
 

  

 

 

A product of a PHYTEC Technology Holding company 

phyCORE-i.MX35 

 

BINARY BSP DOCUMENTATION 

WINCE 6.0 

 

 

Edition August 2010 



phyCore-i.MX35 Binary BSP Documentation 

_________________________________________________________________________________ 

  PHYTEC Messtechnik GmbH 2010      

Table of Contents 

 

1 Scope of this Document ....................................................................4 

2 BSP Contents......................................................................................4 

3 Requirements......................................................................................5 

4 Installation and Build – Instructions.................................................5 
4.1 Preparation ...................................................................................5 
4.2 BSP Installation ............................................................................5 
4.3 Building an Image.........................................................................6 

5 Supported Features............................................................................6 

6 Driver Documentation ........................................................................7 
6.1 Display Driver ...............................................................................7 

Software Operation.......................................................................8 
Configuration ................................................................................8 

6.2 SPI Driver ...................................................................................10 
Software Operation.....................................................................10 

6.3 Serial Driver ................................................................................14 
Software Operation.....................................................................14 
Configuration ..............................................................................14 
Configure as debug output .........................................................15 
Serial PDD Functions .................................................................15 

6.4 NAND-Flash Driver .....................................................................17 
Software Operation.....................................................................17 
Hive-based registry.....................................................................17 

6.5 Audio Driver ................................................................................18 
Software Operation.....................................................................18 

6.6 MMC/SD Driver...........................................................................18 
Software Operation.....................................................................19 
Required Catalog Items..............................................................19 
Registry Settings.........................................................................19 

6.7 GPT Driver..................................................................................20 
Software Operation.....................................................................20 
Structures ...................................................................................21 

6.8 USB Host Driver .........................................................................23 
Required Catalog Items..............................................................23 
Software Operation.....................................................................24 

6.9 USB OTG Driver .........................................................................24 
OTG Client..................................................................................24 
OTG Host....................................................................................25 
OTG Transceiver ........................................................................25 



phyCore-i.MX35 Binary BSP Documentation 

_________________________________________________________________________________ 

  PHYTEC Messtechnik GmbH 2010      

Software Operation.....................................................................26 
6.10 I2C Driver....................................................................................26 

Software Operation.....................................................................26 
Structures ...................................................................................30 

6.11 Ethernet Driver............................................................................32 
Software Operation.....................................................................32 

6.12 CAN Controller Driver .................................................................32 
Software Operation.....................................................................32 
Structures ...................................................................................35 

6.13 EEPROM Driver..........................................................................38 
Software Operation.....................................................................38 
Structures ...................................................................................39 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



phyCore-i.MX35 Binary BSP Documentation 

_________________________________________________________________________________ 

  PHYTEC Messtechnik GmbH 2010      

1 Scope of this Document 

This document is for developer who have experience in Windows Embedded CE programming.  The 

document describes how to communicate with your phyCore-i.MX35 device in Windows Embedded 

CE. 

2 BSP Contents 

The Binary BSP contains the following folders and files: 

 

• WINCE600: 

contains the Libraries and Build files needed to build an Windows CE 6.0 Image for the 

phyCore i.MX35 Evaluation Kit. For installation instructions, refer to chapter 3. 

 

Folder structure of the BSP: 

 

PLATFORM 

|--COMMON 

| |--SRC 

|  |--SOC 

|   |--COMMON_FSL_V2 

|    |-- INC 

| 

|--iMX35Phytec 

 |--Binaries 

|--CATALOG 

|--FILES 

|--OalLibs 

|--SDKLibs 

|--SRC 

|--COMMON 

| |--BSPCMN 

| |--OTHER 

|--INC 

|--KITL 

|--OAL 



phyCore-i.MX35 Binary BSP Documentation 

_________________________________________________________________________________ 

  PHYTEC Messtechnik GmbH 2010      

3 Requirements 

Visual Studio 2005 with Microsoft Windows Embedded CE 6.0 Plugin. 

 

Updates: 

• Visual Studio 2005 Service Pack 1 

• Windows Embedded CE 6.0 Platform Builder Service Pack 1 

• Windows Embedded CE 6.0 R2 

• Windows Embedded CE 6.0 R3: 

o Windows Embedded CE 6.0 Monthly Update (January 2010) 

o Windows Embedded CE 6.0 Monthly Update (February 2010) 

o Windows Embedded CE 6.0 Monthly Update (March 2010) 

o Windows Embedded CE 6.0 Monthly Update (April 2010) 

o Windows Embedded CE 6.0 Monthly Update (May 2010) 

, all available on the Microsoft Website. 

4 Installation and Build – Instructions 

4.1 Preparation 

Before you install the BSP, be sure to perform the following steps: 

In order to avoid problems, it is recommended to remove any previously installed i.MX35 BSPs. To do 

so, go to the windows control panel, click “Add or Remove Programs” and select “PHYTEC WinCe 

i.MX35-Kit” to remove.  

If you decide to not remove an installed i.MX35 BSP, be warned that the installation of the Phytec 

i.MX35 BSP will override all changes you made to files contained in this BSP. So either save your 

changed files to another location or consider removing the previous BSP version. 

4.2 BSP Installation 

Unzip the “BinaryBSP_ExampleProject.zip” in the same directory, where the WINCE600 folder is 

located on your hard drive.  



phyCore-i.MX35 Binary BSP Documentation 

_________________________________________________________________________________ 

  PHYTEC Messtechnik GmbH 2010      

4.3 Building an Image 

The best way to start building an image for the Phytec i.MX35 platform is to use the provided 

example project. To do so, open platform builder and perform File -> Open -> 

Project/Solution and then choose the iMX35Phytec.sln file from the example project directory. After 

that, choose Build -> Build iMX35Phytec. 

 

CAUTION: as mentioned above, this step will override any files associated 

with a previously installed i.MX35 BSP! 

5 Supported Features 

The following table lists all features supported by this release of the BSP. 

 

Feature Supported? Comment 

OAL 

KITL YES at the moment, the used KITL-Connection is fixed to 'active KITL' 

Serial debug YES Serial debug message show up on UART2 

I²C YES Used to read and write to the external RTC on I²C 

External RTC YES 

• Used to save the time during power-off 

• External RTC is synchronized, when time is changed in 

controlpanel 

Splashscreen NO Display of a custom bitmap on the display during startup.  

Drivers 

Display YES 

Support for: 

• Hitachi TX09D70VM1CCA 

• Hitachi TX18D16VM1CBB 

• Primeview PD050VL1 

Camera NO  

SPI  YES Bus Driver for CSPI interface 

Serial YES UART1 for serial communication 

GPT YES General Purpose Timer 

PWM YES  

NANDFC YES File System, Hive-based registry 

One Wire NO  



phyCore-i.MX35 Binary BSP Documentation 

_________________________________________________________________________________ 

  PHYTEC Messtechnik GmbH 2010      

Audio YES Playback and Recording via Line-In 

MMC/SD YES File System 

PCMCIA NO  

USB Host YES 
USB HighSpeed Host Port for Mass-Storage and HID (Mouse, 

Keyboard) 

USB OTG YES OTG Port to establish an Active Sync connection to PC 

I²C YES Bus Driver for e.g. Camera  and EEPROM 

Ethernet YES 
• Download WinCE-Image over Ethernet in Eboot 

• WinCE NDIS driver 

CAN YES Use of the intern CAN-Controller 

Battery NO  

EEPROM YES  

6 Driver Documentation 

6.1 Display Driver 

The Display Driver is a Direct Draw Driver using the Synchronous Display Controller (SDC) of the 

i.MX35 Image Processing Unit (IPU). It supports the Hitachi TX09D70VM1CCA QVGA panel (default 

panel), the Hitachi TX18D16VM1CBB WVGA panel and the Prime View PD050VL1 VGA panel. 

