Flashtools 3 DMiInterface

Description for Integration of FlashTools in a Customer Application. As of
10/23/2003

Modifications:

Section 1.1: Description, parameters and return values for all functions revised.

Section 1.1: New function DmCheckOldF ashTools added.

Section 1.1: New function DmGetProgress added.

Description for Integration of FlashTools in a Customer Application. As of
03/26/2003

Modifications:

Section 2.2 Hint for using the Pragma pack when declaring structures.

Description for Integration of FlashTools in a Customer Application. As of
06/11/2002

Modifications:

Section 1.1 Modifications of the function DmGetGeneralInfo in DmGetGeneral Infos

Section 1.1 new function DmGetHexFilelnfo added

Section 2 typedef tMemType added

Sectoin 2 typedef tPLProgFlash added

Section 2 typedef tRLReadFlash added

Section 2 typedef tRLFilelnfo added

Section 2 typedef for return values updated

Modifications of previous versions:
Section 1.1 — Description of the function DmLoadFile:
The parameter dwStartAddress no longer exists (the address is now given with
DmProgFlash)
Section 1.1 — Description of the function DmSaveFile:
Parameter added for thread structure.

Page 1

Flashtools 3 DMiInterface

Section 1.1 — Description of the function DmProgFlash
The parameter dwOffsetToAddress was added.

Section 1.1 — New function DmFreeMemory added.
This function is used to free the memory allocated in the DLL

Section 3 Implementation Hints, paragraph 1: Parameter values
The description for freeing the memory allocated in the DLL is expanded by

the function DmFreeMemory.

Page 2

Flashtools 3 DMiInterface

1. Using the FlashTools Library

1.1 Integrating the DLL in a User Application

This section contains an explanation of how you can integrate the DLL PHYDm.DLL in your
own application program.

The DLL enables access to the external Flash populating a PHY TEC Single Board Computer
(SBC) module.

The following description refers to the programming environment Microsoft Visual C++ 6.0.

Place the DLL in the Window system folder or copy the DLL to your application folder. Use
the API function LoadLibrary(...) to load the DLL and thereby enable access to the functions
contained within the DLL.

HI NSTANCE hLi b;
hLi b = LoadLi brary(,PHYDm dI|“);

A function pointer isrequired for each function to accessthe DLL functions.

Example:
Function to be used:
t Ret ur nCode DnProgFl ash (sThread *sProgFl ashThr ead)

Decl arati on of the Function Pointer:
t Ret ur nCode (PASCAL *| pfn_DnProgFl ash) (sThread *);

In order to determine the starting address of the function within the DLL, the API
function GetProcAddress(...) isused.

Ipfn_DmProgFlash = (tReturnCode (PASCAL)(sThread) GetProcAddress (hLib,
» DmProgFlash*);

Page 3

Flashtools 3

DMiInterface

Now the function can be called as follows:

Ipfn_ProgFlash(& sProgFlashThread);

If the DLL is no longer required, it must be removed from the memory. This is

accomplished with the API function FreeLibrary(...).

FreelLi brary(hLi b);

Additional information about the API functions used can be found in the documentation for

your development environment.

I nterfaces

tReturnCode DmLogin (char szlniFileName, tRLLogin *pRetList p, sThread *sLoginThread) ;

Function

This function establishes a connection to a module

Parameter

szliniFileName: Name of the *.ini file that contains information
about the module characteristics.

tRLLogin *pRetList: Information about the module

(Firmware version, TxBufferSize)

sThread: Information for communication with the thread
(ThreadID, Handle..)

Return

kSuccessful: Command was executed without error

kFailed: Aborted by user

kCommandDIINotFound: Command module not found
kCommandDlIIError: Function CmmLogin not found
kInvalidFileFormat: Faulty entry in the *.ini file
kNetworkDIINotFound: The network DLL giveninthe *.ini file
was not found

kNetworkDIIError: Faulty network DLL

Page 4

Flashtools 3

DMiInterface

tReturnCode DmExitFlashTools (tPLExitFlashTools* pParamList p) ;

Function

If the variable bStartUserApp in the structure tPLExitFlashTools is
1, then the application's start address specified in dwLogStartAddr
is used for start-up. Normally this address is set to 0x00000000. In
this case the address is called with the reset vector of the current
controller.

If the variable bStartUserApp = 2, then a software reset will be
generated on the module.

