
N e v e r s t o p t h i n k i n g .

Microcontrol lers

User ’s Manual , V2.0, Feb. 2001

TC1775
System Units

32-Bi t Single-Chip Microcontrol ler

Edition 2001-02

Published by Infineon Technologies AG,
St.-Martin-Strasse 53,
D-81541 München, Germany

© Infineon Technologies AG 2001.
All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted
characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding
circuits, descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide.

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in
question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.

Microcontrol lers

User ’s Manual , V2.0, Feb. 2001

N e v e r s t o p t h i n k i n g .

TC1775
System Units

32-Bi t Single-Chip Microcontrol ler

TC1775 System Units User’s Manual
Revision History: 2001-02 V2.0

Previous Version: V1.0, 2000-11 (B-Step, PDF only)1)

V1.1, 2000-05 (A-Step, PDF and limited print)2)

V1.0, 2000-04 (A-Step, PDF only)2)

1) This version is an intermediate version for the B-Step created for release purposes of the final version V2.0.

2) These versions for the A-Step have been created as an “Advance Information” for key customers and have not
been published officially.

Page Subjects (major changes since last revision)

We Listen to Your Comments
Any information within this document that you feel is wrong, unclear or missing?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
mcdocu.comments@infineon.com

TC1775
System Units

Table of Contents Page

1 Introduction . 1-1
1.1 About this Document . 1-1
1.1.1 Related Documentations . 1-1
1.1.2 Textual Conventions . 1-1
1.1.3 Reserved, Undefined, and Unimplemented Terminology 1-3
1.1.4 Register Access Modes . 1-3
1.1.5 Abbreviations . 1-4
1.2 System Architecture Features of the TC1775 . 1-6
1.3 Block Diagram . 1-9
1.4 On-Chip Peripheral Units of the TC1775 . 1-10
1.4.1 Serial Interfaces . 1-11
1.4.1.1 Asynchronous/Synchronous Serial Interfaces 1-11
1.4.1.2 High-Speed Synchronous Serial Interfaces 1-13
1.4.1.3 TwinCAN Interface . 1-15
1.4.1.4 Serial Data Link Interface . 1-17
1.4.2 Timer Units . 1-19
1.4.2.1 General Purpose Timer Unit . 1-19
1.4.2.2 General Purpose Timer Array . 1-21
1.4.3 Analog-to-Digital Converters . 1-24
1.5 Pin Definitions and Functions . 1-26

2 TC1775 Processor Architecture . 2-1
2.1 Central Processing Unit . 2-2
2.1.1 Instruction Fetch Unit . 2-3
2.1.2 Execution Unit . 2-4
2.1.3 General Purpose Register File . 2-5
2.1.4 Program State Registers . 2-6
2.1.5 Data Types . 2-7
2.1.6 Addressing Modes . 2-7
2.1.7 Instruction Formats . 2-7
2.1.8 Tasks and Contexts . 2-7
2.1.8.1 Upper and Lower Contexts . 2-8
2.1.8.2 Context Save Areas . 2-9
2.1.8.3 Fast Context Switching . 2-9
2.1.9 Interrupt System . 2-10
2.1.10 Trap System . 2-10
2.1.11 Protection System . 2-11
2.1.11.1 Permission Levels . 2-11
2.1.11.2 Memory Protection Model . 2-11
2.1.11.3 Watchdog Timer and ENDINIT Protection 2-12
2.1.12 Reset System . 2-12
2.2 Processor Registers . 2-13
User’s Manual I-1 V2.0, 2001-02

TC1775
System Units

Table of Contents Page

2.2.1 Program State Information Registers . 2-16
2.2.1.1 Program Counter (PC) . 2-16
2.2.1.2 Program Status Word (PSW) . 2-17
2.2.1.3 Previous Context Information Register (PCXI) 2-21
2.2.2 Context Management Registers . 2-23
2.2.2.1 Free Context List Head Pointer (FCX) . 2-23
2.2.2.2 Previous Context Pointer (PCX) . 2-24
2.2.3 Free Context List Limit Pointer (LCX) . 2-25
2.2.4 Stack Management . 2-26
2.2.4.1 Interrupt Stack Pointer (ISP) . 2-26
2.2.5 Interrupt and Trap Control . 2-27
2.2.5.1 Interrupt Vector Table Pointer (BIV) . 2-27
2.2.5.2 Trap Vector Table Pointer (BTV) . 2-28
2.2.6 System Control Register . 2-29
2.2.7 Memory Protection Registers . 2-30
2.2.8 Debug Registers . 2-30
2.2.9 CSFR Address Table . 2-31
2.3 Instruction Set Overview . 2-34
2.3.1 Arithmetic Instructions . 2-34
2.3.1.1 Integer Arithmetic . 2-35
2.3.1.2 DSP Arithmetic . 2-42
2.3.2 Compare Instructions . 2-46
2.3.3 Bit Operations . 2-50
2.3.4 Address Arithmetic . 2-52
2.3.5 Address Comparison . 2-53
2.3.6 Branch Instructions . 2-54
2.3.6.1 Unconditional Branch . 2-54
2.3.6.2 Conditional Branch . 2-55
2.3.6.3 Loop Instructions . 2-56
2.3.7 Load and Store Instructions . 2-57
2.3.7.1 Load/Store Basic Data Types . 2-57
2.3.7.2 Load Bit . 2-59
2.3.7.3 Store Bit and Bit Field . 2-59
2.3.8 Context Related Instructions . 2-60
2.3.8.1 Context Saving and Restoring . 2-60
2.3.8.2 Context Loading and Storing . 2-60
2.3.9 System Instructions . 2-61
2.3.9.1 System Call . 2-61
2.3.9.2 Synchronization Primitives . 2-61
2.3.9.3 Access to the Core Special Function Registers 2-62
2.3.9.4 Enabling/Disabling the Interrupt System . 2-62
2.3.9.5 RET and RFE . 2-63
User’s Manual I-2 V2.0, 2001-02

TC1775
System Units

Table of Contents Page

2.3.9.6 Trap Instructions . 2-63
2.3.9.7 No Operation . 2-63
2.3.10 16-Bit Instructions . 2-63
2.4 CPU Pipelines . 2-64
2.4.1 CPU Pipeline Overview . 2-64
2.4.2 Integer and Load/Store Pipelines . 2-64
2.4.3 Loop Pipeline . 2-66
2.4.4 Context Operations . 2-67

3 Clock System . 3-1
3.1 Clock Generation Unit . 3-3
3.1.1 Oscillator Circuit . 3-4
3.1.2 Phase-Locked Loop (PLL) . 3-5
3.1.2.1 N-Divider . 3-5
3.1.2.2 VCO Frequency Ranges . 3-5
3.1.2.3 Lock Detection . 3-5
3.1.2.4 K-Divider . 3-6
3.1.2.5 Clock Source Control . 3-6
3.1.2.6 Enable/Disable Control . 3-7
3.1.3 Determining the System Clock Frequency . 3-7
3.1.3.1 PLL Bypass Operation . 3-7
3.1.3.2 VCO Bypass Operation . 3-8
3.1.3.3 PLL Operation . 3-8
3.1.4 PLL Clock Control and Status Register . 3-11
3.1.5 Startup Operation . 3-12
3.1.6 PLL Loss of Lock Operation . 3-13
3.2 Power Management and Clock Gating . 3-14
3.2.1 Clock Control . 3-15
3.2.2 Module Clock Generation . 3-16
3.2.3 Clock Control Registers . 3-17
3.2.4 CLC Register Implementations . 3-22
3.3 RTC Clock Generator . 3-23

4 System Control Unit . 4-1
4.1 Overview . 4-1
4.2 Registers Overview . 4-2
4.3 SCU Control Register . 4-3
4.4 Port 5 Trace Control . 4-6
4.5 Identification Registers . 4-8

5 Reset and Boot Operation . 5-1
5.1 Overview . 5-1
5.2 Reset Registers . 5-2
User’s Manual I-3 V2.0, 2001-02

TC1775
System Units

Table of Contents Page

5.2.1 Reset Status Register (RST_SR) . 5-3
5.2.2 Reset Request Register (RST_REQ) . 5-5
5.3 Reset Operations . 5-7
5.3.1 Power-On Reset . 5-7
5.3.2 External Hardware Reset . 5-7
5.3.3 Software Reset . 5-8
5.3.4 Watchdog Timer Reset . 5-9
5.3.4.1 Watchdog Timer Reset Lock . 5-9
5.3.4.2 Deep-Sleep Wake-Up Reset . 5-10
5.3.5 State of the TC1775 after Reset . 5-11
5.4 Booting Scheme . 5-13
5.4.1 Hardware Booting Scheme . 5-13
5.4.2 Software Booting Scheme . 5-13
5.4.3 Boot Options . 5-14
5.4.4 Boot Configuration Handling . 5-15
5.4.5 Normal Boot Options . 5-15
5.4.6 Debug Boot Options . 5-15

6 Power Management . 6-1
6.1 Power Management Overview . 6-1
6.2 Power Management Control Registers . 6-3
6.2.1 Power Management Control Register PMG_CON 6-4
6.2.2 Power Management Control and Status Register PMG_CSR 6-5
6.3 Power Management Modes . 6-6
6.3.1 Idle Mode . 6-6
6.3.2 Sleep Mode . 6-7
6.3.2.1 Entering Sleep Mode . 6-7
6.3.2.2 TC1775 State During Sleep Mode . 6-7
6.3.2.3 Exiting Sleep Mode . 6-7
6.3.3 Deep Sleep Mode . 6-8
6.3.3.1 Entering Deep Sleep Mode . 6-8
6.3.3.2 TC1775 State During Deep Sleep Mode . 6-8
6.3.3.3 Exiting Deep Sleep Mode . 6-9
6.3.3.4 Exiting Deep Sleep Mode With A Power-On Reset Signal 6-9
6.3.3.5 Exiting Deep Sleep Mode With an NMI Signal 6-9
6.3.4 Summary of TC1775 Power Management States 6-10

7 Memory Map of On-Chip Local Memories . 7-1
7.1 TC1775 Address Map . 7-2
7.2 Memory Segment 15 - Peripheral Units . 7-6

8 Program Memory Unit . 8-1
8.1 Memories Controlled by PMU . 8-2
User’s Manual I-4 V2.0, 2001-02

TC1775
System Units

Table of Contents Page

8.2 Scratch-Pad RAM, SPRAM . 8-3
8.3 Instruction Cache, ICACHE . 8-4
8.3.1 Cache Organization . 8-4
8.3.2 Cache Bypass Control . 8-4
8.3.3 Refill Buffer . 8-5
8.3.4 Refill Sequence for Cache and Refill Buffer . 8-5
8.3.5 Cache Flush Operation . 8-5
8.4 External Code Fetches via External Bus Interface Unit 8-6
8.5 Boot ROM . 8-7
8.5.1 Bootstrap Loader Support . 8-7
8.6 PMU Registers . 8-8
8.6.1 PMU Control Register . 8-9
8.6.2 External Instruction Fetch Control Register . 8-11

9 Data Memory Unit . 9-1
9.1 DMU Trap Generation . 9-3
9.1.1 FPI Bus Error . 9-3
9.1.2 Range Error . 9-4
9.1.3 DMU Register Access Error . 9-4
9.1.4 Cache Management Error . 9-4
9.2 Overlay Functionality . 9-5
9.2.1 Redirection From External Code to Internal Data Memory 9-6
9.2.2 Redirection From External Code to External Data Memory 9-7
9.2.3 Redirection From External Code via CODE to External Data Memory 9-8
9.2.4 Redirection From Ports to External Data Memory 9-9
9.3 DMU Registers . 9-10
9.3.1 Control Register . 9-11
9.3.2 Synchronous Trap Flag Register . 9-12
9.3.3 Asynchronous Trap Flag Register . 9-13
9.3.4 Overlay Functionality Registers . 9-14

10 Memory Protection System . 10-1
10.1 Memory Protection Overview . 10-1
10.2 Memory Protection Registers . 10-3
10.2.1 PSW Protection Fields . 10-7
10.2.2 Data Memory Protection Register . 10-11
10.2.3 Code Memory Protection Register . 10-14
10.3 Sample Protection Register Set . 10-17
10.4 Memory Access Checking . 10-18
10.4.1 Permitted versus Valid Accesses . 10-18
10.4.2 Crossing Protection Boundaries . 10-19
User’s Manual I-5 V2.0, 2001-02

TC1775
System Units

Table of Contents Page

11 Parallel Ports . 11-1
11.1 General Port Operation . 11-2
11.2 Port Kernel Registers . 11-5
11.2.1 Data Output Register . 11-7
11.2.2 Data Input Register . 11-8
11.2.3 Direction Register . 11-9
11.2.4 Open Drain Control Register . 11-10
11.2.5 Input Configuration Register . 11-11
11.2.6 Pull-Up/Pull-Down Device Control . 11-12
11.2.7 Output Characteristics Control Register . 11-14
11.2.8 Alternate Port Functions . 11-17
11.2.8.1 Alternate Input Functions . 11-17
11.2.8.2 Alternate Output Functions . 11-17
11.3 Port 0 . 11-18
11.3.1 Features . 11-18
11.3.2 Registers . 11-18
11.3.3 Port Configuration and Function . 11-19
11.4 Port 1 . 11-20
11.4.1 Features . 11-20
11.4.2 Registers . 11-20
11.4.3 Port Configuration and Function . 11-21
11.5 Port 2 . 11-22
11.5.1 Features . 11-22
11.5.2 Registers . 11-22
11.5.3 Port Configuration and Function . 11-23
11.6 Port 3 . 11-24
11.6.1 Features . 11-24
11.6.2 Registers . 11-24
11.6.3 Port Configuration and Function . 11-25
11.7 Port 4 . 11-31
11.7.1 Features . 11-31
11.7.2 Registers . 11-31
11.7.3 Port Configuration and Function . 11-32
11.8 Port 5 . 11-35
11.8.1 Features . 11-35
11.8.2 Registers . 11-35
11.8.3 Port Configuration and Function . 11-36
11.9 Port 6 . 11-37
11.9.1 Features . 11-37
11.9.2 Port 6 Functions . 11-37
11.10 Port 7 . 11-38
11.10.1 Features . 11-38
User’s Manual I-6 V2.0, 2001-02

TC1775
System Units

Table of Contents Page

11.10.2 Port 7 Functions . 11-38
11.11 Port 8 . 11-39
11.11.1 Features . 11-39
11.11.2 Registers . 11-39
11.11.3 Port Configuration and Function . 11-40
11.12 Port 9 . 11-41
11.12.1 Features . 11-41
11.12.2 Registers . 11-41
11.12.3 Port Configuration and Function . 11-42
11.13 Port 10 . 11-43
11.13.1 Features . 11-43
11.13.2 Registers . 11-43
11.13.3 Port Configuration and Function . 11-44
11.14 Port 11 . 11-45
11.14.1 Features . 11-45
11.14.2 Registers . 11-45
11.14.3 Port Configuration and Function . 11-46
11.15 Port 12 . 11-47
11.15.1 Features . 11-47
11.15.2 Registers . 11-47
11.15.3 Port Configuration and Function . 11-48
11.16 Port 13 . 11-52
11.16.1 Features . 11-52
11.16.2 Registers . 11-52
11.16.3 Port Configuration and Function . 11-53

12 External Bus Unit . 12-1
12.1 Overview . 12-2
12.2 EBU Features . 12-3
12.3 Basic EBU Operation . 12-4
12.3.1 Internal to External Operation . 12-6
12.3.2 External to Internal Operation . 12-6
12.4 EBU Signal Description . 12-7
12.4.1 Output Clock, CLKOUT . 12-8
12.4.2 Address Bus, A[25:0] . 12-8
12.4.3 Address/Data Bus, AD[31:0] . 12-8
12.4.4 Read/Write Strobes, RD and RD/WR . 12-8
12.4.5 Address Latch Enable, ALE . 12-9
12.4.6 Byte Control Signals, BCx . 12-9
12.4.7 Variable Wait State Control, WAIT . 12-10
12.4.8 Chip Select Lines, CSx . 12-11
12.4.9 EBU Arbitration Signals, HOLD, HLDA and BREQ 12-11
User’s Manual I-7 V2.0, 2001-02