 

Driver Attribute Definition 

Import Library ddgpe.lib, gpe.lib 

Driver DLL ddraw_ipu.dll 

Required Catalog Items Third Party � BSPs � iMX35Phytec � Device 

Drivers � Display � TX09D70VM1CCA (QVGA) 

Third Party � BSPs � iMX35Phytec � Device 

Drivers � Display � TX18D16VM1CBB (WVGA) 

Third Party � BSPs � iMX35Phytec � Device 

Drivers � Display � Prime View PD050VL1 (VGA) 

SYSGEN Dependency SYSGEN_DDRAW=1 

BSP Environment Variable BSP_DISPLAY_TX09_35 for Hitachi TX09D70VM1CCA  

BSP_DISPLAY_TX18_81 for Hitachi TX18D16VM1CBB 

BSP_DISPLAY_PRIMEVIEW_PD050VL1 for PrimeView PD050VL1 



phyCore-i.MX35 Binary BSP Documentation 

_________________________________________________________________________________ 

  PHYTEC Messtechnik GmbH 2010      

Software Operation 

Communication with the Display is done using the Graphics Device Interface (GDI) API and the 

DirectDraw API, both defined by Microsoft (please refer to Windows Embedded CE Features −> 

Shell, GWES, and User Interface −> Graphics, Windowing and Events −> GWES Application 

Development −> Graphics Device Interface for help on GDI and to Windows CE Features −> 

Graphics −> DirectDraw for help on DirectDraw). 

 

The Display Driver supports the following DirectDraw features: 

• page flipping (one backbuffer) 

• Overlay surfaces using RGB or the FOURCC UYVY pixel format. 

• Overlaying using a color key for the overlay surface for RGB colors. 

• Overlaying using a color key for the non-overlay graphics surface for RGB colors. 

• Stretching of overlay surfaces. 

 

The Display Driver also uses Post-Processing features of the i.MX35 IPU to provide the following 

possibilities: 

• Color space conversion of UYVY overlay data to RGB. This conversion is required in order 

to combine the overlay data with RGB graphics plane data in the IPU SDC. 

• Resizing of the overlay surface. 

• Rotation of the overlay surface (used when the screen orientation is rotated, see 'Button 

Operation' above). 

• Resizing and rotation of the primary graphics surface. 

In order to communicate directly with the display driver, an escape code mechanism is provided. 

Descriptions of standard escape codes can be found under Developing a Device Driver ���� 

Windows Embedded CE Drivers ���� Display Drivers ���� Display Driver Development Concepts ����  

Display Driver Escape Codes in the Platform Builder Help. 

Configuration 

The Display Driver is configured using the registry keys described below. Depending on the 

selected display in the catalog, the corresponding registry settings are included. 

 

If the ‘Hitachi TX09D70VM1CCA' panel is selected, the following registry settings are included: 

 

 



phyCore-i.MX35 Binary BSP Documentation 

_________________________________________________________________________________ 

  PHYTEC Messtechnik GmbH 2010      

[HKEY_LOCAL_MACHINE\Drivers\Display\DDIPU]    
     "Bpp"=dword:10   ; 16bpp 
     "CxScreen"=dword:F0  ; 240  
     "CyScreen"=dword:140  ; 320        
  "VideoBpp"=dword:10  ; RGB565    
     "PanelType"=dword:4  ; TX09 QVGA Panel (3,5 Inch) 

"VideoMemSize"=dword:600000 

 

If the 'Hitachi TX18D16VM1CBB' panel is selected, the following registry keys are included: 

 

[HKEY_LOCAL_MACHINE\Drivers\Display\DDIPU]    
     "Bpp"=dword:10   ; 16bpp 
     "CxScreen"=dword:320  ; 800 
     "CyScreen"=dword:1E0  ; 480 
     "VideoBpp"=dword:10  ; RGB565    
     "PanelType"=dword:5  ; TX18 QVGA Panel (8,1 Inch) 
  "VideoMemSize"=dword:600000 

If the ‘PrimeView PD050VL1' panel is selected, the following registry keys are included: 

 

[HKEY_LOCAL_MACHINE\Drivers\Display\DDIPU]    
     "Bpp"=dword:10   ; 16bpp 10 
     "CxScreen"=dword:280  ; 640 
     "CyScreen"=dword:1E0  ; 480 
     "VideoBpp"=dword:10  ; RGB666    
     "PanelType"=dword:6  ; PRIME VIEW 640x480 Panel 

"VideoMemSize"=dword:200000 ; 

VideoMemSize determines the amount of memory used by the driver for the various surfaces. 

 

Bpp sets the bytes per pixel of the display, this is set to 16-bit RGB pixel data for 

all supported displays. 



phyCore-i.MX35 Binary BSP Documentation 

_________________________________________________________________________________ 

  PHYTEC Messtechnik GmbH 2010      

6.2 SPI Driver 

The SPI Driver allows rapid serial communication and can be configured to master- or slave-mode. 

You can access following SPI Busses and Chipselects: 

- SPI1_SS0 

- SPI1_SS1 

- SPI2_SS0 

 

Driver Attribute Definition 

Import Library spisdk.lib 

Driver DLL Cspi.dll 

Required Catalog Items Third Party � BSPs � iMX35Phytec � Device 

Drivers � CSPI Bus � CSPI 1/2 

SYSGEN Dependency N/A 

BSP Environment Variable BSP_CSPIBUS1=1 

BSP_CSPIBUS2=1 

Software Operation 

The CSPI Driver is a stream interface driver but can be accessed over extern declared functions. For 

successfully access to the driver, you have to include following Library and Header-File: 

 

Include Library:    

/WINCE600/PLATFORM/iMX35Phytec/SDKLibs/spisdk.lib 

Include Header: 

 /WINCE600/PLATFORM/COMMON/SRC/SOC/COMMON_FSL_V2/INC/cspibus.h 

 

Before working with SPI devices, a handle to the driver must be obtained using the CSPIOpenHandle 

(special device SPI1:) function. As always, this handle has to be closed using the 

CSPICloseHandle function, when no longer needed. Configuring the CSPI and exchanging data is 

done using the following Functions and Structures: 



phyCore-i.MX35 Binary BSP Documentation 

_________________________________________________________________________________ 

  PHYTEC Messtechnik GmbH 2010      

Functions: 

 

BOOL CSPIExchange(HANDLE hCSPI, PCSPI_XCH_PKT_T pCspiXchPkt) 

 

relevant Parameters: 

hCSPI 

Handle to the CSPI stream driver that you have created with the CSPIOpenHandle. 