If the variable bStartUserApp = 3, then a hardware reset will be
generated on the module. This requires hardware support on the
Development Board or custom carrier board to control the BOOT
and RESET signalsviaRTS/DTR modem lines.

Parameter

tPLEXitFlashTools: bStartUserApp and start address of the user

program

Return

kSuccessful: Command was executed without error
kNetworkDIIError: Faulty network DLL

kNetworkReceiveFailed: Error during communication with the
module

kNetworkSendFailed: Error during communication with the
module

kinvalidFileFormat: Faulty entry in the *.ini file

Page 5

Flashtools 3 DMiInterface

tReturnCode DmFindFlashLib (tPLGetF ashLiblinfo* pParamList_p,
tRLGetFl ashLibinfo* pRetList_p) ;

Function This function demands information from the SBC about the
libraries present. It is possible to determine whether the first Lib
from the chain list or the next Lib is desired. Thus the list of all
Libs present on the SBC can be checked.

Parameter tPLGetFlashLibInfo: Structure with information about FlashLib (0
= first FlashLib, 1 = next FlashLib).

Thisenables alist with all FlashLibs on the SBC to be searched.
The parameter dwFlashAddress determines the start address of the
Flash.

tRLGetFLashLiblnfo: Structure with manufacturer, device and
additiona ID

Return kSuccessful: Command was executed without errors
kCommandDIIError: CommandDLL was not loaded or was faulty
kinvalidrFileFormat: The required information could not be
acquired from the *.ini file.

KnetworkReceiveFailed: Error during communication with the
module

KNetworkSendFailed: Error during communication with the

module

Page 6

Flashtools 3 DMiInterface

tReturnCode DmSelectFlashLib (tPLSelectFlashLib* pParamList_p);

Function This function selects the Flash library on the SBC for the active
Flash.

Parameter tPLSelectFlashLib: structure with Libld, AdditionallD, read via
DmFindFlashLib

Return kSuccessful: Command was executed without error

kCommandDIIError: Command DLL did not load or is faulty
kNetworkReceiveFailed: Error during communication with the
module

kNetworkSendFailed: Error during communication with the

module

Page 7

Flashtools 3

DMiInterface

tReturnCode DmEraseSectors (tPLEraseSectors* pParamList_p, tRLEraseSectors* pRetList p,

sThread* sEraseSectorsThread) ;

Function

This function erases all sectors located between dwStartAddress
and dwEndAddress. Only the return codes of the sectors for which
errors occurred while they were erased are written to the send
buffer.

The DLL allocates memory for each sector that couldn’t be erased
and returns it in the structure tRLEraseSectors. The pointer
tEraseStatus points to this memory. If this memory is no longer
required by the application it must be released. This must be done
by calling the DLL function DmFreeMemory().

Parameter

tPL EraseSectors: Structure with information about start and end
sectors.

tRLEraseSectors: Structure with information about sectors that
could not be erased.

sThread: information for communication with the thread
(ThreadID, Handle..)

Return

K Successful: command was executed without error

KFailed: user abort

KNetworkReceiveFailed: error during communication with the
module

KNetworkSendFailed: error during communication with the
module

KNoLibSelected: no FlashLibrary was selected yet

Page 8

Flashtools 3

DMiInterface

tReturnCode DmEraseChip (tRLEraseSectors* pRetList p) ;

Function

This function erases the entire Flash.

Parameter

TRLEraseSectors: Structure with Errorcode.

The DLL alocates memory for each sector that couldn’t be erased.
The pointer to this memory is returned in tEraseStatus in the
structure tRLEraseSector. This memory must be released when it is
no longer required by the application. This has to occur by a call of
the DLL function DmFreeMemory().

Return

K Successful: command was executed without error
KNetworkReceiveFailed: error during communication with the
module

KNetworkSendFailed: error during communication with the
module

KNoLibSelected: no FlashLibrary was selected yet

K SoftwareProtected: a portion of the Flash is protected. Therefore
the command cannot be executed

tReturnCode DmLoadFile (char* pszFileName p, BY TE bType, sThread* sLoadFileThread) ;

Function

This function loads a hex file or a binary file to the memory on the
host computer. Thusit is possible to program the hex/binary file on
multiple targets without having to continually reload it from the

hard drive.

Parameter

pszFileName p: Name of the hex or binary file

btype: Type of file (1 = Bin/O = Hex)

sThread: Information for communication with the Thread
(ThreadID, Handle..)