TC1775
System Units

Table of Contents Page

12.4.10 EBU Chip Select, CSFPI . 12-12
12.4.11 Instruction Fetch Indication Signal, CODE 12-12
12.4.12 Emulation Support Signals, CSEMU and CSOVL 12-12
12.5 Detailed Internal to External EBU Operation . 12-13
12.5.1 EBU Address Regions . 12-13
12.5.1.1 Address Region Selection . 12-13
12.5.1.2 Address Region Parameters . 12-16
12.5.2 Driver Turn-Around Wait States . 12-17
12.5.3 Data Width of External Devices . 12-18
12.5.4 Basic Access Timing . 12-21
12.5.4.1 Access to Non-Multiplexed Devices . 12-21
12.5.4.2 Access to Multiplexed Devices . 12-25
12.6 Detailed External to Internal EBU Operation . 12-29
12.6.1 EBU Signal Direction . 12-29
12.6.2 Address Translation . 12-30
12.6.3 External to Internal Access Controls . 12-32
12.6.4 Basic Access Timing . 12-32
12.7 Arbitration . 12-34
12.7.1 External Bus Arbitration . 12-35
12.7.1.1 Arbitration Modes . 12-36
12.7.1.2 Arbitration Signals . 12-36
12.7.1.3 Arbitration Sequence . 12-38
12.7.2 Internal Request to the EBU . 12-39
12.7.3 External Requests to the EBU . 12-40
12.7.4 Atomic Read-Modify-Write Accesses . 12-41
12.7.4.1 Internal to External Read-Modify-Write Access 12-41
12.7.4.2 External to Internal Read-Modify-Write Access 12-41
12.8 EBU Boot Process . 12-42
12.9 Emulation Support . 12-45
12.9.1 Emulation Boot . 12-45
12.9.2 Overlay Memory . 12-45
12.10 External Instruction Fetches . 12-47
12.10.1 Signal List . 12-47
12.10.2 Basic Functions . 12-47
12.10.3 External Instruction Fetch Control Register 12-48
12.10.4 Cycle Definitions of Burst Mode Timing . 12-50
12.10.5 Typical Burst Flash Memory Configuration 12-56
12.10.6 Arbitration between EBU and PMU for External Accesses 12-56
12.11 EBU Registers . 12-57
12.11.1 Clock Control Register . 12-58
12.11.2 Global Control Register . 12-59
12.11.3 Address Select Registers . 12-61
User’s Manual I-8 V2.0, 2001-02

TC1775
System Units

Table of Contents Page

12.11.4 Bus Configuration Registers . 12-62
12.11.5 Emulator Configuration Register . 12-65
12.11.6 Emulator Bus Configuration Register . 12-66
12.11.7 Emulator Address Select Register . 12-69
12.11.8 External Access Configuration Register . 12-70
12.11.9 EBU Register Address Range . 12-71

13 Interrupt System . 13-1
13.1 Overview . 13-2
13.2 External Interrupts . 13-4
13.3 Service Request Nodes . 13-4
13.3.1 Service Request Control Registers . 13-4
13.3.1.1 Service Request Flag (SRR) . 13-6
13.3.1.2 Request Set and Clear Bits (SETR, CLRR) 13-6
13.3.1.3 Enable Bit (SRE) . 13-6
13.3.1.4 Service Request Flag (SRR) . 13-7
13.3.1.5 Type-of-Service Control (TOS) . 13-7
13.3.1.6 Service Request Priority Number (SRPN) 13-7
13.4 Interrupt Control Units . 13-9
13.4.1 Interrupt Control Unit (ICU) . 13-9
13.4.1.1 ICU Interrupt Control Register (ICR) . 13-9
13.4.1.2 Operation of the Interrupt Control Unit (ICU) 13-11
13.4.2 PCP Interrupt Control Unit (PICU) . 13-12
13.5 Arbitration Process . 13-13
13.5.1 Controlling the Number of Arbitration Cycles 13-13
13.5.2 Controlling the Duration of Arbitration Cycles 13-14
13.6 Entering an Interrupt Service Routine . 13-14
13.7 Exiting an Interrupt Service Routine . 13-15
13.8 Interrupt Vector Table . 13-16
13.9 Usage of the TC1775 Interrupt System . 13-19
13.9.1 Spanning Interrupt Service Routines Across Vector Entries 13-19
13.9.2 Configuring Ordinary Interrupt Service Routines 13-20
13.9.3 Interrupt Priority Groups . 13-20
13.9.4 Splitting Interrupt Service Across Different Priority Levels 13-21
13.9.5 Using different Priorities for the same Interrupt Source 13-22
13.9.6 Software Initiated Interrupts . 13-23
13.9.7 Interrupt Priority 1 . 13-23
13.10 CPU Service Request Nodes . 13-24
13.11 Service Request Register Table . 13-26

14 Trap System . 14-1
14.1 Trap System Overview . 14-1
User’s Manual I-9 V2.0, 2001-02

TC1775
System Units

Table of Contents Page

14.2 Trap Classes . 14-3
14.2.1 Synchronous Traps . 14-5
14.2.2 Asynchronous Traps . 14-5
14.2.3 Hardware Traps . 14-5
14.2.4 Software Traps . 14-5
14.2.5 Trap Descriptions . 14-6
14.3 Trap Vector Table . 14-10
14.3.1 Entering a Trap Service Routine . 14-11
14.4 Non-Maskable Interrupt . 14-12
14.4.1 NMI Status Register . 14-12
14.4.2 External NMI Input . 14-13
14.4.3 Phase-Locked Loop NMI . 14-13
14.4.4 Watchdog Timer NMI . 14-14

15 Peripheral Control Processor . 15-1
15.1 Peripheral Control Processor Overview . 15-1
15.2 PCP Architecture . 15-2
15.2.1 PCP Processor . 15-3
15.2.2 PCP Code Memory . 15-4
15.2.3 PCP Parameter RAM . 15-4
15.2.4 FPI Bus Interface . 15-4
15.2.5 PCP Interrupt Control Unit and Service Request Nodes 15-5
15.3 PCP Programming Model . 15-6
15.3.1 General Purpose Register Set of the PCP . 15-6
15.3.1.1 Register R0 . 15-7
15.3.1.2 Registers R1, R2, and R3 . 15-7
15.3.1.3 Registers R4 and R5 . 15-7
15.3.1.4 Register R6 . 15-7
15.3.1.5 Register R7 . 15-8
15.3.2 Contexts and Context Models . 15-10
15.3.2.1 Context Models . 15-10
15.3.2.2 Context Save Area . 15-13
15.3.2.3 Context Save and Restore Operation for CR6 and CR7 15-16
15.3.2.4 Initialization of the Contexts . 15-17
15.3.3 Channel Programs . 15-18
15.3.3.1 Channel Restart Mode . 15-18
15.3.3.2 Channel Resume Mode . 15-19
15.4 PCP Operation . 15-21
15.4.1 PCP Initialization . 15-21
15.4.2 Channel Invocation and Context Restore Operation 15-21
15.4.3 Channel Exit and Context Save Operation 15-22
15.4.3.1 Normal Exit . 15-22
User’s Manual I-10 V2.0, 2001-02

TC1775
System Units

Table of Contents Page

15.4.3.2 Error Condition Channel Exit . 15-23
15.4.3.3 Debug Exit . 15-24
15.5 PCP Interrupt Operation . 15-25
15.5.1 Issuing Service Requests to CPU or PCP . 15-25
15.5.2 PCP Interrupt Control Unit . 15-26
15.5.3 PCP Service Request Nodes . 15-26
15.5.4 Issuing PCP Service Requests . 15-27
15.5.4.1 Service Request on EXIT Instruction . 15-27
15.5.4.2 Service Request on Error . 15-28
15.5.4.3 Queue Full Operation . 15-28
15.6 PCP Error Handling . 15-30
15.6.1 Enforced PRAM Partitioning . 15-30
15.6.2 Channel Watchdog . 15-31
15.6.3 Invalid Opcode . 15-31
15.6.4 Instruction Address Error . 15-31
15.7 Instruction Set Overview . 15-32
15.7.1 DMA Primitives . 15-32
15.7.2 Load and Store . 15-33
15.7.3 Arithmetic and Logical Instructions . 15-34
15.7.4 Bit Manipulation . 15-36
15.7.5 Flow Control . 15-36
15.7.6 Addressing Modes . 15-37
15.7.6.1 FPI Bus Addressing . 15-37
15.7.6.2 PRAM Addressing . 15-38
15.7.6.3 Bit Addressing . 15-38
15.7.6.4 Flow Control Destination Addressing . 15-38
15.8 Accessing PCP Resources from the FPI Bus 15-40
15.8.1 Access to the PCP Control Registers . 15-40
15.8.2 Access to the PRAM . 15-40
15.8.3 Access to the PCODE . 15-41
15.9 Debugging the PCP . 15-42
15.10 PCP Registers . 15-43
15.10.1 PCP Control and Status Register, PCP_CS 15-44
15.10.2 PCP Error/Debug Status Register, PCP_ES 15-47
15.10.3 PCP Interrupt Control Register, PCP_ICR 15-49
15.10.4 PCP Service Request Control Register 0 (TOS = 0) 15-51
15.10.5 PCP Service Request Control Register 1 (TOS = 0) 15-52
15.10.6 PCP Service Request Control Register 2 (TOS = 1) 15-53
15.10.7 PCP Service Request Control Register 3 (TOS = 1) 15-54
15.11 PCP Instruction Set Details . 15-55
15.11.1 Instruction Codes and Fields . 15-55
15.11.1.1 Conditional Codes . 15-56
User’s Manual I-11 V2.0, 2001-02

TC1775
System Units

Table of Contents Page

15.11.1.2 Instruction Fields . 15-57
15.11.2 Counter Operation for COPY Instruction . 15-59
15.11.3 Divide and Multiply Instructions . 15-60
15.11.4 ADD, 32-Bit Addition . 15-61
15.11.5 AND, 32-Bit Logical AND . 15-62
15.11.6 CHKB, Check Bit . 15-63
15.11.7 CLR, Clear Bit . 15-63
15.11.8 COMP, 32-Bit Compare . 15-64
15.11.9 COPY, DMA Instruction . 15-65
15.11.10 DEBUG, Debug Instruction . 15-66
15.11.11 DINIT, Divide Initialization Instruction . 15-66
15.11.12 DSTEP, Divide Instruction . 15-67
15.11.13 INB, Insert Bit . 15-67
15.11.14 EXIT, Exit Instruction . 15-68
15.11.15 JC, Jump Conditionally . 15-69
15.11.16 JL, Jump Long Unconditional . 15-70
15.11.17 LD, Load . 15-70
15.11.18 LDL, Load 16-bit Value . 15-72
15.11.19 Multiply Initialization Instruction . 15-72
15.11.20 MOV, Move Register to Register . 15-72
15.11.21 Multiply Instructions . 15-73
15.11.22 NEG, Negate . 15-74
15.11.23 NOP, No Operation . 15-74
15.11.24 NOT, Logical NOT . 15-74
15.11.25 OR, Logical OR . 15-75
15.11.26 PRI, Prioritize . 15-76
15.11.27 RL, Rotate Left . 15-76
15.11.28 RR, Rotate Right . 15-77
15.11.29 SET, Set Bit . 15-77
15.11.30 SHL, Shift Left . 15-78
15.11.31 SHR, Shift Right . 15-78
15.11.32 ST, Store . 15-79
15.11.33 SUB, 32-Bit Subtract . 15-80
15.11.34 XOR, 32-Bit Logical Exclusive OR . 15-81
15.11.35 Flag Updates of Instructions . 15-82
15.12 Programming of the PCP . 15-83
15.12.1 Initial PC of a Channel Program . 15-83
15.12.1.1 Channel Entry Table . 15-83
15.12.1.2 Channel Resume . 15-84
15.12.2 Channel Management for Small and Minimum Contexts 15-85
15.12.3 Unused Registers as Globals or Constants 15-85
15.12.4 Dispatch of Low Priority Tasks . 15-85
User’s Manual I-12 V2.0, 2001-02

TC1775
System Units

Table of Contents Page

15.12.5 Code Reuse Across Channels (Call and Return) 15-86
15.12.6 Case-like Code Switches (Computed Go-To) 15-86
15.12.7 Simple DMA operation . 15-87
15.13 PCP Programming Notes and Tips . 15-88
15.13.1 Notes on PCP Configuration . 15-88
15.13.2 General Purpose Register Use . 15-88
15.13.3 Implementing Divide Algorithms . 15-89
15.13.4 Implementing Multiply Algorithms . 15-91
15.14 PCP Implementation in TC1775 . 15-93
15.14.1 PCP Memories . 15-93
15.14.2 PCP Register Address Range . 15-93

16 FPI Bus and Bus Control . 16-1
16.1 FPI Bus Overview . 16-1
16.2 Bus Control Unit . 16-4
16.2.1 FPI Bus Arbitration . 16-5
16.2.1.1 Arbitration Priority . 16-5
16.2.1.2 Bus Starvation Protection . 16-6
16.2.2 Error Handling . 16-6
16.2.3 BCU Power Saving Mode . 16-9
16.2.4 BCU Registers . 16-10
16.2.4.1 BCU Control Register . 16-11
16.2.4.2 BCU Debug Registers . 16-12
16.2.4.3 BCU Service Request Control Register . 16-15

17 System Timer . 17-1
17.1 Overview . 17-1
17.2 Kernel Functions . 17-1
17.3 Kernel Registers . 17-4
17.4 External Register . 17-7
17.5 STM Register Address Ranges . 17-8

18 Watchdog Timer . 18-1
18.1 Watchdog Timer Overview . 18-1
18.2 Features of the Watchdog Timer . 18-2
18.3 The EndInit Function . 18-3
18.4 Watchdog Timer Operation . 18-5
18.4.1 WDT Register Overview . 18-6
18.4.2 Modes of the Watchdog Timer . 18-7
18.4.2.1 Time-Out Mode . 18-8
18.4.2.2 Normal Mode . 18-8
18.4.2.3 Disable Mode . 18-8
18.4.2.4 Prewarning Mode . 18-9
User’s Manual I-13 V2.0, 2001-02

TC1775
System Units

Table of Contents Page

18.4.3 Password Access to WDT_CON0 . 18-10
18.4.4 Modify Access to WDT_CON0 . 18-11
18.4.5 Term Definitions for WDT_CON0 Accesses 18-12
18.4.6 Detailed Descriptions of the WDT Modes . 18-13
18.4.6.1 Time-Out Mode Details . 18-13
18.4.6.2 Normal Mode Details . 18-14
18.4.6.3 Disable Mode Details . 18-15
18.4.6.4 Prewarning Mode Details . 18-16
18.4.6.5 WDT Operation During Power-Saving Modes 18-17
18.4.6.6 WDT Operation in OCDS Suspend Mode 18-17
18.4.7 Determining WDT Periods . 18-18
18.4.7.1 Time-out Period . 18-19
18.4.7.2 Normal Period . 18-20
18.4.7.3 WDT Period During Power-Saving Modes 18-21
18.5 Handling the Watchdog Timer . 18-22
18.5.1 System Initialization . 18-22
18.5.2 Re-opening Access to Critical System Registers 18-23
18.5.3 Servicing the Watchdog Timer . 18-23
18.5.4 Handling the User-Definable Password Field 18-24
18.5.5 Determining the Required Values for a WDT Access 18-27
18.6 Watchdog Timer Registers . 18-28
18.6.1 Watchdog Timer Control Register 0 . 18-29
18.6.2 Watchdog Timer Control Register 1 . 18-31
18.6.3 Watchdog Timer Status Register . 18-32

19 Real Time Clock . 19-1
19.1 RTC Kernel Description . 19-2
19.1.1 RTC Control . 19-4
19.1.2 System Clock Operation . 19-4
19.1.3 Cyclic Interrupt Generation . 19-4
19.1.4 Alarm Interrupt Generation . 19-4
19.1.5 48-bit Timer Operation . 19-5
19.1.6 Defining the RTC Time Base . 19-5
19.1.7 Increased RTC Accuracy through Software Correction 19-5
19.1.8 Hardware-dependent RTC Accuracy . 19-6
19.1.9 Interrupts . 19-6
19.2 RTC Kernel Registers . 19-7
19.3 Implementation of the RTC . 19-12
19.3.1 RTC Module Related External Registers . 19-13
19.3.1.1 Clock Control Register . 19-14
19.3.1.2 Interrupt Register . 19-15
19.3.1.3 Interrupt Cycle Times and Reload Values 19-16
User’s Manual I-14 V2.0, 2001-02

TC1775
System Units

Table of Contents Page

19.3.2 RTC Register Address Ranges . 19-16

20 On-Chip Debug Support . 20-1
20.1 TriCore CPU Debug Support . 20-2
20.1.1 Basic Concepts . 20-2
20.1.2 Debug Event Generation . 20-2
20.1.2.1 External Debug Break Input . 20-3
20.1.2.2 Software Debug Event Generation . 20-3
20.1.2.3 Execution of a MTCR or MFCR Instruction 20-3
20.1.2.4 Debug Event Generation from Debug Triggers 20-4
20.1.3 Debug Triggers . 20-4
20.1.3.1 Protection Mechanism . 20-4
20.1.3.2 Combination of Triggers . 20-5
20.1.4 Actions taken on a Debug Event . 20-6
20.1.4.1 Assert an External Pin BRKOUT . 20-6
20.1.4.2 Halt . 20-6
20.1.4.3 Breakpoint Trap . 20-6
20.1.4.4 Software Breakpoint . 20-7
20.1.5 OCDS Registers . 20-8
20.2 PCP Debug Support . 20-16
20.3 Trace Module . 20-17
20.3.1 Overview . 20-17
20.3.2 Pipeline Status Signals . 20-17
20.3.2.1 Synchronizing with the Status and Indirect Streams 20-19
20.3.3 Indirect Addresses . 20-20
20.3.3.1 Indirect Sync . 20-20
20.3.3.2 Example . 20-22
20.3.4 Trace Output Control . 20-23
20.4 Debugger Interface (Cerberus) . 20-24
20.4.1 RW Mode . 20-25
20.4.1.1 Entering RW Mode . 20-25
20.4.1.2 Data Type Support . 20-25
20.4.1.3 FPI Bus Master Interface . 20-25
20.4.2 Communication Mode . 20-26
20.4.3 System Security . 20-26
20.4.4 Triggered Transfers . 20-26
20.4.4.1 Tracing of Memory Locations . 20-26
20.4.5 Trace with External Bus Address . 20-27
20.4.6 Power Saving . 20-27
20.4.7 Registers . 20-28
20.4.7.1 IOCONF Register . 20-28
20.4.7.2 IOSR Register . 20-30
User’s Manual I-15 V2.0, 2001-02

TC1775
System Units

Table of Contents Page

20.4.7.3 TRADDR Register . 20-31
20.4.7.4 IOADDR, COMDATA and RWDATA Registers 20-31
20.5 OCDS Register Address Ranges . 20-32

21 Register Overview . 21-1
21.1 Segments 0 - 14 . 21-2
21.1.1 Address Map . 21-2
21.1.2 Registers . 21-4
21.2 Segment 15 (Peripheral Units) . 21-8
21.2.1 Address Map . 21-8
21.2.2 Registers . 21-12

22 Index . 22-1
22.1 Keyword Index . 22-1
22.2 Register Index . 22-8
User’s Manual I-16 V2.0, 2001-02

TC1775
System Units

Introduction
1 Introduction
This User’s Manual describes the Infineon TC1775, the first Infineon 32-bit
microcontroller DSP, based on the Infineon TriCore Architecture.