 

pCspiXchPkt: 

The pointer of CSPI_XCH_PKT_T structure that contains a pointer to the CSPI_BUSCONFIG_T 

structure. 

 

// CSPI bus configuration 
typedef struct 
{ 
    UINT8   chipselect; 
    UINT32  freq; 
    UINT8   bitcount; 
    BOOL    sspol; 
    BOOL    ssctl; 
    BOOL    pol; 
    BOOL    pha; 
    UINT8   drctl; 
    BOOL    usedma; 
    BOOL    usepolling; 
} CSPI_BUSCONFIG_T, *PCSPI_BUSCONFIG_T; 

 

Members 

 

chipselect 

In master mode, these byte select the external slave devices by asserting the SSn outputs. Only the 

selected SSn signal will be active while the remaining chipselects signals will be negated. 

 

freq 

Frequency to which CSPI bus has to be configured. 

 

bitcount 

Number of bits to be transmitted at a time. 

 

sspol 

Selects the polarity of the chipselect signal. 



phyCore-i.MX35 Binary BSP Documentation 

_________________________________________________________________________________ 

  PHYTEC Messtechnik GmbH 2010      

sspol = TRUE    sspol = FALSE 

Clock polarity Active High  Clock polarity Active Low 

 

ssctl 

SS Signal waveform select the polarity of the chipselect signal. 

ssctl = TRUE    ssctl = FALSE 

SS Signal insert pulse   SS Signal stays asserted    

 

pol 

SPI clock polarity control. 

pol = TRUE    pol = FALSE 

Clock polarity Active Low  Clock polarity Active High 

 

pha 

SPI Clock/Data Control 

pha = TRUE    pha = FALSE 

Phase 1 operation   Phase 0 operation 

 

drctl 

SPI Data Ready Control. 

Drctl = 0 � SPI_RDY signal is a don’t care. 

Drctl = 1 � Burst will be triggered by the falling edge of SPI_RDY signal. 

Drctl = 2 � Burst will be triggered by a low level of the SPI_RDY signal. 

 

usedma 

If “TRUE” driver use DMA otherwise “FALSE” 

 

usepolling 

If “TRUE” driver is polling the status otherwise waiting for an interrupt request. 

 

// CSPI exchange packet 
typedef struct 
{ 
    PCSPI_BUSCONFIG_T pBusCnfg; 
    LPVOID pTxBuf; 
    LPVOID pRxBuf; 
    UINT32 xchCnt; 
    LPWSTR xchEvent; 
    UINT32 xchEventLength; 
} CSPI_XCH_PKT_T, *PCSPI_XCH_PKT_T; 



phyCore-i.MX35 Binary BSP Documentation 

_________________________________________________________________________________ 

  PHYTEC Messtechnik GmbH 2010      

Members 

 

pBusCnfg 

Object points to the bus configuration structure PCSPI_BUSCONFIG_T of the SPI bus. 

 

pTxBuf 

A pointer to a buffer of bytes to transmit in a write operation. 

 

pRxBuf 

A pointer to a buffer that will be read into during a read operation. 

 

xchCnt 

The number of packets to transmit from pTxBuf / read to pRxBuf. 

 

xchEvent 

An event name string that is signalled whenever the packet operation (read or write) has 

completed. CreateEvent must be called to create the event before the packet can be 

passed to the CSPI.  

 

xchEventLength 

Size of the event name. 

 

Bus Configuration 

 

In order to successfully communicate with a SPI device, the CSPI module first has to be configured 

at any write or read access. This is done by setting up a CSPI_BUSCONFIG_T structure according to 

the intended configuration. After that, this structure is set as the pBusCnfg -field of a 

CSPI_XCH_PKT_T structure.  

For any write or read operation you must fill the complete structure CSPI_XCH_PKT_T.   

 

After all this is set up, the configuration is actually done by every write or read access by calling 

CSPIExchange with the previously set up CSPI_XCH_PKT_T structure as the input parameter. To 

wait on the operation to complete, a WaitForSingleObject on the assigned event handle has to be 

done. 



phyCore-i.MX35 Binary BSP Documentation 

_________________________________________________________________________________ 

  PHYTEC Messtechnik GmbH 2010      

6.3 Serial Driver 

The Serial Driver provides support for the internal UART1 of the i.MX35 (on default UART2 is used as 

debug output). The Driver is implemented as a Stream Interface Driver. It implements the PDD Layer 

(platform dependent) and is then linked to the Microsoft - provided serial MDD library 

(com_mdd2.lib) to form the Driver. 

Driver Attribute Definition 

Import Library com_mdd2.lib 

Driver DLL csp_serial.dll 

Required Catalog Items Third Party � BSPs � iMX35Phytec � Device 

Drivers � Serial � UART1 / UART2 

SYSGEN Dependency N/A 

BSP Environment Variable BSP_SERIAL_UART1=1 

Software Operation 

The Serial Driver implements the architecture recommended by Microsoft. For detailed information 

on this architecture, refer to Developing a Device Driver ����  Windows Embedded CE Drivers ���� 

Serial Port Drivers ���� Serial Driver Development Concepts in the Windows CE Help. 

Configuration 

The UART1 Serial Driver is configured by the registry settings described below: 

 

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\COM2] 
     "DeviceArrayIndex"=dword:0 
     "IoBase"=dword:43F90000 
     "IoLen"=dword:D4 
     "Prefix"="COM" 
     "Dll"="csp_serial.dll" 
     "Index"=dword:2 
     "Order"=dword:0 

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\COM2\Unimodem] 
     "Tsp"="Unimodem.dll" 
     "DeviceType"=dword:0 
     "FriendlyName"="i.MX35 COM2 UNIMODEM" 
     "DevConfig"=hex: 10,00, 00,00, 05,00,00,00, 10,01,00,00, 

00,4B,00,00, 00,00, 08, 00, 00, 00,00,00,00 

 

The UART2 Serial Driver is configured by the registry settings described below: 



phyCore-i.MX35 Binary BSP Documentation 

_________________________________________________________________________________ 

  PHYTEC Messtechnik GmbH 2010      

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\COM3] 
     "DeviceArrayIndex"=dword:0 
     "IoBase"=dword:43F94000 
     "IoLen"=dword:D4 
     "Prefix"="COM" 
     "Dll"="csp_serial.dll" 
     "Index"=dword:3 
     "Order"=dword:0 

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\COM3\Unimodem] 
     "Tsp"="Unimodem.dll" 
     "DeviceType"=dword:0 
     "FriendlyName"="i.MX35 COM3 UNIMODEM" 

"DevConfig"=hex: 10,00, 00,00, 05,00,00,00, 10,01,00,00, 

00,4B,00,00, 00,00, 08, 00, 00, 00,00,00,00 

Configure as debug output 

You can configure any UART as output for system and debug messages. You have to edit the 

“DEBUG_PORT” on “bsp_cfg.h” in the Binary BSP under 

../WINCE600/PLATFROM/iMX35Phytec/SRC/INC/. The following example show you how to configure 

UART2 as debug output: 

 

#define DEBUG_PORT              DBG_UART2 

 

 

Notice: 

A “Rebuild Current BSP and Subprojects” is necessary for changing debug port. 

