DmGetHexFileInfo(DWORD dwOffset, tRLFileInfo *pParamList_p)

Function This function returns information about the loaded hex file

(memory size, occupied sectors)

Parameter dwOffset: Offset of the hex file

pParamList_p: structure with information

Return kSuccessful: Ok

kNoModulSelected: no connection could be established with the

module

tReturnCode DmCheckOldFlashTools()

Function This function tests whether the old version of FlashTools

(FlashTools98) or the current version is present in Flash Bank0 on

a module with firmware. Using this function makes only sense

when using a module with a pre-programmed flash.

Parameter -

Return kSuccessful: current version

kCommandDllError: command DLL did not load or is faulty

kNetworkReceiveFailed: error during communication with the

module

kNetworkSendFailed: error during communication with the module

kOldFlashToolsVersionFound: old version found

Flashtools 3 DMInterface

Page 17

1.2 Structure Definitions

When using the structures it is important to note that for technical reasons the structures with

the note #pragma pack (1) were saved in a packed manner. Please use the header files

included with the software for declaration of the structures. These contain the required pack

instructions.

1.2.1 General Structures

General structures are mostly used to make it easier to write to the send buffer and read from

the receive buffer.

typedef enum {

 k8Bit_16BitMode = 0x00,

 k8Bit = 0x01,

 k16Bit = 0x02

} tMemType;

typedef struct

{

 char szFlashName [32] ;

 DWORD dwFlashSize ;

 DWORD dwFlashID ;

 WORD wNumOfBlocks ;

 tBlockInfo aBlockInfo[wNumOfBlocks] ;

} tRLFlashInfo ;

typedef struct

{

 DWORD dwOffset ;

 DWORD dwSectorSize ;

 WORD wNumberOfSectors ;

 } tBlockInfo ;

typedef struct

{

 DWORD dwSectorNumber ;

 tReturnCode ErrorCode ;

} tEraseStatus ;

Flashtools 3 DMInterface

Page 18

typedef struct

{

 DWORD dwSectorNumber ;

 BYTE bSectorStatus ; // LSB: ProtectionStatus (nur auf PC-Seite)

 // MSB: BlankStatus

} tSectorStatus ;

typedef struct

{

 DWORD dwStartAddress ;

 DWORD dwEndAddress ;

} tAddrRange ;

Flashtools 3 DMInterface

Page 19

1.2.2 Structures for Parameter Lists

typedef struct

{

 BYTE bEvenOdd ;

} tPLInitFlashLib ;

typedef struct

{

 DWORD dwStartAddress ;

 DWORD dwEndAddress ;

 DWORD dwSectorSize ;

} tPLEraseSectors ;

typedef struct

{

 DWORD dwStartAddress ;

 DWORD dwEndAddress ;

 DWORD dwBlockSize ;

} tPLEraseBlocks ;

typedef struct

{

 BYTE bFlashLibPtr ; // 0 = FirstLib, 1 = NextLib

 DWORD dwFlashAddress;

} tPLGetFlashLibInfo ;

typedef struct

{

 DWORD dwStartAddress ;

 DWORD dwEndAddress ;

 DWORD dwSectorSize ;

} tPLGetSectorStatus ;

typedef struct

{

 DWORD dwStartAddress ;

 WORD wNumOfBytes ;

 BYTE aData [m_wNumOfBytes] ;

} tPLProgFlash ;

Flashtools 3 DMInterface

Page 20

typedef struct

{

 DWORD dwStartAddress ;

 WORD wNumOfBytes ;

} tPLReadFlash ;

typedef struct

{

 WORD wFlashLibID;

 WORD wAdditionalID;

} tPLSelectFlashLib ;

typedef struct

{

 DWORD dwPwdLength;

 char *Password ;

} tPLSendPassword ;

typedef struct

{

 BYTE bStartUserApp;

 DWORD dwLogStartAddr ;

} tPLExitFlashTools ;

Flashtools 3 DMInterface

Page 21

1.2.3 Structures for Return Values

typedef struct

{

 WORD wNumOfEraseStatus ;

 tEraseStatus aEraseStatus [wNumOfEraseStatus] ;

} tRLEraseSectors ;

typedef struct

{

 WORD wNumOfEraseStatus ;

 tEraseStatus aEraseStatus [wNumOfEraseStatus] ;

} tRLEraseBlocks ;

typedef struct

{

 DWORD dwNumOfBytesRead ;

 BYTE aData [wNumOfBytesRead] ;

} tRLReadFlash ;

typedef struct

{

 WORD wFlashLibID ;

 WORD bManufacturerID ;