1.1 About this Document

This document is designed to be read primarily by design engineers and software
engineers who need a detailed description of the interactions of the TC1775 functional
units, registers, instructions, and exceptions.

This TC1775 User’s Manual describes the features of the TC1775 with respect to the
TriCore Architecture. Where the TC1775 directly implements TriCore architectural
functions, this manual simply refers to those functions as features of the TC1775. In all
cases where this manual describes a TC1775 feature without referring to the TriCore
Architecture, this means that the TC1775 is a direct embodiment the TriCore
Architecture.

Where the TC1775 implements a subset of TriCore architectural features, this manual
describes the TC1775 implementation, and then describes how it differs from the TriCore
Architecture. For example, where the TriCore Architecture specifies up-to four Memory
Protection Register Sets, the TC1775 implements but two. Such differences between the
TC1775 and the TriCore Architecture are documented in the text covering each such
subject.

1.1.1 Related Documentations

A complete description of the TriCore architecture is found in the document titled
“TriCore Architecture Manual”. The architecture of the TC1775 is described separately
this way because of the configurable nature of the TriCore specification: different
versions of the architecture may contain a different mix of systems components. The
TriCore architecture, however, remains constant across all derivative designs in order to
preserve compatibility.

Additionally to this “TC1775 System Units User’s Manual”, a second document, the
“TC1775 Peripheral Units User’s Manual”, is available. These two User’s Manuals
together with the “TriCore Architecture Manual” are required for the understanding the
complete TC1775 microcontroller functionality.

Implementation-specific details such as electrical characteristics and timing parameters
of the TC1775 can be found in the “TC1775 Data Sheet”.

1.1.2 Textual Conventions

This document uses the following textual conventions for named components of the
TC1775:
User’s Manual 1-1 V2.0, 2001-02

TC1775
System Units

Introduction
• Functional units of the TC1775 are given in plain UPPER CASE. For example: “The
EBU provides an interface to external peripherals”.

• Pins using negative logic are indicated by an overbar. For example: “The BYPASS pin
is latched with the rising edge of the PORST pin”.

• Bit fields and bits in registers are in general referenced as “Register name.Bit field” or
“Register name.Bit”. For example: “The Current CPU Priority Number bit field
ICR.CCPN is cleared”. Most of the register names contain a module name prefix,
separated by a underscore character “_” from the real register name (for example,
“ASC0_CON”, where “ASC0” is the module name prefix, and “CON” is the real register
name). In chapters describing peripheral modules the real register name is referenced
also as kernel register name.

• Variables used to describe sets of processing units or registers appear in mixed-case
font. For example, register name “MSGCFGn” refers to multiple “MSGCFG” registers
with variable n. The bounds of the variables are always given where the register
expression is first used (for example, “n = 31 - 0”), and is repeated as needed in the
rest of the text.

• The default radix is decimal. Hexadecimal constants are suffixed with a subscript letter
“H”, as in 100H. Binary constants are suffixed with a subscript letter “B”, as in: 111B.

• When the extent of register fields, groups of signals, or groups of pins are collectively
named in the body of the document, they are given as “NAME[A:B]“, which defines a
range for the named group from B to A. Individual bits, signals, or pins are given as
“NAME[C]” where the range of the variable C is given in the text. For example:
CLKSEL[2:0], and TOS[0].

• Units are abbreviated as follows:
– MHz = Megahertz
– µs = Microseconds
– kBaud, kBit = 1000 characters/bits per second
– MBaud, MBit = 1,000,000 characters/bits per second
– KByte = 1024 bytes of memory
– MByte = 1048576 bytes of memory
In general, the k prefix scales a unit by 1000 whereas the K prefix scales a unit by
1024. Hence, the KByte unit scales the expression preceding it by 1024. The kBaud
unit scales the expression preceding it by 1000. The M prefix scales by 1,000,000 or
1048576, and µ scales by .000001. For example, 1 KByte is 1024 bytes, 1 MByte is
1024 × 1024 bytes, 1 kBaud/kBit are 1000 characters/bits per second, 1 MBaud/MBit
are 1000000 characters/bits per second, and 1 MHz is 1,000,000 Hz.

• Data format quantities are defined as follows:
– Byte = 8-bit quantity
– Half-word = 16-bit quantity
– Word = 32-bit quantity
– Double-word = 64-bit quantity
User’s Manual 1-2 V2.0, 2001-02

TC1775
System Units

Introduction
1.1.3 Reserved, Undefined, and Unimplemented Terminology

In tables where register bit fields are defined, the following conventions are used to
indicate undefined and unimplemented function. Further, types of bits and bit fields are
defined using the abbreviations as shown in Table 1-1.

1.1.4 Register Access Modes

Read and write access to registers and memory locations are sometimes restricted. In
memory and register access tables, the following terms are used.

Table 1-1 Bit Function Terminology

Function of Bits Description

Unimplemented Register bit fields named 0 indicate unimplemented functions
with the following behavior.
– Reading these bit fields returns 0.
– Writing these bit fields has no effect.
These bit fields are reserved. When writing, software should
always set such bit fields to 0 in order to preserve compatibility
with future products.

Undefined Certain bit combinations in a bit field can be labeled “Reserved”,
indicating that the behavior of the TC1775 is undefined for that
combination of bits. Setting the register to undefined bit
combinations may lead to unpredictable results. Such bit
combinations are reserved. When writing, software must always
set such bit fields to legal values as given in the tables.

rw The bit or bit field can be read and written.

r The bit or bit field can only be read (read-only).

w The bit or bit field can only be written (write-only).

h The bit or bit field can also be modified by hardware (such as a
status bit). This symbol can be combined with ‘rw’ or ‘r’ bits to
‘rwh’ and ‘rh’ bits.

Table 1-2 Access Terms

Symbol Description

U Access permitted in User Mode 0 or 1.

SV Access permitted in Supervisor Mode.

R Read-only register.

32 Only 32-bit word accesses are permitted to that register/address range.
User’s Manual 1-3 V2.0, 2001-02

TC1775
System Units

Introduction
1.1.5 Abbreviations

The following acronyms and termini are used within this document:

ADC Analog-to-Digital Converter
AGPR Address General Purpose Register
ALE Address Latch Enable
ALU Arithmetic and Logic Unit
ASC Asynchronous/Synchronous Serial Controller
BCU Bus Control Unit
CAN Controller Area Network (License Bosch)
CISC Complex Instruction Set Computing
CPS CPU Slave Interface Registers
CPU Central Processing Unit
CSFR Core Special Function Registers
DGPR Data General Purpose Register
DMU Data Memory Unit
EBU External Bus Unit
FPI Flexible Peripheral Interconnect (Bus)
GPR General Purpose Register
GPTA General Purpose Timer Array
GPTU General Purpose Timer Unit
ICACHE Instruction Cache
I/O Input / Output
NMI Non-Maskable Interrupt
OCDS On-Chip Debug Support

E Endinit protected register/address.

PW Password protected register/address.

NC No change, indicated register is not changed.

BE Indicates that an access to this address range generates a Bus Error.

nBE Indicates that no Bus Error is generated when accessing this address
range, even though it is either an access to an undefined address or the
access does not follow the given rules.

nE Indicates that no Error is generated when accessing this address or
address range, even though the access is to an undefined address or
address range. True for CPU accesses (MTCR/MFCR) to undefined
addresses in the CSFR range.

X Undefined value or bit.

Table 1-2 Access Terms (cont’d)

Symbol Description
User’s Manual 1-4 V2.0, 2001-02

TC1775
System Units

Introduction
OVRAM Code Overlay Memory
PCP Peripheral Control Processor
PMU Program Memory Unit
PLL Phase Locked Loop
PCODE PCP Code Memory
PMU Program Memory Unit
PRAM PCP Parameter RAM
RAM Random Access Memory
RISC Reduced Instruction Set Computing
RTC Real Time Clock
SCU System Control Unit
SDLM Serial Data Link Module (J1850)
SFR Special Function Register
SPRAM Scratch-Pad Code Memory
SRAM Static Data Memory
SSC Synchronous Serial Controller
STM System Timer
WDT Watchdog Timer
User’s Manual 1-5 V2.0, 2001-02

TC1775
System Units

Introduction
1.2 System Architecture Features of the TC1775

The TC1775 combines three powerful technologies within one silicon die, achieving new
levels of power, speed, and economy for embedded applications:

• Reduced Instruction Set Computing (RISC) processor architecture
• Digital signal processing (DSP) operations and addressing modes
• On-chip memories and peripherals

DSP operations and addressing modes provide the computational power necessary to
efficiently analyze complex real-world signals. The RISC load/store architecture
provides high computational bandwidth with low system cost. On-chip memory and
peripherals are designed to support even the most demanding high-bandwidth real-time
embedded control-systems tasks.

Additional high-level features of the TC1775 include:

• Program Memory Unit — instruction memory and instruction cache
• Data Memory Unit — data memory and data cache
• Serial communication interfaces — flexible synchronous and asynchronous modes
• Peripheral Control Processor — DMA operations and interrupt servicing
• General purpose timers
• On-chip debugging and emulation facilities
• Flexible interconnections to external components
• Flexible power-management

The TC1775 is a high performance microcontroller with TriCore CPU, program and data
memories, buses, bus arbitration, an interrupt controller, a peripheral control processor
several on-chip peripherals, and an external bus interface. The TC1775 is designed to
meet the needs of the most demanding embedded control systems applications where
the competing issues of price/performance, real-time responsiveness, computational
power, data bandwidth, and power consumption are key design elements.

The TC1775 offers several versatile on-chip peripheral units such as serial controllers,
timer units, and Analog-to-Digital converters. Within the TC1775, all these peripheral
units are connected to the TriCore CPU/system via the Flexible Peripheral Interconnect
(FPI) Bus. Several I/O lines on the TC1775 ports are reserved for these peripheral units
to communicate with the external world.

High Performance 32-Bit CPU

• 32-bit architecture with 4 GBytes unified data, program, and input/output address
space

• Fast automatic context-switch
• Multiply-accumulate unit
• Saturating integer arithmetic
• High performance on-chip peripheral bus (FPI Bus)
• Register based design with multiple variable register banks
User’s Manual 1-6 V2.0, 2001-02

TC1775
System Units

Introduction
• Bit handling
• Packed data operations
• Zero overhead loop
• Precise exceptions
• Flexible power management

Instruction Set with High Efficiency

• 16/32-bit instructions for reduced code size
• Data types include: Boolean, array of bits, character, signed and unsigned integer,

integer with saturation, signed fraction, double word integers, and IEEE-754 single
precision floating-point

• Data formats include: Bit, 8-bit byte, 16-bit half word, 32-bit word, and 64-bit double
word data formats

• Powerful instruction set
• Flexible and efficient addressing mode for high code density

External Bus Interface

• Programmable external bus interface for low cost system implementation
• Glueless interface to a wide selection of external memories
• 8/16/32 bit data transfer
• Support for big endian byte ordering at bus interface
• Flexible address generation and access timing

Integrated On-Chip Memory

• Main core code memory
– 8 KBytes boot ROM (BROM)
– 32 KBytes Scratch-pad RAM (SPRAM)
– Optional 1 KByte Instruction Cache (ICache) for external code memory accesses

• Main core data memory
– 32 KBytes data memory (SRAM)
– 8 KBytes data memory for standby operation (SBSRAM)

• Peripheral Control Processor memory
– 16 KBytes volatile code memory (PCODE)
– 4 KBytes volatile parameter memory (PRAM)

Interrupt System

• 105 Service Request Nodes (SRNs)
• Flexible interrupt prioritizing scheme with 256 interrupt priority levels
• Fast interrupt response
• Service requests are serviced either by CPU (= interrupt) or by PCP
User’s Manual 1-7 V2.0, 2001-02

TC1775
System Units

Introduction
Peripheral Control Processor (PCP)

• Data move between any two memory or I/O locations
• Data move until predefined limit reached supported
• Read - Modify - Write capabilities
• Full computation capabilities including basic MUL/DIV

– Read/move data and accumulate it to previously read data
– Read two data values and perform arithmetic or logically operation and store result
– Bit handling capabilities (testing, setting, clearing)
– Flow control instructions (conditional/unconditional jumps, breakpoint)

I/O Lines With Individual Bit Addressability

• Push/pull or open drain output mode
• Selectable input thresholds
• Programmable output speed
• Temperature compensation functionality

Plastic Ball Grid Array (P-BGA) Package

• The TC1775 is packaged in a P-BGA-329 package

Temperature Ranges

• Ambient temperature: -40 °C to +125 °C
• Max. junction temperature: +150 °C

System Clock Frequency

• Maximum System Clock Frequency: 40 MHz

Complete Development Support

A variety of software and hardware development tools for the 32-bit microcontroller
TC1775 is available from experienced international tool suppliers. The development
environment for the Infineon 32-bit microcontroller includes the following tools:

• Embedded Development Environment for TriCore Products
• The TC1775 On-chip Debug Support (OCDS) provides a JTAG port for

communication between external hardware and the system.
• The Flexible Peripheral Interconnect Bus (FPI Bus) for on-chip interconnections and

the FPI Bus control unit (BCU).
• The System Timer (STM) with high-precision, long-range timing capabilities.
• The TC1775 includes a power management system, a watchdog timer as well as a

reset logic.
User’s Manual 1-8 V2.0, 2001-02

TC1775
System Units

Introduction
1.3 Block Diagram

Figure 1-1 TC1775 Block Diagram

M
C

B
04

67
1

J1
85

0
T

w
in

C
A

N
S

S
C

0
S

S
C

1
A

S
C

0
A

S
C

1
A

D
C

0
A

D
C

1
G

P
T

A

4
3

3
2

16

E
B

U
(E

xt
er

na
l

B
us

U
ni

t)

P
or

t 4

12
16

Port 0

16
16

Port 1

16
16

Port 2

16
16

A
dd

r.
[1

5:
0]

A
dd

r.
/

D
at

a
[1

5:
0]

A
dd

r.
/

D
at

a
(3

1:
16

]

P
or

t 1
3

Port 10

16
16

P
or

t 9

16

P
or

t 8
P

or
t 7

P
or

t 6

16
16

2

G
P

T
U

8

Port 11

16
16

Port 12

16

52
52

P
C

P
C

or
e

OCDS

In
te

rr
up

t

4
K

 D
at

a-
S

R
A

M

FPI Interface

2

S
T

M

B
C

U
R

T
C

P
LL

F
P

I B
us

C
LK

O
U

T
C

LK
IN

X
T

A
L4

X
T

A
L3

f R
T

C
 =

 3
2

kH
z

X
T

A
L2

X
T

A
L1

C
on

tr
ol

f C
P

U
m

ax
 =

40
 M

H
z

Port 5

16
16

16

C
er

be
rr

us
&

 J
T

A
G

S
C

U

(P
W

R
)

P
ow

er
-

W
at

ch
do

g-
R

es
et

5
JT

A
G

 IO

B
R

K
O

U
T

B
R

K
IN

C
on

tr
ol

9

D
M

U
(D

at
a

M
em

o
ry

 U
n

it
)

32
 K

B
 S

R
A

M
 +

8
K

B
 S

ta
nd

-b
y

S
R

A
M

(O
ve

rla
y

F
un

ct
io

na
lit

y)

T
ri

C
o

re
C

P
U

T
ra

ce
 &

O
C

D
S

In
te

rr
up

t
V

S
S

V
D

D

12
8

64

O
C

D
S

E

P
M

U
(P

ro
g

ra
m

 M
em

o
ry

 U
n

it
)

8
K

B
 B

oo
t R

O
M

32
 K

B
 S

cr
at

ch
 P

ad
 R

A
M

1
K

B
 In

st
ru

ct
io

n
C

ac
he

F
P

I B
us

32

32

16
16

16
16

16
16

E
B

U
C

on
tr

ol

10

A
dd

re
ss

[2
5:

16
]

6

P
or

t 3

4

16
 K

 C
od

e-
S

R
A

M

User’s Manual 1-9 V2.0, 2001-02

TC1775
System Units

Introduction
1.4 On-Chip Peripheral Units of the TC1775

The following peripherals are all described in detail in the “TC1775 Peripheral Units
User’s Manual”:

• Two Asynchronous/Synchronous Serial Channels with baud rate generator, parity,
framing, and overrun error detection

• Two High Speed Synchronous Serial Channels with programmable data length and
shift direction

• TwinCAN Module with two interconnected CAN nodes for high efficiency data
handling via FIFO buffering and gateway data transfer

• Serial Data Link Module compliant to SAE Class B J1850 Specification
• Multifunctional General Purpose Timer Unit with three 32-bit timer/counter
• General Purpose Timer Array with a powerful set of digital signal filtering and timer

functionality to realize autonomous and complex Input/Output management
• Two Analog-to-Digital Converter Units with 8-bit, 10-bit, or 12-bit resolution and

sixteen analog inputs each

The next sections within this chapter provide an overview of these peripheral units.