Serial PDD Functions 

The Serial PDD Functions defined by Microsoft are mapped to Serial Driver internal functions as 

follows: 

const HW_VTBL IoVTbl = { 

SerSerialInit, 

SerPostInit, 

SerDeinit, 

SerOpen, 

SerClose, 

SL_GetIntrType, 

SL_RxIntrHandler, 

SL_TxIntrHandler, 

SL_ModemIntrHandler, 



phyCore-i.MX35 Binary BSP Documentation 

_________________________________________________________________________________ 

  PHYTEC Messtechnik GmbH 2010      

SL_LineIntrHandler, 

SL_GetRxBufferSize, 

SerPowerOff, 

SerPowerOn, 

SL_ClearDTR, 

SL_SetDTR, 

SL_ClearRTS, 

SL_SetRTS, 

SerEnableIR, 

SerDisableIR, 

SL_ClearBreak, 

SL_SetBreak, 

SL_XmitComChar, 

SL_GetStatus, 

SL_Reset, 

SL_GetModemStatus, 

SerGetCommProperties, 

SL_PurgeComm, 

SL_SetDCB, 

SL_SetCommTimeouts, 

}; 

 

Refer to Developing a Device Driver ���� Windows Embedded CE Drivers ���� Serial Port Drivers ���� 

Serial Port Driver Reference ���� Serial Port Driver Structures ���� HW_VTBL to determine which 

internal function maps to which Serial PDD function. 



phyCore-i.MX35 Binary BSP Documentation 

_________________________________________________________________________________ 

  PHYTEC Messtechnik GmbH 2010      

6.4 NAND-Flash Driver 

The NAND-Flash driver is used to make our NAND-Flash available as a block device in Windows CE. 

Therefore the Flash Abstraction Layer (FAL) is implemented.  

Further more the hive-based registry is stored on the NAND-Flash device.   

Driver Attribute Definition 

Import Library N/A 

Driver DLL flashpdd_nand.dll 

Required Catalog Items Third Party � BSPs � iMX35Phytec � Storage 

Drivers � MSFlash Drivers � Nand Flash Driver 

SYSGEN Dependency N/A 

BSP Environment Variable BSP_NAND_FMD=1 

Software Operation 

The NAND Flash Driver implements the Flash Media Drivers (FMD) architecture. Refer to 

Developing a Device Driver > Windows CE Drivers > Flash Media Drivers for more information. 

 

Hive-based registry 

The NAND-Flash is also used as storage device for the hive-based registry. For saving the registry 

you have to execute „SaveReg.exe“. 

 

 

 

Notes: 

„SaveReg.exe“ deletes automatically the touch calibration tool startup entry. 

If you have build an own WinCE-Image it is necessary to delete the hole NAND-Flash area. 



phyCore-i.MX35 Binary BSP Documentation 

_________________________________________________________________________________ 

  PHYTEC Messtechnik GmbH 2010      

6.5 Audio Driver 

The audio driver is used to playback or record audio using the Wolfson WM9712 IC. 

 

Driver Attribute Definition 

SOC static library N/A 

Import Library N/A 

Driver DLL Wolfson_audio.dll 

Required Catalog Items 

Third Party � BSPs � iMX35Phytec � Device 

Drivers � Audio � Wolfson WM9712 Audio 

CoreOS � CEBASE � Graphics and Multimedia 

Technologies � Audio � Waveform Audio 

SYSGEN Dependency SYSGEN_AUDIO=1 

BSP Environment Variable BSP_WOLFSON_AUDIO=1 

Software Operation 

The audio driver conforms to the architecture for audio drivers recommended by Microsoft. For a 

detailed description, read Developing a Device Driver ���� Windows CE Drivers ���� Audio Drivers 

���� Audio Driver Development Concepts in the WindowsCE help. 

6.6 MMC/SD Driver 

The Secure Digital Host Controller (SDHC) supports Multimedia Cards (MMC) and Secure Digital 

Cards (SD). 

The SDHC driver provides the interface between Microsoft's SD Bus Driver and the i.MX35 

SDHC. 

 

Driver Attribute Definition 

SOC static library esdhcbase_common_fsl_v2.lib 

Import Library N/A 

Driver DLL esdhc.dll 

Required Catalog Items 

Third Party � BSPs � iMX35Phytec � Device 

Drivers � SD Controller � Enhanced SD Host 

Controller 1 

SYSGEN Dependency SYSGEN_SD_MEMORY=1 



phyCore-i.MX35 Binary BSP Documentation 

_________________________________________________________________________________ 

  PHYTEC Messtechnik GmbH 2010      

SYSGEN_SDBUS 

IMGSDBUS2 

BSP Environment Variable BSP_ESDHC1=1 

Software Operation 

The SDHC Driver follows the architecture for Secure Digital Host Controller drivers recommended 

by Microsoft. For more information, look at Developing a Device Driver ����  Windows Embedded 

CE Drivers ���� Secure Digital Card Drivers ���� Secure Digital Card Driver Development Concepts 

in the Windows CE Help. 

Required Catalog Items 

for SD and MMC Memory Card Support: 

Catalog −> Device Drivers −> SDIO −> SD Memory 

 

Registry Settings 

 
 
 [HKEY_LOCAL_MACHINE\Drivers\BuiltIn\ESDHC_MX35] 

      "Order"=dword:21 
      "Dll"="esdhc.dll" 
      "Prefix"="SHC" 
      "Index"=dword:1 

"DisableDMA"=dword:0  ; Use this reg setting to disable both  
internal and external DMA 

      "MaximumClockFrequency"=dword:3197500  ; 52 MHz max clock speed 
      "UseExternalDMA"=dword:0 

 
[HKEY_LOCAL_MACHINE\System\StorageManager\Profiles\MMC] 

"Name"="MMC Card" 
"Folder"="MMCMemory" 

 
[HKEY_LOCAL_MACHINE\System\StorageManager\Profiles\SDMemory] 

"Name"="SD Memory Card" 
"Folder"="SDMemory" 

 
[HKEY_LOCAL_MACHINE\Comm\PegasSDN1\Parms] 

"SdioBitMode"=dword:00000001 
 

[HKEY_LOCAL_MACHINE\Comm\PegasSDN1\Parms] 
"DisablePowerManagement"=dword:1 
"ResetOnResume"=dword:0 
"RebindOnResume"=dword:1 

 

 

 



phyCore-i.MX35 Binary BSP Documentation 

_________________________________________________________________________________ 

  PHYTEC Messtechnik GmbH 2010      

6.7 GPT Driver 

The GPT module can be used to implement various time-related tasks with high accuracy such as 

external triggered timestamps and interrupts or generating periodic output. Therefore, it supports 

input-capture and output-compare functionality. 