 WORD bDeviceID ;

 WORD wAdditionalID ;

} tRLGetFlashLibInfo ;

typedef struct

{

 char szModuleName [32] ;

 char szMicroController [32] ;

 tMemType MemType ;

} tRLGeneralInfo ;

typedef struct

{

 WORD wNumOfSectorsInBuffer ;

 tSectorStatus aSectorStatus [wNumOfSectorsInBuffer] ;

Flashtools 3 DMInterface

Page 22

} tRLGetSectorStatus ;

typedef struct

{

 WORD wTxBufferSize ;

 BYTE bMajorRelease ;

 BYTE bMinorRelease ;

 BYTE bPatchLevel ;

} tRLLogin ;

typedef struct

{

 WORD m_wNumOfProtAreas ;

 WORD m_wNumOfNonAccAreas ;

 tAddrRange m_aProtectedAreas [m_wNumOfProtAreas] ;

 tAddrRange m_aNonAccessAreas [m_wNumOfNonAccAreas] ;

} tRLGetProtAreas ;

typedef struct {

 DWORD dwDataSize;

 DWORD dwNumberOfSectorsInBuffer;

 tPLEraseSectors *pSectorInfo;

} tRLFileInfo;

Flashtools 3 DMInterface

Page 23

1.2.4 Structures for Threads

Functions that require more time on the PC, e.g. functions that wait for an answer from the

SBC, are implemented as threads so that the status of the function can be queried or the

function can be aborted. The DLL provides a function for stopping the thread

(DmStopCurrentThread() and a function that returns the status of the thread.

A structure is given for each function that is implemented via a thread. This structure is filled

out when the thread is generated and then returned to the application. The structure contains

the handle and the ID of the thread, which can be used to access the thread directly.

typedef struct {

 UINT wID;

 HANDLE hHandle;

 DWORD dwReserved1;

 DWORD dwReserved2;

 WORD wReserved;

} sThread;

Flashtools 3 DMInterface

Page 24

1.2.5 Used enum Definitions

typedef enum {

kSuccessful = 0x00,

kFailed = 0x01,

kCommBufferTooSmall = 0x02,

kMissingInformation = 0x03,

kTimeOut = 0x10,

kSectorInvalid = 0x20,

kNotBlank = 0x21,

kBlank = 0x22,

kUnknown = 0x23,

kAddressInvalid = 0x30,

kAddrNoAccess = 0x31,

kAddrProtected = 0x40,

kHardwareProtected = 0x41,

kSoftwareProtected = 0x42,

kFlashtoolsProtected = 0x43,

kPartialAccess = 0x44,

kNoAccess = 0x45,

kFullAccess = 0x46,

kLoadFileError = 0x50,

kLibNotFound = 0x80,

kNoLibSelected = 0x81,

kInvalidPassword = 0x90,

kToFewBytes = 0xA0,

kLoadBootFileError = 0xB0,

kBootLoaderNotActive = 0xB1,

kLoadFlashFileError = 0xB2,

kUnknownCommand = 0xB3,

kChecksumError = 0xB4,

kNoRamAtAddress = 0xB5,

kThreadRunning = 0xC0,

kFileNotFound = 0xE0,

kInvalidFileFormat = 0xE1,

kNoModulSelected = 0xE2,

kInvalidComPort = 0xE4,

kInitComPortError = 0xE8,

kCommandNotSupported = 0xED,

kUndefinedCommand = 0xEE,

Flashtools 3 DMInterface

Page 25

kOldFlashToolsVersionFound = 0xEF,

kNetworkSendFailed = 0xF0,

kNetworkReceiveFailed = 0xF1,

kNetworkDllNotFound = 0xF2,

kNetworkDllError = 0xF3,

kNetworkInitError = 0xF4,

kCommandDllNotFound = 0xFA,

kCommandDllError = 0xFB,

kDmDllNotFound = 0xFC,

kDmDllError = 0xFD,

kUnknownErrorCode = 0xFF

} tReturnCode;

Flashtools 3 DMInterface

Page 26

2 Implementation Hints

2.1 Parameters values

The parameter passing to the DLL is realised with the help of structures. The majority of the

functions accept pointers to two structures as parameters. The first structure (starting with

tPL) contains the parameters that are passed to the DLL. In the second structure (beginning

with rRL) data from the DLL is returned to the program that performed the call.

A few structures contain an element that describes a pointer to a data area (e.g. the functions

that work with sectors such as DmEraseSector, DmGetSectorStatus). Since the number of

elements (structures with sectors) that can be returned is not always fixed or known at the

time these functions are called, memory cannot be allocated in advance by the application.