Note: Additionally to the “TC1775 System Units User’s Manual”, a 2nd document, the
“TC1775 Peripheral Units User’s Manual”, is available. These two User’s Manuals
together with the “TriCore Architecture Manual” are required for the understanding
the complete TC1775 microcontroller functionality.
User’s Manual 1-10 V2.0, 2001-02

TC1775
System Units

Introduction
1.4.1 Serial Interfaces

The TC1775 includes six serial peripheral interface units:

– Two Asynchronous/Synchronous Serial Interfaces (ASC0 and ASC1)
– Two High-Speed Synchronous Serial Interfaces (SSC0 and SSC1)
– One TwinCAN Interface
– One J1850 Serial Data Link Interface (SDLM)

1.4.1.1 Asynchronous/Synchronous Serial Interfaces

Figure 1-2 shows a global view of the functional blocks of the two Asynchronous/
Synchronous Serial interfaces.

Figure 1-2 General Block Diagram of the ASC Interfaces

MCB04485

Clock
Control

Address
Decoder

Interrupt
Control

fASC0

ASC0
Module
(Kernel)

Port 12
&

Port 13
Control

P12.12 /
RXD0A

RXD0

TXD0

P12.13 /
TXD0A

P13.3 /
TXD0B

P13.2 /
RXD0B

Clock
Control

Address
Decoder

Interrupt
Control

fASC1

ASC1
Module
(Kernel)

RXD1

TXD1

P12.14 /
RXD1A

P12.15 /
TXD1A

P13.5 /
TXD1B

P13.4 /
RXD1B
User’s Manual 1-11 V2.0, 2001-02

TC1775
System Units

Introduction
Each ASC Module, ASC0 and ASC1, communicates with the external world via two pairs
of two I/O lines each. The RXD line is the receive data input signal (in Synchronous Mode
also output). TXD is the transmit output signal. Clock control, address decoding, and
interrupt service request control are managed outside the ASC Module kernel.

The Asynchronous/Synchronous Serial Interfaces provide serial communication
between the TC1775 and other microcontrollers, microprocessors, or external
peripherals.

The ASC supports full-duplex asynchronous communication and half-duplex
synchronous communication. In Synchronous Mode, data is transmitted or received
synchronous to a shift clock which is generated by the ASC internally. In Asynchronous
Mode, 8-bit or 9-bit data transfer, parity generation, and the number of stop bits can be
selected. Parity, framing, and overrun error detection are provided to increase the
reliability of data transfers. Transmission and reception of data are double-buffered. For
multiprocessor communication, a mechanism is included to distinguish address bytes
from data bytes. Testing is supported by a loop-back option. A 13-bit baud rate generator
provides the ASC with a separate serial clock signal that can be very accurately adjusted
by a prescaler implemented as a fractional divider.

Features:

• Full-duplex asynchronous operating modes
– 8- or 9-bit data frames, LSB first
– Parity bit generation/checking
– One or two stop bits
– Baud rate from 2.5 MBaud to 0.6 Baud (@ 40 MHz clock)
– Multiprocessor Mode for automatic address/data byte detection
– Loop-back capability

• Half-duplex 8-bit synchronous operating mode
– Baud rate from 5 MBaud to 406.9 Baud (@ 40 MHz clock)

• Double buffered transmitter/receiver
• Interrupt generation

– on a transmitter buffer empty condition
– on a transmit last bit of a frame condition
– on a receiver buffer full condition
– on an error condition (frame, parity, overrun error)

• Two pin pairs RXD/TXD for each ASC available at Port 12 or Port 13
User’s Manual 1-12 V2.0, 2001-02

TC1775
System Units

Introduction
1.4.1.2 High-Speed Synchronous Serial Interfaces

Figure 1-3 shows a global view of the functional blocks of the two High-Speed
Synchronous Serial interfaces (SSC).

Figure 1-3 General Block Diagram of the SSC Interfaces

Each of the SSC Modules has three I/O lines, located at Port 13. Each of the SSC
Modules is further supplied by separate clock control, interrupt control, address
decoding, and port control logic.

The SSC supports full-duplex and half-duplex serial synchronous communication up to
20 MBaud (@ 40 MHz module clock). The serial clock signal can be generated by the
SSC itself (master mode) or can be received from an external master (slave mode). Data
width, shift direction, clock polarity, and phase are programmable. This allows
communication with SPI-compatible devices. Transmission and reception of data are
double-buffered. A 16-bit baud rate generator provides the SSC with a separate serial
clock signal.

MCB04486

Clock
Control

Address
Decoder

Interrupt
Control

fSSC0

SSC0
Module
(Kernel)

Port
Control

P13.8 /
MTSR0

P13.7 /
MRST0

P13.6 /
SCLK0

Clock
Control

Address
Decoder

Interrupt
Control

fSSC1

SSC1
Module
(Kernel)

RXD

TXD

M
as

te
r

RXD

TXD
S

la
ve

Slave

Master

S
C

LK

P13.11 /
MTSR1

P13.10 /
MRST1

P13.9 /
SCLK1

RXD

TXD

M
as

te
r

RXD

TXD

S
la

ve

Slave

Master

S
C

LK
User’s Manual 1-13 V2.0, 2001-02

TC1775
System Units

Introduction
Features:

• Master and slave mode operation
– Full-duplex or half-duplex operation

• Flexible data format
– Programmable number of data bits: 2-bit to 16-bit
– Programmable shift direction: LSB or MSB shift first
– Programmable clock polarity: idle low or high state for the shift clock
– Programmable clock/data phase: data shift with leading or trailing edge of the shift

clock
• Baud rate generation from 20 MBaud to 305.18 Baud (@ 40 MHz module clock)
• Interrupt generation

– on a transmitter empty condition
– on a receiver full condition
– on an error condition (receive, phase, baud rate, transmit error)

• Three-pin interface
– Flexible SSC pin configuration
User’s Manual 1-14 V2.0, 2001-02

TC1775
System Units

Introduction
1.4.1.3 TwinCAN Interface

Figure 1-4 shows a global view of the functional blocks of the TwinCAN Module.

Figure 1-4 General Block Diagram of the TwinCAN Interfaces

The TwinCAN Module has four I/O lines located at Port 13. The TwinCAN Module is
further supplied by a clock control, interrupt control, address decoding, and port control
logic.

The TwinCAN Module combines two Full-CAN interfaces into one module. Each Full-
CAN interface can either operate independently or share the TwinCAN module’s
resources. Transmission and reception of CAN frames is handled autonomously in
accordance to CAN specification V2.0 part B (active). Each of the two Full-CAN
interfaces can receive and transmit standard frames with 11-bit identifiers as well as
extended frames with 29-bit identifiers.

Both CAN nodes share the TwinCAN module’s resources to optimize the CAN bus traffic
handling as well as to minimize the CPU load. The flexible combination of Full-CAN
functionality and FIFO architecture reduces the efforts to fulfill the real-time requirements
of complex embedded control applications. Improved CAN bus monitoring functionality
as well as the increased number of message objects permit precise and comfortable
CAN bus traffic handling.

Depending on the application, each of the 32 message objects can be individually
assigned to one of the two CAN nodes. Gateway functionality allows automatic data
exchange between two separate CAN bus systems, which decreases CPU load and
improves the real time behavior of the entire system.

MCB04674

Clock
Control

Address
Decoder

Interrupt
Control

SR1
SR2

fCAN

SR3

SR0

TwinCAN Module Kernel

Port
Control

P13.13 /
TXDCAN0
P13.12 /
RXDCAN0

SR7
SR6
SR5

P13.15 /
TXDCAN1
P13.14 /
RXDCAN1

Bitstream
Processor

Interrupt
ControlSR4

TXDC0

RXDC0

TXDC1

RXDC1Timing
Control

Error
Handling
Control

Message
Buffers
User’s Manual 1-15 V2.0, 2001-02

TC1775
System Units

Introduction
The bit timings for both CAN nodes are derived from the peripheral clock (fCAN) and are
programmable up to a data rate of 1 MBaud. A pair of receive and transmit pins connect
each CAN node to a bus transceiver.

Features:

• Full CAN functionality compliant with CAN specification V2.0 B active.
• Dedicated control registers are provided for each CAN node.
• A data transfer rate up to 1 MBaud is supported.
• Flexible and powerful message transfer control and error handling capabilities are

implemented.
• Full-CAN functionality: 32 message objects can be individually:

– assigned to one of the two CAN nodes,
– configured as transmit or receive objects,
– participate in a 2, 4, 8, 16 or 32 message buffer with FIFO algorithm,
– setup to handle frames with 11-bit or 29-bit identifiers,
– provided with programmable acceptance mask register for filtering,
– monitored via a frame counter,
– configured to Remote Monitoring Mode.

• Up to eight individually programmable interrupt nodes can be used.
• CAN Analyzer Mode for bus monitoring is implemented.
User’s Manual 1-16 V2.0, 2001-02

TC1775
System Units

Introduction
1.4.1.4 Serial Data Link Interface

Figure 1-5 shows a global view of the functional blocks of the Serial Data Link Interface
(SDLM).

Figure 1-5 General Block Diagram of the SDLM Interface

The SDLM Module communicates with the external world via two I/O lines located at
Port 12, the J1850 bus. The RXD line is the receive data input signal and TXD is the
transmit data output signal.

The Serial Data Link Module provides serial communication to a J1850 based serial bus.
J1850 bus transceivers must be implemented externally in a system. The SDLM Module
conforms to the SAE Class B J1850 Specification and is compatible to Class 2 protocol.

General SDLM Features:

• Compliant to SAE Class B J1850 Specification
• Full support of GM Class 2 protocol
• Variable Pulse Width (VPW) format with 10.4 kBaud
• High speed receive/transmit 4x mode with 41.6 kBaud
• Digital noise filter
• Power save mode and automatic wake-up upon bus activity
• Support of single byte headers or consolidated headers
• CRC generation & check
• Support of block mode for receive and transmit

MCB04570

Clock
Control

Address
Decoder

Interrupt
Control

fSDLM

SDLM
Module
(Kernel)

Port
Control

P12.10 /
RXJ1850

RXD

TXD P12.11 /
TXJ1850
User’s Manual 1-17 V2.0, 2001-02

TC1775
System Units

Introduction
Data Link Operation Features:

• 11-byte transmit buffer
• Double buffered 11-byte receive buffer
• Support of In-Frame Response (IFR) types 1, 2, 3
• Advanced interrupt handling for RX, TX, and error conditions
• All interrupt sources can be enabled/disabled individually
• Support of automatic IFR Transmission for IFR types 1 and 2 for 3-byte consolidated

headers

Note: The J1850 module does not support the Pulse Width Modulation (PWM) data
format.
User’s Manual 1-18 V2.0, 2001-02

TC1775
System Units

Introduction
1.4.2 Timer Units

The TC1775 includes two timer units:

– General Purpose Timer Unit (GPTU)
– General Purpose Timer Array (GPTA)

1.4.2.1 General Purpose Timer Unit

Figure 1-6 shows a global view of all functional blocks of the General Purpose Timer
Unit (GPTU) Module.

Figure 1-6 General Block Diagram of the GPTU Interface

The GPTU consists of three 32-bit timers designed to solve such application tasks as
event timing, event counting, and event recording. The GPTU communicates with the
external world via eight inputs/outputs located at Port 13.

The three timers of the GPTU Module T0, T1, and T2, can operate independently from
each other or can be combined:

General Features:

• All timers are 32-bit precision timers with a maximum input frequency of fGPTU.
• Events generated in T0 or T1 can be used to trigger actions in T2
• Timer overflow or underflow in T2 can be used to clock either T0 or T1
• T0 and T1 can be concatenated to form one 64-bit timer

MCB04489

Clock
Control

Address
Decoder

Interrupt
Control

SR1
SR2

fGPTU

SR3

SR0

GPTU
Module
(Kernel)

Port
Control

P13.1 / GPT1

SR7
SR6
SR5
SR4

IN1
IN2
IN3

IN0

IN7
IN6
IN5
IN4

OUT0
OUT1
OUT2
OUT3
OUT4
OUT5
OUT6
OUT7

IO1

P13.7 / GPT7
IO7

IO0
P13.0 / GPT0

IO2
P13.2 / GPT2

IO3
P13.3 / GPT3

P13.4 / GPT4
IO4

IO5
P13.5 / GPT5

IO6
P13.6 / GPT6
User’s Manual 1-19 V2.0, 2001-02

TC1775
System Units

Introduction
Features of T0 and T1:

• Each timer has a dedicated 32-bit reload register with automatic reload on overflow
• Timers can be split into individual 8-, 16-, or 24-bit timers with individual reload

registers
• Overflow signals can be selected to generate service requests, pin output signals, and

T2 trigger events
• Two input pins can determine a count option

Features of T2:

• Optionally count up or down
• Operating modes:

– Timer
– Counter
– Quadrature counter

• Options:
– External start/stop, one-shot operation, timer clear on external event
– Count direction control through software or an external event
– Two 32-bit reload/capture registers

• Reload modes:
– Reload on overflow or underflow
– Reload on external event: positive transition, negative transition, or both transitions

• Capture modes:
– Capture on external event: positive transition, negative transition, or both

transitions
– Capture and clear timer on external event: positive transition, negative transition, or

both transitions
• Can be split into two 16-bit counter/timers
• Timer count, reload, capture, and trigger functions can be assigned to input pins. T0

and T1 overflow events can also be assigned to these functions.
• Overflow and underflow signals can be used to trigger T0 and/or T1 and to toggle

output pins
• T2 events are freely assignable to the service request nodes.
User’s Manual 1-20 V2.0, 2001-02

TC1775
System Units

Introduction
1.4.2.2 General Purpose Timer Array

Figure 1-7 shows a global block diagram of the General Purpose Timer Array (GPTA)
implementation.

Figure 1-7 GPTA Module Kernel Block Diagram

The GPTA module has 64 input lines and 64 output lines which are connected with
Port 8, Port 9, Port 10, and Port 11.

The General Purpose Timer Array (GPTA) provides important digital signal filtering and
timer support whose combination enables autonomous and complex functionalities. This
architecture allows easy implementation and easy validation of any kind of timer
functions.

MCB04490

Clock
Control

Address
Decoder

A/D
Converter

PTIN01
PTIN10

fGPTA

PTIN11

PTIN00

Interrupt
Control

SR01

SR52
SR53

SR00
Port

Control

IO62
IO63

P11.0
P11.1

P11.14
P11.15

GPTA Module Kernel

Clock Generation Unit

Filter &
Prescaler

Cells

Phase
Discriminator

Logic

Duty Cycle
Measurement

Digital Phase
Locked Loop

Interrupt Control Unit

IO
 S

ha
rin

g
U

ni
t w

ith
 E

m
er

ge
nc

y
S

hu
t-

O
ff

Signal Generation Unit

Global
Timers

Global Timer
Cells

Local Timer
Cells

OUT62
OUT63

IO48
IO49

IO46
IO47

P10.0
P10.1

P10.14
P10.15

IO32
IO33

IO30
IO31

P9.0
P9.1

P9.14
P9.15

IO16
IO17

IO14
IO15

P8.0
P8.1

P8.14
P8.15

IO0
IO1IN0

IN1

OUT0
OUT1

IN63
IN62

AS0
AS1

AS62
AS63
User’s Manual 1-21 V2.0, 2001-02

TC1775
System Units

Introduction
The GPTA provides a set of hardware modules required for high speed digital signal
processing:

• Filter and Prescaler Cells (FPC) support input noise filtering and prescaler operation.
• Phase Discrimination Logic units (PDL) decode the direction information output by a

rotation tracking system.
• Duty Cycle Measurement Cells (DCM) provide pulse width measurement capabilities.
• Digital Phase Locked Loop unit (PLL) generates a programmable number of GPTA

module clock ticks during an input signal’s period.
• Global Timer units (GT) driven by various clock sources are implemented to operate

as time base for the associated “Global Timer Cells”.
• Global Timer Cells (GTC) can be programmed to capture the contents of a Global

Timer on an event occurring at an external port pin or at an internal FPC cell output.
A GTC may be also used to control an external port pin with the result of an internal
compare operation. GTCs can be logically concatenated to provide a common
external port pin with a complex signal waveform.