 

Driver Attribute Definition 

Static Library gpt_common_fsl_v2.lib, gpt_mx35_fsl_v2.lib 

Import Library gptsdk.lib 

Driver DLL gpt.dll 

Required Catalog Items Third Party � BSPs � iMX31_Phytec � Device 

Drivers � Timers � GPT 

SYSGEN Dependency N/A 

BSP Environment Variable BSP_GPT=1 

Software Operation 

For successfully access to the driver, you have to include following Library and Header-File: 

 

Include Library:    

/WINCE600/PLATFORM/iMX35Phytec/SDKLibs/gptsdk 

Include Header:   

/WINCE600/PLATFORM/COMMON/SRC/SOC/COMMON_FSL_V2/INC/gpt.h 

 

The GPT Driver is a stream - interface driver and therefore can be accessed using the file system 

API (special device GPT1:). After opening a handle to the driver using the GptOpenHandle(L”GPT1:”) 

call, communication with the device is done by issuing the available wrapper - functions: 

 

HANDLE GptOpenHandle(LPCWSTR lpDevName) 

Creates a handle to the GPT stream driver. 

 

Return value: 

Handle to the GPT or INVALID_HANDLE_VALUE if there was an error. 

 

BOOL GptCloseHandle(HANDLE hGpt) 

Closes a GPT-handle previously created by GptOpenHandle. 

 



phyCore-i.MX35 Binary BSP Documentation 

_________________________________________________________________________________ 

  PHYTEC Messtechnik GmbH 2010      

HANDLE GptCreateTimerEvent(HANDLE hGpt, LPTSTR eventName) 

Returns an event handle, which is triggered when a timer period has elapsed. 

relevant parameters: 

 

eventName: string containing the name of the event to be created. 

 

BOOL GptReleaseTimerEvent(HANDLE hGpt, LPTSTR eventName) 

Closes a handle to the GPT timer event. 

relevant parameters: 

 

eventName: string containing the name of the event to be closed. 

 

BOOL GptStart(HANDLE hGpt, pGPT_Config pTimerConfig) 

Enables the GPT Interrupt and starts the GPT timer with the given configuration. 

Relevant parameters: 

 

pTimerConfig: pointer to a pGPT_Config structure containing information for 

setting GPT timer delay (see structure description below) 

 

BOOL GptStop(HANDLE hGpt) 

Disables the GPT Interrupt and stops the GPT timer. 

 

BOOL GptResume(HANDLE hGpt) 

Reactivates the GPT, usually called after a Stop. 

 

Structures 

 

typedef enum timerMode{ 
    timerModePeriodic, 
    timerModeFreeRunning 
} timerMode_c; 

 



phyCore-i.MX35 Binary BSP Documentation 

_________________________________________________________________________________ 

  PHYTEC Messtechnik GmbH 2010      

typedef enum timerSrc{ 
    GPT_NOCLK, 
    GPT_IPGCLK, 
    GPT_HIGHCLK, 
    GPT_EXTCLK, 
    GPT_32KCLK 
} timerSrc_c; 

 

typedef struct 
{ 
    timerMode_c timerMode; 
    UINT32 period; 
    timerSrc_c timerSrc; 
} GPT_Config, *pGPT_Config; 

 

Members 

 

timeMode_c timerMode: 

You can configure the GPT in two different modes: 

 

Timer Mode Description 

timerModeFreeRunning In free-running-mode, the counter is not reset when an compare value event 

occurs. The counter continues upt to 0xFFFFFFFF and roll over to 

0x00000000. 

timerModePeriodic If the timer reaches the compare value it reset itself and starts again from 

0x00000000. 

 

UINT32 period: 

Stores the timer value. The value is dependent on the selected timer source. 

 

timerSrc_c timerSrc: 

Select the clock source of the general purpose timer. 

Clock Source Frequency 

GPT_NOCLK 66,5 MHz 

GPT_IPGCLK 66,5 MHz 

GPT_HIGHCLK 66,5 MHz 

GPT_EXTCLK 66,5 MHz 

GPT_32KCLK 32 kHz 

 

 

 



phyCore-i.MX35 Binary BSP Documentation 

_________________________________________________________________________________ 

  PHYTEC Messtechnik GmbH 2010      

6.8 USB Host Driver 

The USB Host Driver provides USB 2.0 host support using the USB High Speed Host (H2) of the 

i.MX35. The driver has class support for mass storage, HID, printer and RNDIS clients. 

 

Driver Attribute Definition 

SOC static library 

Usbh_usb2com_common_fsl_v2.lib 

Usbh_ehcdmdd_common_fsl_v2.lib 

Usbh_ehcdpdd_common_fsl_v2.lib 

Import Library N/A 

Driver DLL hcd_hsh2.dll 

Required Catalog Items 

Third Party � BSPs � iMX35Phytec � Device 

Drivers � USB Devices � USB Host Devices � 

High Speed Host intern 

SYSGEN Dependency SYSGEN_USB=1 

BSP Environment Variable 
BSP_USB=1 

BSP_USB_HSH2=1 

 

The host driver requires one or more class drivers to be loaded (see below). 

Required Catalog Items 

For Human Interface Devices (HID): 

Core OS � Windows CE devices � Core OS Services � USB Host Support � USB Human 

Input Device (HID) Class Driver 

 

For Printers: 

Core OS � Windows CE devices � Core OS Services � USB Host Support � USB Printer 

Class Driver 

 

For RNDIS: 

Core OS � Windows CE devices � Core OS Services � USB Host Support � USB Remote 

NDIS Class Driver 

 

For Mass Storage: 

Core OS � Windows CE devices � Core OS Services � USB Host Support � USB (mass) 

Storage Class Driver 



phyCore-i.MX35 Binary BSP Documentation 

_________________________________________________________________________________ 

  PHYTEC Messtechnik GmbH 2010      

 

Note that sometimes additional Catalog Items have to be included in order to get the desired 

functionality (i.e. filesystem drivers, printer protocols, keyboard layouts etc...) 

Software Operation 

The driver implements the Windows USB Software Architecture. For more information, refer to 

Developing a Device Driver ���� Windows CE Drivers ���� USB Host Drivers and Developing a 

Device Driver ���� Windows CE Drivers ���� USB Host Drivers ���� USB Host Controller Drivers 

���� USB Host Controller Driver Development Concepts in the Windows CE help. 

6.9 USB OTG Driver 

The OTG driver provides USB host and device support for the i.MX35 USB "On The Go" (OTG) 

port. It will automatically select host or device functionality depending on the USB cable 

configuration. The driver consists of three parts: the USB OTG host controller driver, the USB 

client driver and the USB transceiver controller driver (for host/client switching). 