Therefore the memory is allocated by the function in the DLL. The application is responsible

for releasing this memory if it is no longer needed. This memory must be released in the DLL

with the function DmFreeMemory, once it is no longer required.

The following example is intended to further clarify this:

tPLEraseSectors sEraseSectorsIn; // initialize parameters

tRLEraseSectors sEraseSectorsOut;

sThread sEraseSectorsThread;

sEraseSectorsIn.dwStartAddress = 0x0000; // Startadress

sEraseSectorsIn.dwEndAddress = 0x100000; // Endaddress

sEraseSectorsIn.dwSectorSize = 0x10000; // SectorSize

// call function in DLL

 if (m_pDmAccess->EraseSectors(&sEraseSectorsIn,&sEraseSectorsOut,

 &sEraseSectorsThread) != kSuccessful) {

 AfxMessageBox("Error erasing sectorsfile");

 return;

 }

Flashtools 3 DMInterface

Page 27

The structure sEraseSectorsOut now contains in the element wNumOfEraseStatus, the number

of sectors for which an error occurred.

The element aEraseStatus is a pointer to an array of type tEraseStatus.

Now these sectors can be read:

if (sEraseSectorsOut.wNumOfEraseStatus) { // al least one sector errornous

 for (WORD wCurrentSectorStatus = 0; wCurrentSectorStatus <

 sEraseSectorsOut.wNumOfEraseStatus; wCurrentSectorStatus++) {

 UpdateSector(sEraseSectorsOut.aEraseStatus[wCurrentSectorStatus].ErrorCode);

 }

Now the memory can be released.

m_pDmAccess->DmFreeMemory(sEraseSectorsOut.aEraseStatus);

Flashtools 3 DMInterface

Page 28

2.2 Threads

Functions that require more time were implemented in the DLL as a thread, this means that a

call of the function in the DLL starts a thread there and then returns immediately.

The state of the thread can be queried with the function tReturnCode

DmGetCurrentThreadStatus (). As long as the thread is running, this function will return

kThreadRunning. Otherwise it will deliver a value with which the thread was ended.

In order to stop the thread from the application program the function DmStopCurrentThread ()

is called. This will end the current thread.

As an alternative the parameter sThread* can be used as well. All function implemented as a

thread have this parameter. This structure has a handle to a thread and a thread ID as

elements. Both of these values are filled out by the DL and can be used by the application to

access a thread directly (before using the thread structure directly please read the

documentation for your development environment).

We recommend using the functions made available by the DLL.

Flashtools 3 DMInterface

Page 29

2.2.1 Operation sequence

First the connection to the module must be established. The function
tReturnCode DmLogin (char *szIniFileName, tRLLogin pRetList_p, sThread *sLoginThread);

is used for this ;

The parameters for this function contains the path and file name for the *.ini file, which

describes the connected module. These *.ini files are located in the folder

TARGET\MODULNAME\modul.ini.

If this function was called successfully, then a FlashLib must be selected on the

microcontroller module. First the FlashLibs on the SBC module will be queried with the

function

tReturnCode DmFindFlashLib (tPLGetFlashLibInfo* pParamList_p,

 tRLGetFlashLibInfo* pRetList_p) ;

First the element bFlashLibPtr must be set to 0 to access the first FlashLib. In addition, the

start address of the Flash has to be given. The microcontroller responds by returning

information about the FlashLib found in the structure tRLGetFlashLibInfo.

Now additional FlashLibs can be searched for with the function DmFindFlashLib() and

bFlashLibPtr = 1, until the right one is found or until no more are present1. The desired

FlasLib can be selected on the microcontroller module with the function
tReturnCode DmSelectFlashLib (tPLSelectFlashLib* pParamList_p);

This concludes the initialisation and the module can be used.

To stop communication with the module FlashTools must be stopped on the SBC. The

following function is used to do this.

tReturnCode DmExitFlashTools (tPLExitFlashTools* pParamList_p) ;

1 At this time PHYTEC FlashTools only include a FlashLib for AMD and AMD-compatible

Flash devices.

Flashtools 3 DMInterface

Page 30

This resets the communication with the microcontroller module. If desired a user program can

be started on the microcontroller too. To do this the parameter bStartUserApp must be set to 1

and the start address of the program must be given in the parameter dwLogStartAddr.

	Using the FlashTools Library
	Integrating the DLL in a User Application
	Structure Definitions
	General Structures
	Structures for Parameter Lists
	Structures for Return Values
	Structures for Threads
	Used enum Definitions

	Implementation Hints
	Parameters values
	Threads
	Operation sequence