• Local Timer Cells (LTC) operating in timer, capture, or compare mode may be also
tied together logically to drive a common external port pin with a complex signal
waveform. LTC cells, enabled in timer or capture mode, can be clocked or triggered by
– a prescaled GPTA module clock,
– an FPC, PDL, DCM, PLL or GTC output signal line,
– an external port pin.

Some input lines driven by processor I/O pads may be shared by an LTC and a GTC to
trigger their programmed operation simultaneously.

The following list summarizes all blocks supported:

Clock Generation Unit:

• Filter and Prescaler Cell (FPC):
– Six independent units.
– Three operating modes (Prescaler, Delayed Debounce Filter, Immediate Debounce

Filter).
– fGPTA down-scaling capability.
– fGPTA/2 maximum input signal frequency in Filter Mode.

• Phase Discriminator Logic (PDL):
– Two independent units.
– Two operating modes (2 and 3 sensor signals).
– fGPTA/4 maximum input signal frequency in 2-sensor mode, fGPTA/6 maximum input

signal frequency in 3-sensor mode.
• Duty Cycle Measurement (DCM):

– Four independent units.
– 0 - 100% margin and time-out handling.
– fGPTA maximum resolution.
User’s Manual 1-22 V2.0, 2001-02

TC1775
System Units

Introduction
– fGPTA/2 maximum input signal frequency.
• Digital Phase Locked Loop (PLL):

– One unit.
– Arbitrary multiplication factor between 1 and 65535.
– fGPTA maximum resolution.
– fGPTA/2 maximum input signal frequency.

Signal Generation Unit:

• Global Timers (GT):
– Two independent units.
– Two operating modes (Free Running Timer and Reload Timer).
– 24-bit data width.
– fGPTA maximum resolution.
– fGPTA/2 maximum input signal frequency.

• Global Timer Cell (GTC):
– 32 independent units.
– Two operating modes (Capture, Compare and Capture after Compare).
– 24-bit data width.
– fGPTA maximum resolution.
– fGPTA/2 maximum input signal frequency.

• Local Timer Cell (LTC):
– 64 independent units.
– Three operating modes (Timer, Capture and Compare).
– 16-bit data width.
– fGPTA maximum resolution.
– fGPTA/2 maximum input signal frequency.

Interrupt Control Unit:

• 111 interrupt sources generating 54 service requests.

I/O Sharing Unit:

• Able to process lines from FPC, GTC and LTC.
• Emergency function.
User’s Manual 1-23 V2.0, 2001-02

TC1775
System Units

Introduction
1.4.3 Analog-to-Digital Converters

The two on-chip Analog-to-Digital Converter (ADC) Modules of the TC1775 offer 8-bit,
10-bit, or 12-bit resolution including sample-and-hold functionality. The A/D converters
operate by the method of the successive approximation. A multiplexer selects among up
to 16 analog input channels for each ADC. Conversion requests are generated either
under software control or by hardware. An automatic self-calibration adjusts the ADC
modules to changing temperatures or process variations.

Features:

The following functions have been implemented in the two on-chip ADC Modules to fulfill
the enhanced requirements of embedded control applications:

• 8-bit, 10-bit, 12-bit A/D conversion
• Successive approximation conversion method
• Total Unadjusted Error (TUE) of ± 2 LSB @ 10-bit resolution
• Integrated sample-and-hold functionality
• Sixteen analog input channels
• Dedicated control and status registers for each analog channel
• Flexible conversion request mechanisms
• Selectable reference voltages for each channel
• Programmable sample and conversion timing schemes
• Limit checking
• Broken wire - short circuit detection
• Flexible ADC Module service request control unit
• Synchronization of the two on-chip A/D Converters
• Automatic control of external analog multiplexer
• Equidistant samples initiated by timer
• External trigger inputs for conversion requests
• Two external trigger inputs, connected with the General Purpose Timer Array (GPTA)
• Power reduction and clock control feature

Figure 1-8 shows a global view of the ADC module kernel with the module specific
interface connections.

Each of the ADC modules communicates with the external world via five digital I/O lines
and sixteen analog inputs. Clock control, address decoding, and interrupt service
request control are managed outside the ADC module kernel. Two trigger inputs and a
synchronization bridge are used for internal control purposes.
User’s Manual 1-24 V2.0, 2001-02

TC1775
System Units

Introduction
Figure 1-8 General Block Diagram of the ADC Interface

MCB04491

Clock
Control

Address
Decoder

Interrupt
Control

SR1
SR2

fADC0

SR3

GPTA

PTIN00

SR0

PTIN01

ADC0
Module
Kernel

Synchronization Bridge

ADC1
Module
Kernel

PTIN10
PTIN11

Clock
Control

Address
Decoder

Interrupt
Control

SR1
SR2

fADC1

SR3

SR0

Port
Control

P12.8 /
AD0EXTIN0
P12.9 /
AD0EXTIN1
P12.0 /
AD0EMUX0
P12.1 /
AD0EMUX1
P12.2 /
AD0EMUX2

P6.0 / AN0

P6.1 / AN1

P6.14 / AN14

P6.15 / AN15

Port
Control

P12.6 /
AD1EXTIN0
P12.7 /
AD1EXTIN1
P12.3 /
AD1EMUX0
P12.4 /
AD1EMUX1
P12.5 /
AD1EMUX2

P7.0 / AN16

P7.1 / AN17

P7.14 / AN30

P7.15 / AN31

VAGND0

VSSA0

VDDA0 VDDM

VAREF0 VSSM

VAGND1

VSSA1

VDDA1 VDDM

VAREF1 VSSM

AIN15

AIN14

AIN0

AIN1

AIN15

AIN14

AIN0

AIN1
User’s Manual 1-25 V2.0, 2001-02

TC1775
System Units

Introduction
1.5 Pin Definitions and Functions

Figure 1-9 TC1775 Pin Configuration

MCA04679

TC 1775

Port 0
16-Bit
Port 1
16-Bit
Port 2
16-Bit
Port 3
16-Bit
Port 4
16-Bit

Port 5
16-Bit

Port 6
16-Bit

Port 7
16-Bit

Port 8
16-Bit
Port 9
16-Bit
Port 10
16-Bit
Port 11
16-Bit

Port 12
16-Bit

Port 13
16-Bit

VAREF0

VAGND0

VDDA0

VSSA0

VAREF1

VAGND1

VDDA1

VSSA1

Alternate Functions

External
Bus Interface

TRACE

ADC0

ADC1

GPTA

ADC0/1
J1850 / ASC0/1

GPTU /
SSC0/1 / CAN

ADC0
Analog
Power Supply

ADC1
Analog
Power Supply

VSSM

VDDM

VSSSC

VDDSC

ADC0 / ADC1
Analog
Power Supply

VSS

VDDSB

VDDSRAM

VDDP813

VDDP05

VDD
10

5

6

2

29

Digital Circuitry
Power Supply

BRKOUT
BRKIN

OCDSE
TMS
TDO
TDI

TCK
TRST

JTAG / OCDS

VSSPLL

VDDPLL

VSSOSC

VDDOSC

XTAL4
XTAL3
XTAL2
XTAL1

Oscillators / PLL

3
CLKSEL

BYPASS

CFG

NMI

PORST

HDRST

CLKOUT

CLKIN

TESTMODE

4
General Control

3
N.C.1

7
N.C.2
User’s Manual 1-26 V2.0, 2001-02

TC1775
System Units

Introduction
Figure 1-10 TC1775 Pinning: P-BGA-329 Package (top view)

MCP04680

AN
3

AN
6

AN
9

1 2 3 4 5 6 7

AN
11

AN
15

8 9

P12.
13

10 11

P12.
9

P12.
5

12 13

P12.
1

P13
15

14 15

P13.
11

P13.
8

16 17

P13.
4

P13.
2

18 19

P11.
15

P11.
12

20 21

P11.
8

P11.
5

22 23

P11.
4VSSA0VSSMVSSSCVDDSCA

AN
16

B AN
17

AN
0

AN
4

AN
7

AN
10

AN
13

P12.
15

P12.
12

P12.
7

P12.
6

P12.
2

P13.
13

P13.
9

P13.
6

P13.
3

P13.
0

P11.
13

P11.
9

P11.
6

P11.
3

VDDSB

AN
19

C VDDM
AN
20

AN
1

AN
5

AN
8

AN
14

P12.
14

P12.
11

P12.
8

P12.
4

P12.
3

N.C.
2

P13.
14

P13.
10

P13.
7

P13.
1

P11.
14

P11.
10

P11.
0

P11.
1

A

B

C

AN
23

D AN
24

AN
18

AN
2

AN
21

VSS

AN
12

VDD

P813
VDDA0

N.C.
1

P12.
10

P12.
0

P13.
12

VDD
VDD

P813

P13.
5

VSS
P11.
11

P11.
7

N.C.
2

P10.
13

P10.
14

D

AN
26

E AN
27

AN
22

AN
25

AN
29

F AN
30

AN
28

VSS

VAREF0

VAGND0

VAGND1VSSA1VAREF1
AN
31

G

VDDA1H P1.0 P1.1
VDD

P05

P1.2J P1.4 P1.5 P1.3

P1.6K P1.7 N.C.
2

VDD

P1.8L P1.9 P1.10 N.C.
2

P1.12M P1.13 P1.11
VDD

P05

P0.0N P1.14 P1.15 P0.1

P0.4P P0.3 P0.2 VDD

P0.6 P0.5 P0.7CLK
OUT

R

P0.9 P0.8CLK
IN

T VDD

P05

P0.13U P0.11 P0.10 P0.12

VDDP0.15V P0.14 P4.0

P4.2W P4.1 P4.3 P4.6

P4.5Y P4.4 P4.7 P4.15 P2.2 VSS P2.12
VDD

P05
P3.3 VDD P3.9

VDD

P05
P5.3 N.C.

1
P5.8 N.C.

2
P5.15 VDD

OCD
SE

NMI PO
RST

CFG
1

TRST

CFG
0

F

G

H

J

K

L

M

N

P

R

T

U

V

W

Y

EP10.
15

P10.
12

P10.
10

P10.
11

VDD
P10.

9
P10.

7
P10.

8

P10.
3

P10.
4

P10.
6

P10.
5

P10.
0

P10.
1

P10.
2

VDD

P813

P9.14 P9.12 P9.13 P9.15

VDD P9.9 P9.10 P9.11

P9.6 P9.5 P9.7P9.8

VDD

P813
P9.2 P9.4 P9.3

P9.1 P9.0 P8.15P8.14

VDD P8.13 P8.12 P8.11

P8.10 P8.9 P8.7P8.8

VDD

P813
P8.6 P8.5 P8.4

P8.3 P8.2 P8.0P8.1

VSS
CLK
SEL0

CLK
SEL2

CLK
SEL1

CFG
2

BY
PASS

CFG
3

HD
RST

AA P4.9 P4.8 P4.10 P2.1 P2.5 P2.8 P2.14 P3.1 P3.5 P3.8 P3.12 P3.13 P5.1 P5.4 P5.7 P5.10 P5.13 TDO XTAL
4

VSS

OSC

VDD

PLL

VSS

PLL
AA

AB P4.14P4.11 P2.0 P2.4 P2.7 P2.10 P2.13 P3.0 P3.4 P3.7 P3.11 P3.15 P5.0 P5.5 P5.11 P5.14N.C.
1

VDD

SRAM
TCK TMS XTAL

3
N.C.

2
TEST
MODE

AB

P4.12 P4.13AC N.C.
2 P2.3 P2.6 P2.9 P2.11 P2.15 P3.2 P3.6 P3.10 P3.14 P5.2 P5.6 P5.9 P5.12

VDD

SRAM

BRK
OUT

TDI BRK
IN

VDD

OSC

XTAL
2

XTAL
1

AC

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

VSSVSS VSS VSS

VSSVSSVSSVSSVSS

VSS VSSVSSVSSVSS

VSS VSS VSS VSS VSS

VSSVSS VSS VSS VSS

VDD

P11.
2

VDD

P813
User’s Manual 1-27 V2.0, 2001-02

TC1775
System Units

Introduction
Table 1-3 Pin Definitions and Functions

Symbol Pin In
Out

Functions

P0

P0.0
P0.1
P0.2
P0.3
P0.4
P0.5
P0.6
P0.7
P0.8
P0.9
P0.10
P0.11
P0.12
P0.13
P0.14
P0.15

N1
N4
P3
P2
P1
R3
R2
R4
T3
T2
U3
U2
U4
U1
V2
V1

I/O

I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O

Port 0
Port 0 serves as 16-bit general purpose I/O port or as lower
external address/data bus AD[15:0] (multiplexed bus mode)
or data bus D[15:0] (demultiplexed bus mode) for the EBU.
Port 0 is used as data input by an external bus master when
accessing modules on the internal FPI Bus.
AD0 / D0 Address/data bus line 0 / Data bus line 0
AD1 / D1 Address/data bus line 1/ Data bus line 1
AD2 / D2 Address/data bus line 2 / Data bus line 2
AD3 / D3 Address/data bus line 3 / Data bus line 3
AD4 / D4 Address/data bus line 4 / Data bus line 4
AD5 / D5 Address/data bus line 5 / Data bus line 5
AD6 / D6 Address/data bus line 6 / Data bus line 6
AD7 / D7 Address/data bus line 7 / Data bus line 7
AD8 / D8 Address/data bus line 8 / Data bus line 8
AD9 / D9 Address/data bus line 9 / Data bus line 9
AD10 / D10 Address/data bus line 10 / Data bus line 10
AD11 / D11 Address/data bus line 11 / Data bus line 11
AD12 / D12 Address/data bus line 12 / Data bus line 12
AD13 / D13 Address/data bus line 13 / Data bus line 13
AD14 / D14 Address/data bus line 14 / Data bus line 14
AD15 / D15 Address/data bus line 15 / Data bus line 15
User’s Manual 1-28 V2.0, 2001-02

TC1775
System Units

Introduction
P1

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
P1.8
P1.9
P1.10
P1.11
P1.12
P1.13
P1.14
P1.15

H2
H3
J1
J4
J2
J3
K1
K2
L1
L2
L3
M3
M1
M2
N2
N3

I/O

I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O

Port 1
Port 1 serves as 16-bit general purpose I/O port or as upper
external address/data bus AD[31:16] (multiplexed bus mode)
or data bus D[31:16] (demultiplexed bus mode) for the EBU.
Port 1 is used as data input by an external bus master when
accessing modules on the internal FPI Bus.
AD16 / D16 Address/data bus line 16 / Data bus line 16
AD17 / D17 Address/data bus line 17 / Data bus line 17
AD18 / D18 Address/data bus line 18 / Data bus line 18
AD19 / D19 Address/data bus line 19 / Data bus line 19
AD20 / D20 Address/data bus line 20 / Data bus line 20
AD21 / D21 Address/data bus line 21 / Data bus line 21
AD22 / D22 Address/data bus line 22 / Data bus line 22
AD23 / D23 Address/data bus line 23 / Data bus line 23
AD24 / D24 Address/data bus line 24 / Data bus line 24
AD25 / D25 Address/data bus line 25 / Data bus line 25
AD26 / D26 Address/data bus line 26 / Data bus line 26
AD27 / D27 Address/data bus line 27 / Data bus line 27
AD28 / D28 Address/data bus line 28 / Data bus line 28
AD29 / D29 Address/data bus line 29 / Data bus line 29
AD30 / D30 Address/data bus line 30 / Data bus line 30
AD31 / D31 Address/data bus line 31 / Data bus line 31

Table 1-3 Pin Definitions and Functions (cont’d)

Symbol Pin In
Out

Functions
User’s Manual 1-29 V2.0, 2001-02

TC1775
System Units

Introduction
P2

P2.0
P2.1
P2.2
P2.3
P2.4
P2.5
P2.6
P2.7
P2.8
P2.9
P2.10
P2.11
P2.12
P2.13
P2.14
P2.15

AB3
AA4
Y5
AC4
AB4
AA5
AC5
AB5
AA6
AC6
AB6
AC7
Y7
AB7
AA7
AC8

I/O

I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O

Port 2
Port 2 serves as 16-bit general purpose I/O port or as lower
external address bus for the EBU. When used as address
bus, it outputs the addresses A[15:0] of an external access in
demultiplexed bus mode.
Port 2 is used as address input by an external bus master
when accessing modules on the internal FPI Bus.
A0 Address bus line 0
A1 Address bus line 1
A2 Address bus line 2
A3 Address bus line 3
A4 Address bus line 4
A5 Address bus line 5
A6 Address bus line 6
A7 Address bus line 7
A8 Address bus line 8
A9 Address bus line 9
A10 Address bus line 10
A11 Address bus line 11
A12 Address bus line 12
A13 Address bus line 13
A14 Address bus line 14
A15 Address bus line 15

Table 1-3 Pin Definitions and Functions (cont’d)

Symbol Pin In
Out

Functions
User’s Manual 1-30 V2.0, 2001-02

TC1775
System Units

Introduction
P3

P3.0
P3.1
P3.2
P3.3
P3.4
P3.5
P3.6
P3.7
P3.8
P3.9
P3.101)

P3.111)

P3.121)

P3.131)

P3.141)

P3.151)

AB8
AA8
AC9
Y9
AB9
AA9
AC10
AB10
AA10
Y11
AC11
AB11
AA11
AA12
AC12
AB12

I/O

I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
O
O
O
O
O
O

Port 3
P3 serves as 16-bit general purpose I/O port or as upper
external address bus for the EBU. When used as address
bus, it outputs the addresses A[25:16] of an external access
in demultiplexed bus mode.
P3[9:0] is used as address input by an external bus master
when accessing modules on the internal FPI Bus.
Port 3 also provides chip select output lines CS0 - CS3,
CSEMU, and CSOVL.
A16 Address bus line 16
A17 Address bus line 17
A18 Address bus line 18
A19 Address bus line 19
A20 Address bus line 20
A21 Address bus line 21
A22 Address bus line 22
A23 Address bus line 23
A24 Address bus line 24
A25 Address bus line 25
CS3 Chip select output line 3
CS2 Chip select output line 2
CS1 Chip select output line 1
CS0 Chip select output line 0
CSEMU Chip select output for emulator region
CSOVL Chip select output for emulator overlay memory

1) After reset, an internal pull-up device is enabled for this pin.