OTG Client 

Driver Attribute Definition 

SOC static library N/A 

Import Library N/A 

Driver DLL usbfn.dll 

Required Catalog Items 

Third Party � BSPs � iMX35Phytec � Device 

Drivers � USB Devices � USB High Speed 

OTG 

Device � USB High Speed OTG Port Full OTG 

Function 

SYSGEN Dependency SYSGEN_USBFN=1 

BSP Environment Variable 
BSP_USB=1 

BSP_USB_HSOTG_CLIENT 

 

When in client mode, there must be configured a function driver to use (mass storage, serial and 

rndis function drivers are supported by Windows CE). In order to use ActiveSync, the serial 

function driver must be selected. 



phyCore-i.MX35 Binary BSP Documentation 

_________________________________________________________________________________ 

  PHYTEC Messtechnik GmbH 2010      

OTG Host 

Driver Attribute Definition 

SOC static library N/A 

Import Library 

Usbh_usb2com_common_fsl_v2.lib 

Usbh_ehcdmdd_common_fsl_v2.lib 

Usbh_ehcdpdd_common_fsl_v2.lib 

Driver DLL hcd_hsotg.dll 

Required Catalog Items 

Third Party � BSPs � iMX35Phytec � Device 

Drivers � USB High Speed OTG Device � USB 

High Speed OTG Port Full OTG Function 

or 

Third Party � BSPs � iMX35Phytec � Device 

Drivers � USB High Speed OTG Device � USB 

High Speed OTG Pure Host Function 

SYSGEN Dependency SYSGEN_USBFN=1 

BSP Environment Variable 
BSP_USB=1 

BSP_USB_HSOTG_HOST 

 

The OTG host driver requires one or more class drivers to be loaded, see section 5.13. 

OTG Transceiver 

Driver Attribute Definition 

SOC static library usb_xvc_mx35_fsl_v2.lib 

Import Library N/A 

Driver DLL imx_xvc.dll 

Required Catalog Items 

Third Party � BSPs � iMX35Phytec � Device 

Drivers � USB High Speed OTG Device � USB 

High Speed OTG Port Full OTG Function 

SYSGEN Dependency SYSGEN_USBFN=1 

BSP Environment Variable 

BSP_USB=1 

BSP_USB_HSOTG_CLIENT 

BSP_USB_HSOTG_HOST 

BSP_USB_HSOTG_XVC 



phyCore-i.MX35 Binary BSP Documentation 

_________________________________________________________________________________ 

  PHYTEC Messtechnik GmbH 2010      

Software Operation 

USB OTG Host Controller Driver 

 

The USB OTG host controller driver is part of the Windows USB software standard. See section 

5.13 for help on getting more information. 

 

USB OTG Client Driver 

 

The USB OTG client driver is part of the Windows USB software standard. For more information, 

refer to Developing a Device Driver ���� Windows CE Drivers ���� USB Function Drivers ���� USB 

Function Controller Drivers and Developing a Device Driver ���� Windows CE Drivers ���� USB 

Function Client Drivers in the Windows CE help. 

6.10 I2C Driver 

The I2C module can be used to communicate with one or more i2c devices, such as EEPROM, RTC 

or Camera devices. 

 

Driver Attribute Definition 

SOC static library I2C_common_fsl_v2.lib 

Import Library I2csdk.lib 

Driver DLL i2c.dll 

Required Catalog Items 
Third Party -> BSPs -> iMX35Phytec -> Device 

Drivers -> I2C Bus 1 / 3 

SYSGEN Dependency N/A 

BSP Environment Variable BSP_I2CBus=1 

Software Operation 

For successfully access to the driver, you have to include following Library and Header-File: 

 

Include Library:    

/WINCE600/PLATFORM/iMX35Phytec/SDKLibs/i2csdk.lib 

Include Header: 

 /WINCE600/PLATFORM/COMMON/SRC/SOC/COMMON_FSL_V2/INC/i2cbus.h 

 



phyCore-i.MX35 Binary BSP Documentation 

_________________________________________________________________________________ 

  PHYTEC Messtechnik GmbH 2010      

The I2C driver is a stream-interface driver and thus can be accessed through the file system APIs. 

Therefore, a handle to the driver must first be created using the I2COpenHandle - function. After 

that, commands and data can be passed to or from the driver by using the functions explained below. 

After using the I2C bus, the device handle has to be closed using the I2CCloseHandle function. 

 

Functions: 

 

BOOL I2CSetSlaveMode(HANDLE hI2C) 

Requires a handle to the I2C-device as parameter, sets the I2C device to slave mode. 

 

BOOL I2CSetMasterMode(HANDLE hI2C) 

Requires a handle to the I2C-device as parameter, sets the I2C device to slave mode. 

 

BOOL I2CIsMaster(HANDLE hI2C, PBOOL pbIsMaster) 

Requires a handle to the I2C-device as parameter.Determines, if the I2C device is currently in master 

mode. 

Relevant Parameters: 

hI2C 

Handle to the I2C stream driver that you have created with the I2COpenHandle. 

 

pbIsMaster 

Pointer to a BOOL which will hold the return value: TRUE if device is in master mode, otherwise 

FALSE. 

 

BOOL I2CIsSlave(HANDLE hI2C, PBOOL pbIsSlave) 

Same as I2CIsMaster, but instead checking if the device is in slave mode. 

 

Relevant Parameters: 

hI2C 

Handle to the I2C stream driver that you have created with the I2COpenHandle 

 

pbIsSlave 

Pointer to a BOOL which will hold the return value: TRUE if device is in slave mode, otherwise FALSE. 

 

BOOL I2CGetClockRate(HANDLE hI2C, PWORD pwClkRate) 

Retrieves the clock rate divisor. The actual clock rate is platform dependent. 



phyCore-i.MX35 Binary BSP Documentation 

_________________________________________________________________________________ 

  PHYTEC Messtechnik GmbH 2010      

Relevant Parameters: 

 

hI2C 

Handle to the I2C stream driver that you have created with the I2COpenHandle 

 

pwClkRate  

Pointer to the divisor index. Refer to the Table below for more information. 

 

 

 

BOOL I2CSetClockRate(HANDLE hI2C, WORD wClkRate)  

This function will initialize the I2C device with the given clock rate. Note that this function does not 

expect to receive the absolute peripheral clock frequency. Rather, it will be expecting the clock rate 

divisor index stated in the I2C specification. If absolute clock frequency must be used, please use the 

function I2CSetFrequency() as described below. 

Relevant Parameters: 

hI2C 

Handle to the I2C stream driver that you have created with the I2COpenHandle 

 



phyCore-i.MX35 Binary BSP Documentation 

_________________________________________________________________________________ 

  PHYTEC Messtechnik GmbH 2010      

wClkRate 

Pointer to the divisor index. Refer to I2C specification for more information. 

 

BOOL I2CSetFrequency(HANDLE hI2C, DWORD dwFreq)  

Estimates the nearest clock rate acceptable for the device and initializes the device to use the 

estimated clock rate divisor. 

Relevant Parameters: 

hI2C 

Handle to the I2C stream driver that you have created with the I2COpenHandle 

 

dwFreq 

Pointer to the desired I2C frequency. 

 

BOOL I2CSetSelfAddr(HANDLE hI2C, BYTE bySelfAddr)  

Initializes the device with the given address. 

Relevant Parameters: 

hI2C 

Handle to the I2C stream driver that you have created with the I2COpenHandle 

 

bySelfAddr 

Pointer to the expected I2C device address (0x00 to 0x7F). 

 

BOOL I2CGetSelfAddr(HANDLE hI2C, PBYTE pbySelfAddr)  

Retrieves the address of the I2C device (only meaningful if device is in slave mode). 

Relevant Parameters: 

hI2C 

Handle to the I2C stream driver that you have created with the I2COpenHandle 

 

pbySelfAddr 

Pointer to the current I2C device address (0x00 to 0x7F). 