Return

kSuccessful: command was executed without error
kFileNotFound: file could not be opened
kinvalidFileFormat: no Hex or Bin file

Page 9

Flashtools 3

DMiInterface

tReturnCode DmSaveFile (char* pszFileName p, BY TE bType, sThread* sSaveFileThread) ;

Function

The function stores the data read by DmReadFlash in afile.

Parameter

pszFileName_p: Name of the output file.

btype: Type of thefile (1 = bin/0 = hex)

sThread: information for communication with the Thread
(ThreadID, Handle..)

Return

kSuccessful: Command was executed without error
kFailed: user abort

kFileNotFound: no datain internal buffer
kLoadFileError: file could not be opened for writing

tReturnCode DmProgFlash (DWORD dwOffsetToAddress, sThread * sProgFlashThread);

Function

This function programs a hex/bin file in the Flash.
The hex/bin file must be loaded with the function DmLoadFile()
prior to this.

Parameter

dwOffsetToAddress. address where the program is downloaded
(e.g. for bin files or hex files that were loaded to another bank.)
sThread: information for communication with the Thread
(ThreadID, Handle..)

Return

kSuccessful: OK

kFailed: user abort

kCommandDIIError: command DLL not |oaded or faulty
kFileNotFound: no hex/bin file loaded

kNoLibSelected: no FlashLib was selected yet
kNetworkReceiveFailed: error during communication with the
module

kNetworkSendFailed: error during communication with the module

Page 10

Flashtools 3

DMiInterface

tReturnCode DmReadFlash (tPLReadFlash* pParamList_p, sThread* sReadFlashThread);

Function

The function reads a byte sequence from the Flash and stores it in
the internal buffer.

Parameter

tPLReadFlash: Structure with address and number of bytes to be
read.

sThread: information about communication with the Thread
(ThreadID, Handle..)

Return

kSuccessful: command was executed without error

kFailed: user abort

kCommandDIIError: command DLL not |oaded or faulty

kTimeout: timeout of the network layer or error code received from
SBC

kNoA ccess: no read access to the Flash

kSoftwareProtected: Flash sector(s) is protected
kNetworkReceiveFailed: command during communication with the
module

kNetworkSendFailed: error during communication with the module

tReturnCode DmSendPassword (tPL SendPassword* pParamList_p) ;

Function

This function sends a password to the SBC in order to activate the
Upload/Update functionality.

Parameter

tPL SendPassword: structure with password

Return

kSuccessful: Upload/Update activated

kInvalidPassword: password invalid

kNetworkReceiveFailed: error during communication with the
module

kNetworkSendFaild: error during communication with the module

Page 11

Flashtools 3

DMiInterface

Information functions:

tReturnCode DmGetSectorStatus (tPL GetSectorStatus* pParamList_p , tRLGetSectorStatus*

pRetList_p, sThread * sGetSectorStatusThread) ;

Function

The function returns the sector status.

This function returns the status (Blank/NotBlank) for all sectors
that are located between dwFirstSectorNumber and
dwL astSEctorNumber.

The DLL alocates memory for every sector that is returned in the
structure tRLGetSectorStatus. The pointer tSectorStatus points to
this memory. This memory must be released when it is no longer
required by the application. This is done by calling the DLL
function DmFreeMemory().

Parameter

tPL GetSectorStatus: structure with start and end sector
tRLGetSectorStatus: structure with status of each individual sector.
SThread: information for communication with the Thread
(ThreadID, Handle..)

Return

kSuccessful: command was executed without error

kFailed: user abort

kCommandDIIError: Command DLL was not loaded or was faulty
kSectorInvalid: addressis not a valid sector
kNetworkReceiveFailed: error during communication with the
module

kNetworkSendFailed: error during communication with the module
kNoLibSelected: no FlashLib was selected yet

Page 12

Flashtools 3

DMiInterface

tReturnCode DmGetSectorinfos (tRL GetFlashLiblnfo * pParamList_p,
tRLFlashinfo* pRetList p);

Function

The function returns the sector structure from the active Flash

Parameter

tRLGetFlashLibinfo: Structure with ManufacturerlD, DevicelD,
...(return value of FindFlashLib), or NULL.

tRLFlashinfo: structure with sector information that is read from
the Flash and module *.ini file.