Table 1-3 Pin Definitions and Functions (cont’d)

Symbol Pin In
Out

Functions
User’s Manual 1-31 V2.0, 2001-02

TC1775
System Units

Introduction
P4

P4.01)

P4.11)

P4.22)

P4.31)

P4.41)

P4.51)

P4.61)

P4.71)

P4.81)

P4.91)

P4.101)

P4.111)

P4.121)

P4.131)

P4.141)

P4.151)

V3
W2
W1
W3
Y2
Y1
W4
Y3
AA2
AA1
AA3
AB1
AC1
AC2
AB2
Y4

I/O

I/O
I/O
O
O
I/O
I/O
I/O
I/O
I
O
I
I
I/O
O
O
I/O

Port 4
Port 4 is used as general purpose I/O port but also serves as
control bus for the EBU control lines.
RD Read control line
RD/WR Write control line
ALE Address latch enable output
ADV Address valid output
BC0 Byte control line 0
BC1 Byte control line 1
BC2 Byte control line 2
BC3 Byte control line 3
WAIT/IND Wait input / End of burst input
BAA Burst address advance output
CSFPI Chip select FPI input
HOLD Hold request input
HLDA Hold acknowledge input/output
BREQ Bus request output
CODE Code fetch status output
SVM Supervisor mode input/output
The CODE signal has the same timing as the CSx signals
which are located at Port 3.

1) After reset, an internal pull-up device is enabled for this pin.
2) After reset, an internal pull-down device is enabled for this pin.

Table 1-3 Pin Definitions and Functions (cont’d)

Symbol Pin In
Out

Functions
User’s Manual 1-32 V2.0, 2001-02

TC1775
System Units

Introduction
P5

P5.0
P5.1
P5.2
P5.3
P5.4
P5.5
P5.6
P5.7
P5.8
P5.9
P5.10
P5.11
P5.12
P5.13
P5.14
P5.15

AB13
AA13
AC13
Y13
AA14
AB14
AC14
AA15
Y15
AC15
AA16
AB16
AC16
AA17
AB17
Y17

I/O

O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O

Port 5
Port 5 serves as 16-bit general purpose I/O port or as CPU
or PCP trace output port for the OCDS logic.
TRACE0 CPU or PCP trace output 0
TRACE1 CPU or PCP trace output 1
TRACE2 CPU or PCP trace output 2
TRACE3 CPU or PCP trace output 3
TRACE4 CPU or PCP trace output 4
TRACE5 CPU or PCP trace output 5
TRACE6 CPU or PCP trace output 6
TRACE7 CPU or PCP trace output 7
TRACE8 CPU or PCP trace output 8
TRACE9 CPU or PCP trace output 9
TRACE10 CPU or PCP trace output 10
TRACE11 CPU or PCP trace output 11
TRACE12 CPU or PCP trace output 12
TRACE13 CPU or PCP trace output 13
TRACE14 CPU or PCP trace output 14
TRACE15 CPU or PCP trace output 15

Table 1-3 Pin Definitions and Functions (cont’d)

Symbol Pin In
Out

Functions
User’s Manual 1-33 V2.0, 2001-02

TC1775
System Units

Introduction
P6

P6.0
P6.1
P6.2
P6.3
P6.4
P6.5
P6.6
P6.7
P6.8
P6.9
P6.10
P6.11
P6.12
P6.13
P6.14
P6.15

B3
C4
D5
A4
B4
C5
A5
B5
C6
A6
B6
A7
D7
B7
C7
A8

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Port 6
Port 6 provides the analog input lines for the AD Converter 0
(ADC0).
AN0 Analog input 0 / VAREF[1] input for ADC0
AN1 Analog input 1 / VAREF[2] input for ADC0
AN2 Analog input 2 / VAREF[3] input for ADC0
AN3 Analog input 3
AN4 Analog input 4
AN5 Analog input 5
AN6 Analog input 6
AN7 Analog input 7
AN8 Analog input 8
AN9 Analog input 9
AN10 Analog input 10
AN11 Analog input 11
AN12 Analog input 12
AN13 Analog input 13
AN14 Analog input 14
AN15 Analog input 15

P7

P7.0
P7.1
P7.2
P7.3
P7.4
P7.5
P7.6
P7.7
P7.8
P7.9
P7.10
P7.11
P7.12
P7.13
P7.14
P7.15

B1
B2
D4
C1
C2
D3
E4
D1
D2
E3
E1
E2
F3
F1
F2
G1

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Port 7
Port 7 provides the analog input lines for the AD Converter 1
(ADC1).
AN16 Analog input 16 / VAREF[1] input for ADC1
AN17 Analog input 17 / VAREF[2] input for ADC1
AN18 Analog input 18 / VAREF[3] input for ADC1
AN19 Analog input 19
AN20 Analog input 20
AN21 Analog input 21
AN22 Analog input 22
AN23 Analog input 23
AN24 Analog input 24
AN25 Analog input 25
AN26 Analog input 26
AN27 Analog input 27
AN28 Analog input 28
AN29 Analog input 29
AN30 Analog input 30
AN31 Analog input 31

Table 1-3 Pin Definitions and Functions (cont’d)

Symbol Pin In
Out

Functions
User’s Manual 1-34 V2.0, 2001-02

TC1775
System Units

Introduction
P8

P8.0
P8.1
P8.2
P8.3
P8.4
P8.5
P8.6
P8.7
P8.8
P8.9
P8.10
P8.11
P8.12
P8.13
P8.14
P8.15

U23
U20
U22
U21
T23
T22
T21
R23
R20
R22
R21
P23
P22
P21
N20
N23

I/O

I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O

Port 8
Port 8 is a 16-bit bidirectional general purpose I/O port which
also serves as input or output for the GPTA.
IN0 / OUT0 line of GPTA
IN1 / OUT1 line of GPTA
IN2 / OUT2 line of GPTA
IN3 / OUT3 line of GPTA
IN4 / OUT4 line of GPTA
IN5 / OUT5 line of GPTA
IN6 / OUT6 line of GPTA
IN7 / OUT7 line of GPTA
IN8 / OUT8 line of GPTA
IN9 / OUT9 line of GPTA
IN10 / OUT10 line of GPTA
IN11 / OUT11 line of GPTA
IN12 / OUT12 line of GPTA
IN13 / OUT13 line of GPTA
IN14 / OUT14 line of GPTA
IN15 / OUT15 line of GPTA

P9

P9.0
P9.1
P9.2
P9.3
P9.4
P9.5
P9.6
P9.7
P9.8
P9.9
P9.10
P9.11
P9.12
P9.13
P9.14
P9.15

N22
N21
M21
M23
M22
L22
L21
L23
L20
K21
K22
K23
J21
J22
J20
J23

I/O

I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O

Port 9
Port 9 is a 16-bit bidirectional general purpose I/O port which
also serves as input or output for the GPTA.
IN16 / OUT16 line of GPTA
IN17 / OUT17 line of GPTA
IN18 / OUT18 line of GPTA
IN19 / OUT19 line of GPTA
IN20 / OUT20 line of GPTA
IN21 / OUT21 line of GPTA
IN22 / OUT22 line of GPTA
IN23 / OUT23 line of GPTA
IN24 / OUT24 line of GPTA
IN25 / OUT25 line of GPTA
IN26 / OUT26 line of GPTA
IN27 / OUT27 line of GPTA
IN28 / OUT28 line of GPTA
IN29 / OUT29 line of GPTA
IN30 / OUT30 line of GPTA
IN31 / OUT31 line of GPTA

Table 1-3 Pin Definitions and Functions (cont’d)

Symbol Pin In
Out

Functions
User’s Manual 1-35 V2.0, 2001-02

TC1775
System Units

Introduction
P10

P10.0
P10.1
P10.2
P10.3
P10.4
P10.5
P10.6
P10.7
P10.8
P10.9
P10.10
P10.11
P10.12
P10.13
P10.14
P10.15

H21
H22
H23
G21
G22
G20
G23
F22
F23
F21
E22
E23
E21
D22
D23
E20

I/O

I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O

Port 10
Port 10 is a 16-bit bidirectional general purpose I/O port
which also serves as input or output for the GPTA.
IN32 / OUT32 line of GPTA
IN33 / OUT33 line of GPTA
IN34 / OUT34 line of GPTA
IN35 / OUT35 line of GPTA
IN36 / OUT36 line of GPTA
IN37 / OUT37 line of GPTA
IN38 / OUT38 line of GPTA
IN39 / OUT39 line of GPTA
IN40 / OUT40 line of GPTA
IN41 / OUT41 line of GPTA
IN42 / OUT42 line of GPTA
IN43 / OUT43 line of GPTA
IN44 / OUT44 line of GPTA
IN45 / OUT45 line of GPTA
IN46 / OUT46 line of GPTA
IN47 / OUT47 line of GPTA

P11

P11.0
P11.1
P11.2
P11.3
P11.4
P11.5
P11.6
P11.7
P11.8
P11.9
P11.10
P11.11
P11.12
P11.13
P11.14
P11.15

C22
C23
C21
B23
A23
A22
B22
D20
A21
B21
C20
D19
A20
B20
C19
A19

I/O

I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O

Port 11
Port 11 is a 16-bit bidirectional general purpose I/O port
which also serves as input or output for the GPTA.
IN48 / OUT48 line of GPTA
IN49 / OUT49 line of GPTA
IN50 / OUT50 line of GPTA
IN51 / OUT51 line of GPTA
IN52 / OUT52 line of GPTA
IN53 / OUT53 line of GPTA
IN54 / OUT54 line of GPTA
IN55 / OUT55 line of GPTA
IN56 / OUT56 line of GPTA
IN57 / OUT57 line of GPTA
IN58 / OUT58 line of GPTA
IN59 / OUT59 line of GPTA
IN60 / OUT60 line of GPTA
IN61 / OUT61 line of GPTA
IN62 / OUT62 line of GPTA
IN63 / OUT63 line of GPTA

Table 1-3 Pin Definitions and Functions (cont’d)

Symbol Pin In
Out

Functions
User’s Manual 1-36 V2.0, 2001-02

TC1775
System Units

Introduction
P12

P12.0
P12.1
P12.2
P12.3
P12.4
P12.5
P12.6
P12.7
P12.8
P12.9
P12.10
P12.11
P12.12
P12.13
P12.14
P12.15

D13
A13
B13
C13
C12
A12
B12
B11
C11
A11
D11
C10
B10
A10
C9
B9

I/O

O
O
O
O
O
O
I
I
I
I
I
O
I/O
O
I/O
O

Port 12
Port 12 is a 16-bit bidirectional general purpose I/O port or
serves as ADC control port and SDLM/ASC I/O port.
AD0EMUX0 ADC0 external multiplexer control 0
AD0EMUX1 ADC0 external multiplexer control 1
AD0EMUX2 ADC0 external multiplexer control 2
AD1EMUX0 ADC1 external multiplexer control 0
AD1EMUX1 ADC1 external multiplexer control 1
AD1EMUX2 ADC1 external multiplexer control 2
AD1EXTIN0 ADC1 external trigger input 0
AD1EXTIN1 ADC1 external trigger input 1
AD0EXTIN0 ADC0 external trigger input 0
AD0EXTIN1 ADC0 external trigger input 1
RXJ1850 SDLM receiver input
TXJ1850 SDLM transmitter output
RXD0A ASC0 receiver input/output A
TXD0A ASC0 transmitter output A
RXD1A ASC1 receiver input/output A
TXD1A ASC1 transmitter output A

Table 1-3 Pin Definitions and Functions (cont’d)

Symbol Pin In
Out

Functions
User’s Manual 1-37 V2.0, 2001-02

TC1775
System Units

Introduction
P13

P13.0
P13.1
P13.2

P13.3

P13.4

P13.5

P13.6

P13.7

P13.8

P13.9
P13.10

P13.11

P13.12
P13.13
P13.14
P13.15

B19
C18
A18

B18

A17

D17

B17

C17

A16

B16
C16

A15

D15
B15
C15
A14

I/O

I/O
I/O
I/O
I/O
I/O
O
I/O
I/O
I/O
O
I/O
I/O
I/O
I/O

I/O

I/O
I/O

I/O

I
O
I
O

Port 13
Port 13 is a 16-bit bidirectional general purpose I/O port that
is also used as input/output for the serial interfaces (ASC,
SSC, CAN) and timers (GPTU).
GPT0 GPTU I/O line 0
GPT1 GPTU I/O line 1
GPT2 GPTU I/O line 2
RXD0B ASC0 receiver input/output B
GPT3 GPTU I/O line 3
TXD0B ASC0 transmitter output B
GPT4 GPTU I/O line 4
RXD1B ASC1 receiver input/output B
GPT5 GPTU I/O line 5
TXD1B ASC1 transmitter output B
GPT6 GPTU I/O line 6
SCLK0 SSC0 clock input/output
GPT7 GPTU I/O line 7
MRST0 SSC0 master receive / slave transmit

input/output
MTSR0 SSC0 master transmit / slave receive

output/input
SCLK1 SSC1 clock input/output
MRST1 SSC1 master receive / slave transmit

input/output
MTSR1 SSC1 master transmit / slave receive

output/input
RXDCAN0 CAN receiver input 0
TXDCAN0 CAN transmitter output 0
RXDCAN1 CAN receiver input 1
TXDCAN1 CAN transmitter output 1

CLKSEL0
CLKSEL1
CLKSEL2

V21
V23
V22

I
I
I

PLL Clock Selection Inputs
These pins are sampled during power-on reset
(PORST = low); they determine the division rate in the
feedback path of the PLL (N-Factor). The latched values of
these input pins are available in the PLL Clock Control
Register PLL_CLC.
The combination BYPASS = 1 and CLKSEL[2:0] = 000B
during power-on reset is reserved.

Table 1-3 Pin Definitions and Functions (cont’d)

Symbol Pin In
Out

Functions
User’s Manual 1-38 V2.0, 2001-02

TC1775
System Units

Introduction
BYPASS W22 I PLL Bypass Control Input
BYPASS is used for direct drive mode operation of the clock
circuitry. This pin is sampled during power-on reset
(PORST = low). Its level is latched into the PLL Clock
Control Register PLL_CLC. The combination BYPASS = 1
and CLKSEL[2:0] = 000B during power-on reset is reserved.

CFG0
CFG1
CFG2
CFG3

Y23
Y22
W21
W23

I
I
I
I

Operation Configuration Inputs
The configuration inputs define the boot options of the
TC1775 after a hardware reset operation.

TRST2) AA19 I JTAG Module Reset/Enable Input
A low level at this pin resets and disables the JTAG module.
A high level enables the JTAG module.