 

BOOL I2CTransfer(HANDLE hI2C, PI2C_TRANSFER_BLOCK pI2CTransferBlock)  

Performs a sequential transfer (read or write) of one or more data-packets to or from a device. 

Expects a I2C_TRANSFER_BLOCK structure containing an array of  I2C_PACKET - structures to 

be transferred. 

This array is performed sequentially. An I2C START command is issued before the first packet 



phyCore-i.MX35 Binary BSP Documentation 

_________________________________________________________________________________ 

  PHYTEC Messtechnik GmbH 2010      

transmission. Further, if the transfer direction or slave address changes between different packages 

of the array, an I2C REPEATED START command is automatically inserted. After transmission of 

the last packet in the array, an I2C STOP command is issued. 

relevant Parameters: 

hI2C 

Handle to the I2C stream driver that you have created with the I2COpenHandle 

 

pI2CTransferBlock 

Pointer to an I2C_TRANSFER_BLOCK structure (explained below). 

 

Structures 

 

I2C_TRANSFER_BLOCK 

 

typedef struct 

{ 

I2C_PACKET *pI2CPackets;  

INT32 iNumPackets;  

} I2C_TRANSFER_BLOCK, *PI2C_TRANSFER_BLOCK; 

 

I2C_PACKET 

 

typedef struct 

{ 

BYTE byAddr;  

BYTE byRW;  

PBYTE pbyBuf;  

WORD wLen;  

LPINT lpiResult;  

} I2C_PACKET, *PI2C_PACKET; 

 



phyCore-i.MX35 Binary BSP Documentation 

_________________________________________________________________________________ 

  PHYTEC Messtechnik GmbH 2010      

Members 

 

BYTE byAddr: 

I2C slave device address for the I2C operation. 

 

BYTE byRW: 

Signals, if the operation is an read or write transfer. 

Read = I2C_READ  Write = I2C_WRITE 

 

PBYTE pbyBuf: 

Pointer to a message buffer. 

 

WORD wLen: 

Length of the message buffer in Bytes. 

 

LPINT lpiResult: 

Contains the result of last operation. Informations about the error can be retrieved by a following call of 

GetLastError(). 

 

BOOL I2CReset(HANDLE hI2C)  

Performs a hardware reset to the I2C-Bus. 

 



phyCore-i.MX35 Binary BSP Documentation 

_________________________________________________________________________________ 

  PHYTEC Messtechnik GmbH 2010      

6.11 Ethernet Driver 

The Fast Ethernet Driver provides the ability to use a wide range of networking services on the device. 

 

Driver Attribute Definition 

Import Library ndis.lib 

Driver DLL fec.dll 

Required Catalog Items 
Third Party � BSPs � iMX35Phytec � Device 

Drivers � FEC � FEC 

SYSGEN Dependency 

SYSGEN_NDIS=1 

SYSGEN_TCPIP=1 

SYSGEN_WINSOC=1 

BSP Environment Variable BSP_ETHER_FEC=1 

Software Operation 

The FEC driver confirms to the NDIS 4.0 specification by Microsoft for the 

miniport network drivers. 

6.12 CAN Controller Driver 

The CAN – Driver provides the ability to connect the Evaluation Board to a CAN-Bus with various 

Bitrates and standard- or extended frame formats. 

 

Driver Attribute Definition 

Import Library Cansdk.lib 

Driver DLL Can.dll 

Required Catalog Items 
Third Party � BSPs � iMX35Phytec � Device 

Drivers � CAN Bus � CAN Bus 1 / 2 

BSP Environment Variable 
BSP_CANBUS1=1 

BSP_CANBUS2=1 

Software Operation 

For successfully access to the driver, you have to include following Library and Header-File: 



phyCore-i.MX35 Binary BSP Documentation 

_________________________________________________________________________________ 

  PHYTEC Messtechnik GmbH 2010      

Include Library:    

/WINCE600/PLATFORM/iMX35Phytec/SDKLibs/cansdk.lib 

Include Header: 

 /WINCE600/PLATFORM/COMMON/SRC/SOC/COMMON_FSL_V2/INC/canbus.h 

 

HANDLE CANOpenHandle(LPCWSTR lpDevName) 

 

Creates a new instance of the CAN controller structure in the library and opens the port of the driver. 

This function must be executed before any other function is used. Its return value has to be passed as 

first parameter to all following functions. 

 

Parameters: 

lpDevName 

Name of the CAN port that should be opened (L“CAN1:”). 

 

Return values: 

If successful, a thread-handle of the new created CAN device will be returned. This value is passed as 

first parameter to all other functions and must not be changed by the application. 

If errors occur, INVALID_HANDLE_VALUE will be returned. 

 

 

BOOL CANCloseHandle(HANDLE hCAN)  

This function closes a valid open handle of the can bus device.  

 

Parameters: 

hCAN  

Handle of the CAN device, that is created in the library. Will be returned via CanOpenHandle. 

 

Return values: 

If successful, the returned value is non-zero. If errors have occurred, zero will be returned. 

Informations about the error can be retrieved by a following call of GetLastError(). 

 

BOOL CANGetClockRate(HANDLE hCAN, PUINT32 pwClkRate) 

Reads the baudrate of the selected CAN interface. 

 

Parameters: 

hCAN  



phyCore-i.MX35 Binary BSP Documentation 

_________________________________________________________________________________ 

  PHYTEC Messtechnik GmbH 2010      

Handle of the CAN device, that is created in the library. Will be returned via CanOpenHandle. 

 

pwClkRate  

Pointer of an integer variable. The driver assigns the current used Baudrate to this variable. The value 

is the Baudrate in Bytes. 

 

Return values: 

If successful, the returned value is non-zero. If errors have occurred, zero will be returned. 

Informations about the error can be retrieved by a following call of GetLastError(). 

 

BOOL CANSetClockRate(HANDLE hCAN, UINT32 iClkRate) 

Sets a new baudrate in the controller. 

 

Parameters: 

hCAN  

Handle of the CAN device, that is created in the library. Will be returned via CanOpenHandle. 

  

iClkRate  

A integer variable with the desired Baudrate in Baud. 

 

Return values: 

If successful, the returned value is non-zero. If errors have occurred, zero will be returned. 

Informations about the error can be retrieved by a following call of GetLastError(). 

 

BOOL  CANSetMode(HANDLE hCAN,DWORD index,CAN_MODE mode)  

Set the buffer interrupt for the desired buffer. 

 

Parameters: 

hCAN  

Handle of the CAN device, that is created in the library. Will be returned via CanOpenHandle. 

 

index  

Index of the desired buffer (0 – 63). 

 

mode 

Unused parameter. Should be set to “0”. 

 



phyCore-i.MX35 Binary BSP Documentation 

_________________________________________________________________________________ 

  PHYTEC Messtechnik GmbH 2010      

Return values: 

If successful, the returned value is non-zero. If errors have occurred, zero will be returned. 

Informations about the error can be retrieved by a following call of GetLastError(). 