The Flash is specified by the tRLGetFLashLiblnfo specification. If
NULL is given for this parameter, then the DLL uses the
information from the currently selected Flash.

The DLL alocates memory for the information, which is returned
in the structure tRLGetFLashLibinfo. The pointer tBLockInfo
points to this memory. This memory must be released when it is no
longer required by the application. This must be done by calling the
DLL function DmFreeMemory(). Before this function can be

executed a module must be selected with the DmLogin.

Return

K Successful: command was executed without error

KNoModul Selected: no connection could be established with a
module

KlInvalidFileFormat: the required information could not be found in
the*.ini file.

Page 13

Flashtools 3

DMiInterface

tReturnCode DmGetGenera Infos (tRLGeneral Info* pRetList p) ;

Function

The function returns general information about the target module
and the active Flash.

Parameter

tRLGenera Info: structure with module information retrieved from
the module's *.ini file. Before this function can be executed, a
module must be selected with DmLogin.

Return

kSuccessful: command was executed without error
kNoModulSelected: no connection could be established with a
module

kInvalidFileFormat: the required information could not be found in

the *.ini file.

tReturnCode DmGetProtectedAreas (tRLGetProtAreas* pRetList p) ;

Function

The function returns all of the modul€’' s protected Flash areas.

Parameter

tRLGetProtAreas. structure with information about the protected
areas of the Flash.

The DLL alocates memory for the protected or NoAccess areas,
which is returned in the structure tRLGetProtAreas. The pointer
tAddrRange point to this memory. This memory must be released
when it is no longer required by application. This must occur by
calling the DLL function DmFreeMemory().

Before this function can be executed, a module must be selected

with the DmLogin.

Return

K Successful: command was executed without error
KNoModulSelected: no connection to the module could be
established

KlInvalidFileFormat: the required information could not be found in
the*.ini file.

Page 14

Flashtools 3 DMiInterface

Thread:

tReturnCode DmStopCurrentThread () ;

Function | The function ends the currently running thread.

Parameter |-

Return kSuccessful: command was executed without error
kFailed: no thread available

kCommandDIIError: command DLL did not load or is faulty

tReturnCode DmGetCurrentThreadStatus () ;

Function The function returns the status of the current thread.

Parameter |-
Return KThreadRunning: thread is still running
KCommandDIIError: command DLL did not load or is faulty.

Error status of the thread.
BY TE DmGetProgress()
Function | This function reports the progress of the running thread as a
percentage
Parameter |-
Return Progress

Page 15

Flashtools 3

DMiInterface

Memory:

tReturnCode DmFreeMemory(void* Buffer)

Function

The function releases the passed memory area. This memory area
must be allocated by the DLL before passed to internal functions.

Parameter

Buffer: pointer to the memory area

Return

kSuccessful: Ok
kFailed: memory area not valid

kCommandDIIError: command DLL did not load or is faulty

tReturnCode DmGetHexFilelnfo(DWORD dwOffset, tRLFilelnfo * pParamList_p)

Function

This function returns information about the loaded hex file

(memory size, occupied sectors)

Parameter

dwOffset: Offset of the hex file

pParamList_p: structure with information

Return

kSuccessful: Ok
kNoM odulSelected: no connection could be established with the

module

tReturnCode DmCheckOldFlashTool ()

Function

This function tests whether the old version of FashTools
(FlashTo0ls98) or the current version is present in Flash BankO on
a module with firmware. Using this function makes only sense

when using a module with a pre-programmed flash.

Parameter

Return

kSuccessful: current version

kCommandDlI|Error: command DLL did not load or is faulty
kNetworkReceiveFailed: error during communication with the
module

kNetworkSendFailed: error during communication with the module

kOldFlashToolsVersionFound: old version found

Page 16

Flashtools 3 DMiInterface

1.2 Structure Definitions

When using the structures it is important to note that for technical reasons the structures with
the note #pragma pack (1) were saved in a packed manner. Please use the header files
included with the software for declaration of the structures. These contain the required pack

instructions.