TCK2) AB19 I JTAG Module Clock Input

TDI1) AC19 I JTAG Module Serial Data Input

TDO AA18 O JTAG Module Serial Data Output

TMS1) AB20 I JTAG Module State Machine Control Input

OCDSE1) Y19 I OCDS Enable Input
A low level on this pin during power-on reset (PORST = low)
enables the on-chip debug support (OCDS). In addition, the
level of this pin during power-on reset determines the boot
configuration.

BRKIN1) AC20 I OCDS Break Input
A low level on this pin causes a break in the chip’s execution
when the OCDS is enabled. In addition, the level of this pin
during power-on reset determines the boot configuration.

BRKOUT AC18 O OCDS Break Output
A low level on this pin indicates that a programmable OCDS
event has occurred.

NMI1) Y20 I Non-Maskable Interrupt Input
A high-to-low transition on this pin causes a NMI-Trap
request to the CPU.

1) These pins have an internal pull-up device connected.
2) These pins have an internal pull-down device connected.

Table 1-3 Pin Definitions and Functions (cont’d)

Symbol Pin In
Out

Functions
User’s Manual 1-39 V2.0, 2001-02

TC1775
System Units

Introduction
HDRST1) W20 I/O Hardware Reset Input/Reset Indication Output
Assertion of this bidirectional open-drain pin causes a
synchronous reset of the chip through external circuitry. This
pin must be driven for a minimum duration.
The internal reset circuitry drives this pin in response to a
power-on, hardware, watchdog and power-down wake-up
reset for a specific period of time. For a software reset,
activation of this pin is programmable.

PORST1) Y21 I Power-on Reset Input
A low level on PORST causes an asynchronous reset of the
entire chip. PORST is a fully asynchronous level sensitive
signal.

CLKIN T1 I EBU Clock Input
CLKIN must be connected externally with CLKOUT. For fine-
tuning of the external bus interface timing, this external
connection can be an external delay circuit.

CLKOUT R1 O Clock Output

TEST
MODE1)

AB23 I Test Mode Select Input
For normal operation of the TC1775, this pin should be
connected to VDDP05.

XTAL1
XTAL2

AC23
AC22

I
O

Oscillator/PLL/Clock Generator Input/Output Pins
XTAL1 is the input to the oscillator amplifier and input to the
internal clock generator. XTAL2 is the output of the oscillator
amplifier circuit. For clocking the device from an external
source, XTAL1 is driven with the clock signal while XTAL2 is
left unconnected. For crystal oscillator operation XTAL1 and
XTAL2 are connected to the crystal with the appropriate
recommended oscillator circuitry.

XTAL3
XTAL4

AB21
AA20

I
O

Real Time Clock Oscillator Input/Output
XTAL3 and XTAL4 are the input and the output of the 32 kHz
oscillator that is used for the Real Time Clock.

1) These pins have an internal pull-up device connected.

Table 1-3 Pin Definitions and Functions (cont’d)

Symbol Pin In
Out

Functions
User’s Manual 1-40 V2.0, 2001-02

TC1775
System Units

Introduction
VDDOSC AC21 – Main Oscillator Power Supply (2.5 V)3)5)

VSSOSC AA21 – Main Oscillator Ground

VDDPLL AA22 – PLL Power Supply (2.5 V)3)5)

VSSPLL AA23 – PLL Ground

VSS F4,Y6,
V20,
D18,
K10
 to
K14,
L10
 to
L14,
M10
 to
M14,
N10
 to
N14,
P10
 to
P14

– Ground

VDD K4, P4
V4, D6
Y10
D14
Y18
F20
K20
P20

– Core Power Supply (2.5 V)3)5)

3)4)The voltage on power supply pins marked with 4) has to be raised earlier or at least at the same time
(= time window of 1 µs) as on power supply pins marked with 3).

5) In order to minimize the danger of latch-up conditions, these 2.5 V VDD power supply pins should be kept at
the same voltage level during normal operating mode. This condition is best achieved by generating the
2.5 V power supplies from a single voltage source. The condition is also valid in normal operating mode if a
separate stand-by power supply VDDSB is used.

Table 1-3 Pin Definitions and Functions (cont’d)

Symbol Pin In
Out

Functions
User’s Manual 1-41 V2.0, 2001-02

TC1775
System Units

Introduction
VDDP05 H4
M4
T4
Y8
Y12

– Ports 0 to 5 Power Supply (2.5 V)3)5)

VDDP813 D8
D12
D16
H20
M20
T20

– Port 8-13 and Dedicated Pins Power Supply (3.3 - 5 V)4)

VDDSRAM AC17,
AB18

– SRAM (RAMs of DMU, PMU, and PCP) Power Supply
(2.5 V)5)

VDDSB B14 – Stand-by Power Supply of 8K SBSRAM (2.5 V)5)

VDDSC A1 – ADC Short Circuit/Broken Wire Logic Power Supply
(5 V)4)

VSSSC A2 – ADC Short Circuit/Broken Wire Logic Ground

VDDM C3 – ADC Digital Part Power Supply (5 V)4)

VSSM A3 – ADC Digital Part Ground

VDDA0 D9 – ADC0 Port and Analog Part Power Supply (2.5 V)3)5)

VSSA0 A9 – ADC0 Port and Analog Part Ground

VDDA1 H1 – ADC1 Port and Analog Part Power Supply (2.5 V)3)5)

VSSA1 G3 – ADC1 Port and Analog Part Ground

VAREF0 C8 – ADC0 Reference Voltage4)

VAGND0 B8 – ADC0 Reference Ground

VAREF1 G2 – ADC1 Reference Voltage4)

VAGND1 G4 – ADC1 Reference Ground

3)4)The voltage on power supply pins marked with 4) has to be raised earlier or at least at the same time
(= time window of 1 µs) than on power supply pins marked with 3).

5) In order to minimize the danger of latch-up conditions, these 2.5 V VDD power supply pins should be kept at
the same voltage level during normal operating mode. This condition is typically achieved by generating the
2.5 V power supplies from a single voltage source. The condition is also valid in normal operating mode if
a separate stand-by power supply VDDSB is used.

Table 1-3 Pin Definitions and Functions (cont’d)

Symbol Pin In
Out

Functions
User’s Manual 1-42 V2.0, 2001-02

TC1775
System Units

Introduction
N.C.1 AB15,
D10,
Y14

– Not Connected 1
These pins must not be connected.

N.C.2 AB22,
C14,
K3,
AC3,
L4,
D21,
Y16

– Not Connected 2
For compatibility reasons, these pins should not be
connected. Any connection to 5V does not harm the device.

Table 1-3 Pin Definitions and Functions (cont’d)

Symbol Pin In
Out

Functions
User’s Manual 1-43 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
2 TC1775 Processor Architecture
The Central Processing Unit (CPU) of the TC1775 is based on the Infineon TriCore
32-bit microcontroller-DSP processor core architecture. It is optimized for real-time
embedded systems, and combines:

• Reduced Instruction Set Computing (RISC) architecture
• Digital signal processing (DSP) operations and data structures
• Real-time responsiveness

The RISC load/store architecture provides high computational bandwidth with low
system cost. Its superscalar design has three pipelines.

The TC1775 CPU is a Harvard-style architecture, with separate address and data buses
for program and data memories. There are special instructions for common DSP
operations and hardware-assisted data structure index generation for circular buffers
(useful for filters) and bit-reversed indexing (useful for Fast Fourier Transforms). These
features make it possible to efficiently analyze complex real-world signals.

The CPU’s interrupt-processing architecture combines the quick responsiveness
associated with microcontrollers with a high degree of interrupt-service flexibility. The
architecture of the CPU minimizes interrupt latency by having few uninterruptable multi-
cycle instructions, by supporting fast context switching, and supporting task-based
memory protection. The combination of the interrupt-processing capabilities of the CPU
and the Peripheral Control Processor (PCP) provide the system designer with tools to
meet even the most demanding hard-deadline real-time scheduling requirements simply
and efficiently.

While the TriCore architecture employs 32-bit Instruction formats, frequently-used
instructions have an optional 16-bit instruction format. This results in smaller code size,
and faster code bandwidth. Additional benefits of this approach include lowered program
memory requirements, lower system cost, and less power consumption.
User’s Manual 2-1 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
2.1 Central Processing Unit

This section provides an overview of the TC1775 Central Processing Unit (CPU)
architecture. The basic features include the following.

• Data paths: 32 bits throughout
• Address space: 4 Gigabytes, unified, for data, program, and I/O
• Instruction formats: mixed 32-bit and 16-bit formats
• Low interrupt latency and flexible interrupt prioritization scheme
• Fast automatic context switching
• Separate multiply-accumulate unit
• Saturating integer arithmetic
• Bit-handling operations
• Packed-data operations
• Zero-overhead looping
• Flexible power management
• Byte and bit addressing
• Little-endian byte ordering
• Precise exceptions

Figure 2-1 illustrates the architecture of the TC1775’s Central Processing Unit (CPU). It
is comprised of an Instruction Fetch Unit, an Execution Unit, a General Purpose Register
File, and several peripheral interfaces.

Figure 2-1 Central Processing Unit (CPU) Block Diagram

MCB04686

Program Memory Unit (PMU)

Integer Pipeline Loop Pipeline Load/Store Pipeline

Execution Unit

General Purpose Register File (GPR)

Instruction Fetch
Unit

TriCore CPU

6464

Data Memory Unit (DMU)

64

Core Register
Access

Interrupts

System
Control

Debug/
Emulation

Test
User’s Manual 2-2 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
2.1.1 Instruction Fetch Unit

Figure 2-2 shows the Instruction Fetch Unit. It prefetches and aligns incoming
instructions from the 64-bit wide Program Memory Unit (PMU). The Issue Unit directs the
instruction to the appropriate pipeline. The Instruction Protection Unit checks the validity
of accesses to the PMU and also checks for instruction breakpoint conditions. The PC
Unit is responsible for updating the issue and prefetch program counters.

Figure 2-2 Instruction Fetch Unit

MCA04687

Issue Unit

To Loop
Pipeline

Injection

PC Unit Align

PrefetchInstruction
Protection

To Load/Store
Pipeline

To Integer
Pipeline

64

Program Memory Unit

Debug
User’s Manual 2-3 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
2.1.2 Execution Unit

As shown in Figure 2-3, the Execution Unit contains the Integer Pipeline, the Loop
Pipeline, and the Load/Store Pipeline.

The Integer Pipeline and Load/Store Pipeline have four stages: Fetch, Decode, Execute,
and Write-back. The Execute stage may extend beyond one cycle to accommodate
multi-cycle operations such as load instructions.

The Loop Pipeline has two stages: Decode and Write-back.

All three pipelines operate in parallel, permitting up to three instructions to execute in one
clock cycle.

Figure 2-3 Execution Unit

Figure 2-3 introduces the following acronyms and abbreviations:

• IP Decode - Instruction Prefetch and Decode
• MAC - Multiply-Accumulate Unit
• ALU - Arithmetic/Logic Unit
• Loop Exec. - Loop Execution Unit
• EA - Effective Address

MCA04688

Loop Exec.

To Register File

EA

Address ALU

ALU

Bit Processor

MAC

Load/Store
DecodeIP Decode

Integer Pipeline Loop Pipeline Load/Store Pipeline

Decode

Execute
User’s Manual 2-4 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
2.1.3 General Purpose Register File

The CPU has a General Purpose Register (GPR) file, divided into an Address Register
File (registers A0 through A15) and a Data Register File (registers D0 through D15).

The data flow for instructions issued to/from the Load/Store Pipeline is steered through
the Address Register File. The data flow for instructions issued to/from the Integer
Pipeline and for data load/store instructions issued to/from the Load/Store Pipeline is
steered through the Data Register File.

Figure 2-4 General Purpose Register File

MCA04689

General Purpose
Register File

Data Register File Address Register File

To Pipelines

64

Data Alignment

64

128

To Data Memory Unit
User’s Manual 2-5 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
2.1.4 Program State Registers

The program state registers consist of 32 General Purpose Registers (GPRs), two 32-bit
registers with program status information (PCXI and PSW), and a Program Counter
(PC). PCXI, PSW, and PC are Core Special Function Registers (CSFRs).

As shown in Figure 2-5, the 32 General Purpose Registers are divided into sixteen
32-bit data registers (D0 through D15) and sixteen 32-bit address registers (A0 through
A15).

Figure 2-5 Program State Registers

Four GPRs have special functions: D15 is used as an implicit data register, A10 is the
Stack Pointer (SP), A11 is the return address register, and A15 is the implicit address
register.

Registers 0-7 are called the lower registers and 8-15 are called the upper registers.

Registers A0 and A1 in the lower address registers and A8 and A9 in the upper address
registers are defined as system global registers. These registers are not included in
either context partition, and are not saved and restored across calls or interrupts.The
operating system normally uses them to reduce system overhead.

The PCXI and PSW registers contain status flags, previous execution information, and
protection information.

MCA04683

General Purpose Registers Program Status Information

D15 (Implict Data)
D14

Address Registers Data Registers

D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0

A15 (Implict Addr.)
A14
A13
A12

A10A10A10A10A10A10A10

A11 (Return Addr.)
A10 (Stack Pointer)
A9 (Global Addr.)
A8 (Global Addr.)

A7
A6
A5
A4
A3
A2

A1 (Global Addr.)
A0 (Global Addr.)

PC
PSW
PCXI
User’s Manual 2-6 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
2.1.5 Data Types

The TriCore instruction set supports operations on booleans, bit-strings, characters,
signed fractions, addresses, signed and unsigned integers, and single-precision floating-
point numbers. Most instructions work on a specific data type, while others are useful for
manipulating several data types.

2.1.6 Addressing Modes

Addressing modes allow load and store instructions to efficiently access simple variables
and data elements within data structures such as records, randomly and sequentially
accessed arrays, stacks, and circular buffers. Simple variables and data elements are 1,
8, 16, 32 or 64 bits wide.

Addressing modes provide efficient compilation of programs written in the C
programming language, easy access to peripheral registers, and efficient
implementation of typical DSP data structures. Hardware-assisted DSP data structures
include circular buffers for filters and bit-reversed indexing for FFTs. The following seven
addressing modes are supported in the TriCore architecture:

• Absolute
• Base + Short Offset
• Base + Long Offset
• Pre-increment or pre-decrement
• Post-increment or post-decrement
• Circular (modulo)
• Bit-Reverse

2.1.7 Instruction Formats

The CPU architecture supports both 16-bit and 32-bit instruction formats. All instructions
have a 32-bit format. The 16-bit instructions are a subset of the 32-bit instructions,
chosen because of their frequency of use and included to reduce code space.

2.1.8 Tasks and Contexts

Throughout this document, the term task refers to an independent thread of control:
Software-managed Tasks (SMTs) and Interrupt Service Routines (ISRs).

Software-managed tasks are created through the services of a real-time kernel or
operating system and dispatched under the control of scheduling software. Interrupt
Service Routines (ISRs) are dispatched by hardware in response to an interrupt. An ISR
is the code that is invoked by the processor directly on receipt of an interrupt. Software-
managed tasks are sometimes referred to as user tasks, assuming that they will execute
in User Mode.
User’s Manual 2-7 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
Each task is allocated its own permission level. The individual permissions are enabled
or disabled primarily by I/O mode bits in the Program Status Word (PSW).

The processor state associated with a task is called the task’s context. The context
includes everything the processor needs in order to define the current state of the task.
The system saves the current task’s context when another task is about to run, and
restores the task’s context when the task is to be resumed. The context includes the
Program State Registers. The CPU efficiently manages and maintains the contexts of
the tasks through hardware.

2.1.8.1 Upper and Lower Contexts

The context is subdivided into the Upper Context and the Lower Context, as illustrated
in Figure 2-6. The Upper Context consists of the upper address registers, A10 – A15,
and the upper data registers, D8 – D15. These registers are designated as non-volatile,
for purposes of function calling. The Upper Context also includes the PCXI and PSW
registers. The Lower Context consists of the lower address registers, A2 through A7, the
lower data registers, D0 through D7, and saved PC, and again the PCXI register.

Both Upper and Lower Contexts include a Link Word contained in register PCXI.
Contexts are saved in fixed-size memory areas (see Section 2.1.8.2); they are linked
together via the link word.

The Upper Context is saved automatically on Interrupts. It is also saved on CALL
instructions and restored on RETURN instructions. The Lower Context must be saved
and restored by the IISR if the ISR needs to use more registers than are available in the
Upper Context.
User’s Manual 2-8 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
Figure 2-6 Upper and Lower Contexts

2.1.8.2 Context Save Areas

The architecture uses linked lists of fixed-size Context Save Areas (CSAs) which
accommodate systems with multiple interacting threads of control. A CSA is sixteen
words of memory storage, aligned on a 16-word boundary. A single CSA can hold
exactly one Upper or one Lower Context. Unused CSAs are linked together on a free list.
They are allocated from the free list as needed and returned to it when no longer needed.
Allocation and freeing are handled transparently by the processor. They are transparent
to the applications code. Only system initialization code and certain operating system
exception-handling routines need to access the CSAs or their lists explicitly. The number
of CSAs that can be used is limited only by the size of the available data memory.