 

BOOL CANTransfer(HANDLE hCAN, PCAN_TRANSFER_BLOCK pCANTransferBlock)  

Transmits a message on the CAN-bus. 

 

Parameters: 

hCAN 

Handle of the CAN device, that is created in the library. Will be returned via CanOpenHandle. 

  

pCANTransferBlock  

Pointer to a CAN_TRANSFER_BLOCK-structure (see explanation below).  

 

Return values: 

If successful, the returned value is non-zero. If errors have occurred, zero will be returned. 

Informations about the error can be retrieved by a following call of GetLastError(). 

Structures 

 

typedef enum _CAN_FRAME_FORMAT { 
    CAN_STANDARD=0, 
    CAN_EXTENDED, 
} CAN_FRAME_FORMAT; 
 
typedef enum _CAN_RTR_FORMAT { 
    CAN_DATA=0, 
    CAN_REMOTE, 
} CAN_RTR_FORMAT; 

 

typedef struct 
{ 
    BYTE    byIndex;        
    BYTE    byRW;           
    CAN_FRAME_FORMAT fromat; 
    CAN_RTR_FORMAT frame; 
    WORD   timestamp;          
    BYTE    PRIO;           
    DWORD    ID;             
    PBYTE    pbyBuf;       
    WORD     wLen;          
    LPINT    lpiResult;    
} CAN_PACKET, *PCAN_PACKET; 

 



phyCore-i.MX35 Binary BSP Documentation 

_________________________________________________________________________________ 

  PHYTEC Messtechnik GmbH 2010      

BYTE byIndex: 

CAN Bus Message Buffer index (0 – 63) for RX or TX messages. 

 

BYTE byRW: 

 

#define CAN_RW_WRITE                    0 

#define CAN_RW_READ                     1 

 

For a write access you have to set this Byte to CAN_RW_WRITE. 

Otherwise to CAN_RW_READ. 

 

CAN_FRAME_FORMAT fromat: 

For the current transmit, it is necessary to determine the frame format. 

 

CAN_STANARD �  for standard format 

CAN_EXTENDED �  for extended format. 

 

 

CAN_RTR_FORMAT frame: 

Decides if the current frame is an data or remote request frame. 

 

CAN_DATA  �   for data transmitting 

CAN_REMOTE  �  for a remote request 

 

WORD timestamp: 

Not used. 

 

BYTE PRIO: 

Not used. 

 

DWORD ID: 

Determines which ID has the current transmit or receive buffer. 

 

PBYTE pbyBuf: 

Pointer to a message Buffer data with maximal length of 8 Bytes. 

 



phyCore-i.MX35 Binary BSP Documentation 

_________________________________________________________________________________ 

  PHYTEC Messtechnik GmbH 2010      

WORD wLen: 

Mesage buffer length in Bytes. 

 

LPINT lpiResult: 

Contains the result of the last operation.  

 

Define Value Description 

CAN_NO_ERROR 0 Last operation successful 

CAN_ERR_MOPS_CREATE -1 Mutex Creation failed 

CAN_ERR_PA_VA_MISSING -2 Physical –> Virtual Mapping failed 

CAN_ERR_EOPS_CREATE -3 Event Creation failed 

CAN_ERR_IRQ_SYSINTR_MISSING -4 IRQ -> System Interrupd ID Mapping failed 

CAN_ERR_INT_INIT -5 Interrupt Initialization failed 

CAN_ERR_WORKER_THREAD -6 Worker Thread failed 

CAN_ERR_NO_ACK_ISSUED -7 No Acknowledge Issued 

CAN_ERR_NULL_BUF -8 Buffer is NULL 

CAN_ERR_INVALID_BUFSIZE -9 Invalid Buffer Size 

CAN_ERR_NULL_LPIRESULT -10 lpiResult field is NULL 

CAN_ERR_CLOCK_FAILURE -11 Failed to set the clock 

CAN_ERR_TRANSFER_TIMEOUT -12 Transfer timeout 

CAN_ERR_ARBITRATION_LOST -13 Arbitration lost error 

CAN_ERR_TRANSFER_ERR -14 Undefined transfer error 

CAN_ERR_BIT0 -15 One Bit is sent as dominant is received as recessive 

CAN_ERR_BIT1 -16 One Bit is sent as recessive is received as dominant 

CAN_ERR_ACK -17 Acknowledge error by the transmitter 

CAN_ERR_CRC -18 CRC Error detected by receiver 

CAN_ERR_FRM -19 Receiver detected a form error 

CAN_ERR_STF -20 Stuffing Error has been detected 

 

 

typedef struct 
{ 
    CAN_PACKET *pCANPackets; 
    INT32 iNumPackets; 
} CAN_TRANSFER_BLOCK, *PCAN_TRANSFER_BLOCK; 

 

CAN_PACKET *pCANPackets: 

A pointer to the CAN_PACKET-structure explained above. 



phyCore-i.MX35 Binary BSP Documentation 

_________________________________________________________________________________ 

  PHYTEC Messtechnik GmbH 2010      

 

INT32 iNumPackets: 

Determine how many packets will be transmitted. 

6.13 EEPROM Driver 

The EEPROM – Driver can be used to store small amounts of data (up to 4096 Byte) in a persistent 

way using the 24WC32 EEPROM on the Module. 

 

Driver Attribute Definition 

Import Library N/A 

Driver DLL 24wc32.dll 

Required Catalog Items 

Third Party � BSPs � iMX35Phytec � Device 

Drivers � EEPROM � 24WC32 EEPROM 

Driver 

BSP Environment Variable 
BSP_EEPROM_24WC32=1 

BSP_I2CBUS1=1 

Software Operation 

The EEPROM driver implements the Stream Interface. To use the driver, a handle to the device 

must be created using the CreateFile function with the device name 'EEP1'. All other 

commands to the device can be issued using the DeviceIoControl function with the IOCTLs 

mentioned below: 

 

IOCTL_READ 

Description: 

reads a specified amount of data from the EEPROM to a buffer. 

 

Parameters: 

pBufIn [IN]  

pointer to an EEPROM_TRANSFER structure containing the EEPROM internal address, the length of 

the buffer and a pointer to the buffer (see below) 

 

pBufOut [OUT] 

pointer to an unsigned int, will be set to the amount of Bytes which were actually read 



phyCore-i.MX35 Binary BSP Documentation 

_________________________________________________________________________________ 

  PHYTEC Messtechnik GmbH 2010      

 

Return Value: 

BOOL TRUE if read operation succeeded, else FALSE 

 

IOCTL_WRITE 

Description: 

writes a specified amount of data from a buffer to EEPROM. 

 

Parameters: 

pBufIn [IN] 

pointer to an EEPROM_TRANSFER structure containing the EEPROM internal address, the length of 

the buffer and a pointer to the buffer (see below). 

 

Return Value: 

BOOL TRUE if write operation succeeded, else FALSE 

Structures 

The EEPROM driver defines the following structure to describe a read or write operation: 

 

typedef struct 

{ 

UINT32 Addr; //EEPROM internal address 

UINT8* pBuffer; //pointer to data buffer 

UINT32 Length; //amount of Bytes to read/write 

}EEPROM_TRANSFER; 