1.2.1 General Structures

Generd structures are mostly used to make it easier to write to the send buffer and read from

the receive buffer.

t ypedef enum {
k8Bit _16Bi t Mode = 0x00,

k8Bit = 0x01,
k16Bit = 0x02
} tMentype;

t ypedef struct
{

char szFl ashNane [32] ;
DWORD dwFl ashSi ze ;

DWORD dwFl ashl D ;

WORD wWNumOf Bl ocks ;

t Bl ockl nfo aBl ockl nf o[wNunOf Bl ocks]
} tRLFl ashlnfo ;
t ypedef struct
{
DWORD awdx f set
DWORD dwSect or Si ze ;
WORD WNunmber Of Sectors ;
} tBlocklinfo ;

t ypedef struct

{
DWORD dwSect or Nunber ;
t Ret ur nCode Error Code ;

} tEraseStatus ;

Page 17

Flashtools 3 DMiInterface

typedef struct
{
DWORD dwSect or Nunber
BYTE bSectorStatus ; /1 LSB: ProtectionStatus (nur auf PC Seite)
/1 NMBB: Bl ankSt at us
} tSectorStatus ;

typedef struct
{
DWORD dwSt art Addr ess
DWORD dwEndAddress ;
} tAddrRange ;

Page 18

Flashtools 3 DMiInterface

1.2.2 Structures for Parameter Lists

t ypedef struct
{
BYTE bEvenQdd ;
} tPLInitFlashLib ;

t ypedef struct

{
DWORD dwSt ar t Addr ess ;
DWORD dwEndAddress ;
DWORD dwSect or Si ze ;

} tPLEraseSectors ;

t ypedef struct

{
DWORD dwSt ar t Addr ess ;
DWORD dwEndAddress ;
DWORD dwBl ockSi ze ;

} tPLEraseBl ocks ;

t ypedef struct

{
BYTE bFl ashLi bPtr ; /1 0 = FirstLib, 1 = NextLib
DWORD dwFl ashAddr ess;

} tPLGet Fl ashLi bl nfo ;

t ypedef struct

{
DWORD dwsSt art Addr ess
DWORD dwEndAddress ;
DWORD dwSector Si ze ;

} tPLGet SectorStatus ;

t ypedef struct
{
DWORD dwSt art Addr ess
WORD wNunOf Byt es ;
BYTE aData [mwNunmOf Bytes | ;
} tPLProgFl ash ;

Page 19

Flashtools 3 DMiInterface

t ypedef struct
{
DWORD dwsSt art Addr ess
WORD wNunOf Byt es ;
} tPLReadFl ash ;

t ypedef struct
{
WORD wHl ashLi bl D;
WORD wAddi tional I D
} tPLSel ectFlashLib ;

t ypedef struct
{
DWORD dwPwdLengt h;
char *Password ;
} tPLSendPassword ;

t ypedef struct
{
BYTE bStart User App;
DWORD dwLogSt art Addr
} tPLExitFlashTool s ;

Page 20

Flashtools 3 DMiInterface

1.2.3 Structures for Return Values

t ypedef struct

{
WORD wWNumCof Er aseSt at us ;

t EraseStatus aEraseStatus [wNunmOf EraseStat us]
} tRLEraseSectors ;

t ypedef struct
{

WORD WNumof Er aseSt at us

t EraseStatus aEraseStatus [wNunmOf EraseStat us]
} tRLEraseBl ocks ;

t ypedef struct
{
DWORD dwhNuntX Byt esRead ;
BYTE aData [whNun®X Byt esRead]
} tRLReadFl ash ;

t ypedef struct

{
WORD wFl ashLi bl D ;
WORD bManuf acturerl D ;
WORD bDevi cel D ;
WORD wAddi tional I D ;

} tRLGet Fl ashLi blnfo ;

t ypedef struct

{
char szModul eNanme [32]

char szM croController [32]

t MeniType Menilype ;
} tRLGenerallnfo ;

t ypedef struct

{
WORD WNun Sect or sl nBuf f er
tSectorStatus aSectorStatus [wNunf Sectorsl nBuffer]

Page 21

Flashtools 3 DMiInterface

} tRLGet SectorStatus ;

t ypedef struct

{
WORD WTxBuf f er Si ze ;
BYTE bMaj or Rel ease ;
BYTE bM nor Rel ease ;
BYTE bPat chLevel ;

} tRLLogin ;

t ypedef struct
{
WORD m WNunmof Pr ot Ar eas ;
WORD m WNunOf NonAccAr eas
t Addr Range m aProtectedAreas [m wNunOf Prot Areas | ;
t Addr Range m aNonAccessAreas [m wNunOf NonAccAreas |
} tRLGet ProtAreas ;

1

typedef struct {
DWORD dwbDat aSi ze;
DWORD dwNunber O Sect or sl nBuf fer;
t PLEr aseSect ors *pSect or | nf o;

} tRLFilelnfo;

Page 22

Flashtools 3 DMiInterface

1.2.4 Structures for Threads

Functions that require more time on the PC, e.g. functions that wait for an answer from the
SBC, are implemented as threads so that the status of the function can be queried or the
function can be aborted. The DLL provides a function for stopping the thread
(DmStopCurrentThread() and a function that returns the status of the thread.

A structure is given for each function that is implemented via athread. This structure is filled
out when the thread is generated and then returned to the application. The structure contains
the handle and the ID of the thread, which can be used to access the thread directly.

t ypedef struct {
U NT W D
HANDLE hHandl e;
DWORD dwReser vedl;
DWORD dwReser ved2;
WORD wReser ved;

} sThread;

Page 23

Flashtools 3 DMiInterface

1.2.5 Used enum Definitions

t ypedef enum {

kSuccessf ul = 0x00,
kFai | ed = 0x01,
kCommBuf f er TooSmal | = 0x02,
kM ssi ngl nfornmati on = 0x03,
kTi meCut = 0x10,
kSectorlnvalid = 0x20,
kNot Bl ank = 0x21,
kBl ank = 0x22,
kUnknown = 0x23,
kAddressl nvalid = 0x30,
kAddr NoAccess = 0x31,
kAddr Pr ot ect ed = 0x40,
kHar dwar ePr ot ect ed = 0x41,
kSof t war ePr ot ect ed = 0x42,
kFl asht ool sProt ect ed = 0x43,
kParti al Access = 0x44,
kNoAccess = 0x45,
kFul | Access = 0x46,
kLoadFi | eError = 0x50,
kLi bNot Found = 0x80,
kNoLi bSel ect ed = 0x81,
kl nval i dPassword = 0x90,
kToFewByt es = 0xAO0,
kLoadBoot Fi | eErr or = 0xBO,
kBoot Loader Not Acti ve = 0xB1,
kLoadFl ashFi | eError = 0xB2,
kUnknownConmrand = 0xBS3,
kChecksuntrr or = 0xB4,
kNoRamAt Addr ess = 0xBS5,
kThr eadRunni ng = 0xCo,
kFi | eNot Found = OxEO,
kl nval i dFi | eFor mat = OxE1,
kNoMbodul Sel ect ed = OxE2,
kl nval i dConPor t = OxE4,
kl ni t ConPort Err or = OxES8,
kConmandNot Support ed = OXxED,
kUndef i nedConmand = OxEE,

Page 24

Flashtools 3

DMiInterface

kA dFl ashTool sVer si onFound

kNet wor kSendFai | ed
kNet wor kRecei veFai | ed
kNet wor kDI | Not Found
kNet wor kDI | Err or
kNet wor kI ni t Err or
kComrandDl | Not Found
kConmmandDl | Err or
kDnDl | Not Found
kDDl | Er r or
kUnknownEr r or Code

} tReturnCode

= OxEF,
0xFO,
OxF1,
OxF2,
OxF3,
OxF4,
OXFA,
O0xFB,
OxFC,
OXFD,
OxFF

Page 25

Flashtools 3 DMiInterface

2 Implementation Hints

2.1 Parameters values

The parameter passing to the DLL is realised with the help of structures. The majority of the
functions accept pointers to two structures as parameters. The first structure (starting with
tPL) contains the parameters that are passed to the DLL. In the second structure (beginning
with rRL) datafrom the DLL isreturned to the program that performed the call.

A few structures contain an element that describes a pointer to a data area (e.g. the functions
that work with sectors such as DmEraseSector, DmGetSectorStatus). Since the number of
elements (structures with sectors) that can be returned is not always fixed or known at the
time these functions are called, memory cannot be allocated in advance by the application.
Therefore the memory is allocated by the function in the DLL. The application is responsible
for releasing this memory if it is no longer needed. This memory must be released in the DLL
with the function DmFreeMemory, once it is no longer required.

The following exampleisintended to further clarify this:

t PLEr aseSect ors sEraseSectorsln; /1 initialize paraneters
t RLEr aseSect ors sEraseSect orsQut ;

sThread sEraseSectorsThread,;

sEraseSect or sl n. dwSt art Address = 0x0000; /] Startadress
sEr aseSect or sl n. dweEndAddr ess 0x100000; // Endaddress

sEraseSect or sl n. dwSect or Si ze = 0x10000; // SectorSize

/1 call function in DLL

if (mpDmAccess- >EraseSect or s(&Er aseSect or sl n, &Er aseSect or sQut ,

&sEraseSectorsThread) != kSuccessful) {
Af xMessageBox("Error erasing sectorsfile");

return;

Page 26

Flashtools 3 DMiInterface

The structure sEraseSectorsOut now contains in the element wNumOfEraseStatus, the number
of sectors for which an error occurred.
The element aEraseStatus is a pointer to an array of type tEraseStatus.

Now these sectors can be read:

if (sEraseSectorsQut. wWNuntX EraseStatus) { // al |east one sector errornous
for (WORD wCurrent SectorStatus = 0; wCurrent SectorStatus <
sEraseSect or sQut . wNun®X Er aseSt at us; wCurrent Sect or St at us++) {
Updat eSect or (sEraseSect or sQut . aEr aseSt at us[wCur r ent Sect or St at us] . Err or Code) ;

Now the memory can be rel eased.

m_pDmAccess- >Dnfr eeMenor y(sEraseSect or sQut . aEr aseSt at us) ;

Page 27

Flashtools 3 DMiInterface

2.2 Threads

Functions that require more time were implemented in the DLL as a thread, this means that a

call of thefunction inthe DLL starts athread there and then returnsimmediately.

The state of the thread can be queried with the function tReturnCode
DmGetCurrentThreadStatus (). As long as the thread is running, this function will return
kThreadRunning. Otherwise it will deliver avaue with which the thread was ended.

In order to stop the thread from the application program the function DmStopCurrentThread ()
iscaled. Thiswill end the current thread.

As an dternative the parameter sThread* can be used as well. All function implemented as a
thread have this parameter. This structure has a handle to a thread and a thread ID as
elements. Both of these values are filled out by the DL and can be used by the application to
access a thread directly (before using the thread structure directly please read the

documentation for your development environment).

We recommend using the functions made available by the DLL.

Page 28

Flashtools 3 DMiInterface

2.2.1 Operation sequence

First the connection to the module must be established. The function
tReturnCode DmLogin (char *szl ni Fi | eNane, tRLLogi n pRetList_p, sThread *sLogi nThread);
isused for this;

The parameters for this function contains the path and file name for the *.ini file, which
describes the connected module. These *.ini files are located in the folder
TARGET\MODULNAME\modul.ini.

If this function was caled successfully, then a FlashLib must be selected on the
microcontroller module. First the FlashLibs on the SBC module will be queried with the

function

t Ret ur nCode DnFi ndFl ashLi b (t PLGet Fl ashLi bl nf o* pPar anLi st _p,
t RLGet Fl ashLi bl nfo* pRetList_p) ;

First the element bFlashLibPtr must be set to O to access the first FlashLib. In addition, the
start address of the Flash has to be given. The microcontroller responds by returning
information about the FlashLib found in the structure tRL GetFlashLiblnfo.

Now additional FlashLibs can be searched for with the function DmFindFlashLib() and
bFlashLibPtr = 1, until the right one is found or until no more are present’. The desired

FlasLib can be selected on the microcontroller module with the function
t Ret urnCode DnSel ect Fl ashLib (tPLSel ect Fl ashLi b* pParanli st_p);

This concludes the initialisation and the module can be used.

To stop communication with the module FlashTools must be stopped on the SBC. The

following function is used to do this.

t Ret urnCode DnExitFl ashTools (tPLExitFl ashTool s* pParaniist_p) ;

! At this time PHY TEC FlashTools only include a FlashLib for AMD and AMD-compatible
Flash devices.

Page 29

Flashtools 3 DMiInterface

This resets the communication with the microcontroller module. If desired a user program can
be started on the microcontroller too. To do this the parameter bStartUserApp must be set to 1
and the start address of the program must be given in the parameter dwL ogStartAddr.

Page 30

	Using the FlashTools Library
	Integrating the DLL in a User Application
	Structure Definitions
	General Structures
	Structures for Parameter Lists
	Structures for Return Values
	Structures for Threads
	Used enum Definitions

	Implementation Hints
	Parameters values
	Threads
	Operation sequence