Note: In the TC1775, Context Save Areas can only be located either in the local data
scratch-pad RAM (SPRAM) or in external memory in the cacheable Segment 10.

2.1.8.3 Fast Context Switching

The TC1775 CPU uses a uniform context-switching method for function calls, interrupts,
and traps. In all cases, Upper Context of the task is automatically saved and restored by
hardware. Saving and restoring of the Lower Context is left as an option for the new task.
An explanation of CPU management of the contexts can be found in Section 2.2.2.

Fast context switching is further enhanced by the TriCore’s unique memory subsystem

MCA04684

Lower Context Upper Context

D7
D6
D5
D4
A7
A6
A5
A4
D3
D2
D1
D0
A3
A2

saved PC
PCXI

D15
D14
D13
D12
A15
A14
A13
A12
D11
D10
D9
D8

A11 (RA)
A10 (SP)

PSW
PCXI (Link Word)
User’s Manual 2-9 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
design, which allows a complete Upper or Lower Context to be saved in as little as two
clock cycles.

2.1.9 Interrupt System

An interrupt request can be generated by the TC1775 on-chip peripheral units or it can
be generated by external events. Requests can be targeted to either the CPU, or to the
Peripheral Control Processor (PCP).

In order to better differentiate the programmable stages of interrupt processing available
in the TC1775, this document refers to an interrupt-triggering event as an Interrupt
Service Request. The TC1775 interrupt system evaluates service requests for priority
and to identify whether the CPU or PCP should receive the request. The highest-priority
service request is then presented to the CPU (or PCP) by way of an interrupt.

In specific contexts where this level of formality is not required, the term Interrupt is used
generally to mean an event directed to the CPU, while the term service request
describes an event that can be directed to either the CPU or the PCP.

For a CPU interrupt, the entry code for the Interrupt Service Routine (ISR) is contained
in an Interrupt Vector Table. Each entry in this table corresponds to a fixed-size code
block. (If an ISR requires more code than fits in an entry, it must include a jump
instruction to vector it to the rest of the ISR elsewhere in memory.) Each interrupt source
is assigned an interrupt priority number. All priority numbers are programmable. The ISR
uses the priority number to determine the location of the entry code block.

The prioritization of service routines enables nested interrupts and the use of interrupt
priority groups. See Chapter 13 for more information.

2.1.10 Trap System

Trap events break the normal execution of code much like interrupts. But traps are
different from interrupts in these ways:

• Trap Service Routines (TSR) reside in the Trap Vector Table, separate from the
Interrupt Vector Table.

• A trap does not change the CPU’s interrupt priority.
• Traps cannot be disabled by software, and are always active.

A trap occurs as a result of an exception within one of the following classes of events.

• Reset
• Internal protection
• Instruction errors
• Context management
• Internal bus and peripheral errors
• Assertion
• System call
• Non-maskable interrupt
User’s Manual 2-10 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
Each entry in the Trap Vector Table corresponds to a fixed-size code block. (If a TSR
requires more code than fits in an entry, it must include a jump instruction to vector it to
the rest of the TSR located elsewhere in memory.) When a trap is taken, its Trap
Identification Number (TIN) is placed in data register D15. The trap handler uses the TIN
to identify the cause of the trap. During trap arbitration, the pending trap with the lowest
TIN will be chosen to execute. See Chapter 14 for more information.

2.1.11 Protection System

There are two protection systems in the TC1775. A memory-access protection system
protects code and data memory regions, as described in Section 2.1.11.1 and
Section 2.1.11.2. Access to sensitive system registers is protected by hardware against
system malfunctions, as described in Section 2.1.11.3.

2.1.11.1 Permission Levels

Each task can be assigned a specific permission level. Individual permissions are
enabled through the I/O Mode bits in the Program Status Word (PSW). The three
permission levels are listed here, in decreasing order of restrictiveness.

• User-0 Mode
– Used for tasks that do not access peripheral devices.
– Tasks at this level do not have permission to enable or disable interrupts.

• User-1 Mode
– Used for tasks that access common, unprotected peripherals.
– Accesses typically include read/write accesses to serial ports and read accesses to

timers and most I/O status registers.
– Tasks at this level may disable interrupts.

• Supervisor Mode
– Permits read/write access to system registers and all peripheral devices.
– Tasks at this level may disable interrupts.

2.1.11.2 Memory Protection Model

The Memory Protection Model of the CPU is based on address ranges, where each
address range has an associated permission setting. Address ranges and their
associated permissions are specified in identical sets of tables residing in the Core
Special Function Register (CSFR) space. Each set is referred to as a Protection Register
Set (PRS).

The TC1775 incorporates two sets of Protection Register Sets each for code and data
memory. The number of sets is implementation-specific. Other TriCore products may
have implemented a different number (up to four) of Protection Register Sets.

When the protection system is enabled the CPU checks every load/store or instruction
fetch address before performing the access. Legal addresses must fall within one of the
User’s Manual 2-11 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
ranges specified in the currently selected PRS, and permission for that type of access
must be present in the matching range.

2.1.11.3 Watchdog Timer and ENDINIT Protection

Registers that control basic TC1775 configuration and operation can be protected via a
special End-of-Initialization (ENDINIT) bit. The ENDINIT bit globally protects those
TC1775 registers that control basic system configuration against unintentional
modification. Write accesses to registers protected via this ENDINIT-bit are prohibited as
long as this bit is set to 1. To clear the bit and to enable access to these registers again,
a special password-protected access sequence to the Watchdog Timer registers must
be performed. The bit must be set to 1 again within a defined time-out period, otherwise
a system malfunction is assumed to have occurred, and the Watchdog Timer triggers a
reset of the TC1775. See Chapter 18 for more details.

2.1.12 Reset System

Several events will cause the TC1775 system to be reset:

• Power-On Reset
– Activated through an external pin when the power to the device is turned on (also

called cold reset)
• Hard Reset

– Activated through an external pin (HDRST) during run time (also called warm reset)
• Soft Reset

– Activated through a software write to a reset-request register, which has a special
protection mechanism to prevent accidental access

• Watchdog Timer Reset
– Activated through an error condition detected by the Watchdog Timer

• Wake-up Reset
– Activated through an external pin to wake the device from a power saving mode

A status register allows the CPU to check which of the triggers caused the reset.
User’s Manual 2-12 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
2.2 Processor Registers

The processor contains general purpose registers to store instruction operands. It has
special purpose registers for managing the state of the processor itself.

The CPU’s operations are controlled by a set of Core Special Function Registers
(CSFRs). These registers also provide status information about its operation. The
CSFRs are split into the following groups:

• Program State Information
• Context Management
• Stack Management
• Interrupt and Trap Control
• System Control
• Memory Protection
• Debug Control

The following sections summarize these registers. The CSFRs are complemented by a
set of General Purpose Registers (GPRs). Table 2-1 shows all CSFRs and GPRs.

Table 2-1 Core Register Map

Register Name Description

D0 – D15 General Purpose Data Registers

A0 – A15 General Purpose Address Registers

PSW Program Status Word

PCXI Previous Context Information Register

PC Program Counter

FCX Free CSA List Head Pointer

LCX Free CSA List Limit Pointer

ISP Interrupt Stack Pointer

ICR ICU Interrupt Control Register

BIV Interrupt Vector Table Pointer

BTV Trap Vector Table Pointer

SYSCON System Configuration Register

DPRx_0 – DPRx_3 Data Segment Protection Registers for Set x (x = 0, 1)

CPRx_0 – CPRx_1 Code Segment Protection Registers for Set x (x = 0, 1)

DPMx_0 – DPMx_3 Data Protection Mode Register for Set x (x = 0, 1)

CPMx_0 – CPMx_1 Code Protection Mode Register for Set x (x = 0, 1)

DBGSR Debug Status Register
User’s Manual 2-13 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
The CPU accesses the CSFRs through two instructions: MFCR and MTCR. The MFCR
instruction (Move From Core Register) moves the contents of the addressed CSFR into
a data register. MFCR can be executed on any privilege level. The MTCR instruction
(Move To Core Register) moves the contents of a data register to the addressed CSFR.
To prevent unauthorized writes to the CSFRs, the MTCR instruction can be executed on
Supervisor privilege level only.

The CSFRs are also mapped into the top of Segment 15 in the memory address space.
This mapping makes the complete architectural state of the CPU visible in the address
map. This feature provides efficient debug and emulator support.

Note: The CPU is not allowed to access the CSFRs through this mechanism — it must
use the MFCR and MTCR instructions. Trying to access the CSFRs through
normal load and store instructions results in a MEM trap.

The instruction set provides no single-bit, bit field, or load-modify-store accesses to the
CSFRs. The only other instruction affecting a CSFR, is the RSTV instruction (Reset
Overflow Flags), which resets only the overflow flags in the PSW, without modifying any
of the other PSW bits. This instruction can be executed at any privilege level.

Note: Access to the Core SFRs through their mapped addresses in segment 15 is
implemented primarily for debug purposes. Special attention needs to be paid
when accessing these registers. It is strongly advised to not write to the CSFRs
while the core is executing. Reading the registers while the core is running does
not guarantee coherent status information.
A mid-range or high-range emulator can use the external bus as a fast route to the
internal FPI Bus. However, certain restrictions are placed on this mode of
operation regarding access to the CSFRs and GPRs: The external bus cannot be
used to access state in the core (GPRs and CSFRs) while the core is running (not
halted) and is configured to perform accesses to the external bus.

Figure 2-7 shows the General Purpose Registers (GPRs). The 32-bit wide GPRs are
split evenly into sixteen data registers, or DGPRs, (D0 to D15) and sixteen address
registers, or AGPRs, (A0 to A15). Separation of data and address registers facilitates
efficient performance of arithmetic and memory operations in parallel. Several
instructions interchange information between data and address registers in order, for
example, to create or derive table indexes. 64-bit values can be represented by

EXEVT External Break Input Event Specifier

SWEVT Software Break Event Specifier

CREVT Core SFR Access Event Specifier

TRnEVT Trigger Event n Specifier (n = 0, 1)

Table 2-1 Core Register Map (cont’d)

Register Name Description
User’s Manual 2-14 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
concatenating two consecutive double-word-aligned data registers. Eight such
extended-size registers (E0, E2, E4, E6, E8, E10, E12, and E14) are available.

Figure 2-7 General Purpose Registers (GPRs)

As shown in Figure 2-7, registers A0, A1, A8, and A9 are defined as System Global
Registers. Their contents are not saved and restored across calls, traps, or interrupts.
Register A10 is used as the Stack Pointer (SP) register. A11 is used to store the return
address (RA) for calls and linked jumps and to store the return program counter (PC)
value for interrupts and traps as part of the Upper Context.

The 32-bit instructions have unlimited use of the GPRs. However, many 16-bit
instructions implicitly use A15 as their address register and D15 as their data register to
make the encoding of these instructions into 16 bits possible.

There are no separate floating-point registers — the data registers are used to perform
floating-point operations. Floating-point data is saved and restored automatically using
the fast context-switching capabilities of the TC1775.

The GPRs are an essential part of a task’s context. When saving or restoring a task’s
context to and from memory, the context is split into the Upper Context and Lower
Context as shown in Figure 2-6. Registers A2 through A7 and D0 through D7 are part
of the Lower Context. Registers A10 through A15 and D8 through D15 are part of the
Upper Context.

MCA04685

A15 (implicit address) D15 (implicit data)

General Purpose
Address Registers
(AGPR)

General Purpose
Data Registers
(DGPR)

A14 D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0

E14

E12

E10

E8

E6

E4

E2

E0

64-Bit Extended
Data Registers

A13
A12

A11 (return address)
A10 (stack pointer)
A9 (global address)
A8 (global address)

A7
A6
A5
A4
A3
A2

A1 (global address)
A0 (global address)
User’s Manual 2-15 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
2.2.1 Program State Information Registers

The PC, PSW, and PCXI registers hold and reflect Program State Information. When
saving and restoring a task’s context, the contents of these registers are saved and
restored or modified during this process.

2.2.1.1 Program Counter (PC)

The Program Counter (PC) holds the address of the instruction which is currently fetched
and forwarded to the CPU pipelines. The CPU handles updates of the PC automatically.

Software can use the current value of the PC for various tasks, such as performing code
address calculations. Reading the PC through software executed by the CPU must only
be done with an MFCR instruction. Explicit writes to the PC through an MTCR instruction
must not be done due to possible unexpected behavior of the CPU.

Note: The CPU must not perform Load/Store instructions to the mapped address of the
PC in Segment 15. A MEM trap will be generated in such a case.

Note: Reading the PC while the Core is executing, either through an MFCR instruction
or via its mapped address in Segment 15 (see below), will return a value which is
representative of where the code is currently executed from, however, it is not
guaranteed that the value returned will always correspond to an instruction that
has been or will be executed. For example, it is possible for the PC to point to the
target of a predicted branch which is subsequently resolved as mispredicted.
Thus, the branch target instruction will not be executed; however, it should be
possible to implement a statistical profile/coverage report with some degree of
error by sampling the PC value while the CPU is running.

In Debug Mode, explicit read and write operations to the PC can be performed using its
mapped address in Segment 15. This must only be done through an FPI Bus master
other than the CPU itself (through the DMU). Several restrictions apply to this operation:

• Writing to the PC while the Core is executing is non-deterministic and the user is
strongly advised not to do so. The correct sequence the user should adopt is: halt the
Core, modify the PC, remove Core from Halt mode.

• Reading the PC while the Core is halted will return the PC of the first instruction to be
executed once the Core is released from Halt mode. The only exception to this is if an
interrupt or asynchronous trap is received by the Core immediately after it is removed
from Halt mode prior to the first instruction being executed.

• Writing to the PC while the Core is halted will modify the PC in a deterministic way.
the new value will be the PC of the first instruction to be executed once the Core is
released from Halt mode. The only exception to this is if an interrupt or asynchronous
trap is received by the Core immediately after it is removed from Halt mode prior to
the first instruction being executed.
User’s Manual 2-16 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
Note: Bit 0 of the PC register is a read-only bit, hard-wired to 0. This ensures that only
half-word aligned addresses can be placed into the PC (instructions can only be
aligned to half-word addresses).

2.2.1.2 Program Status Word (PSW)

The Program Status Word (PSW) register holds the instruction flags and the control bits
for a number of options of the overall protection system.

A special instruction is available that affects only the overflow flag bits in register PSW.
The RSTV (Reset Overflow Flags) instruction clears bits V, SV, AV and SAV in PSW
without modifying any other PSW bit.

PC
Program Counter Reset Values: Boot ROM Boot: BFFF FFFCH

 External Memory Boot: A000 0000H
Emulator Boot: BE00 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PC[31:16]

rwh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PC[15:1] 0

rwh r

Field Bits Type Description

PC [31:1] rwh Program Counter

0 0 r Reserved
User’s Manual 2-17 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
PSW
Program Status Word Reset Value: 0000 0B80H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

C V SV AV SAV 0

rwh rwh rwh rwh rwh r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 PRS IO IS GW CDE CDC

r rwh rwh rwh rwh rwh rwh

Field Bits Type Description

CDC [6:0] rwh Call Depth Counter Field
The CDC field consists of two variable-width fields.
The first is a mask field, consisting of a string of zero
or more initial 1 bits, terminated by the first 0 bit. The
remaining bits of the field are the call depth counter.
0ccccccB 6-bit counter; trap on overflow
10cccccB 5-bit counter; trap on overflow
110ccccB 4-bit counter; trap on overflow
1110cccB 3-bit counter; trap on overflow
11110ccB 2-bit counter; trap on overflow
111110cB 1-bit counter; trap on overflow
1111110B Trap every call (call trace mode)
1111111B Disable call depth counting
When the call depth counter overflows, a trap is
generated. Depending on the width of the mask field,
the call depth counter can be set to overflow at any
power of two boundary, from 1 to 64. Setting the mask
field to 1111110B allows no bits for the counter, and
causes every call to be trapped. This is used for call
tracing. Setting the field to mask field to 1111111B
disables call depth counting altogether.
User’s Manual 2-18 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
CDE 7 rwh Call Depth Count Enable
The CDE bit enables call-depth counting, provided that
the CDC mask field is not all 1’s. CDE is set to 1 by
default, but should be cleared by the SYSCALL
instruction Trap Service Routine to allow a trapped
SYSCALL instruction to execute without producing
another trap upon return from the trap handler. It is
then set again when the next SYSCALL instruction is
executed.
0 Call depth counter disabled
1 Call depth counter enabled

GW 8 rwh Global Register Write Permission
GW controls whether the current execution thread has
permission to modify the global address registers.
Most tasks and ISRs will use the global address
registers as “read only” registers, pointing to the global
literal pool and key data structures. However, a task or
ISR can be designated as the “owner” of a particular
global address register, and is allowed to modify it.
The system designer must determine which global
address variables are used with sufficient frequency
and/or in sufficiently time-critical code to justify
allocation to a global address register. By compiler
convention, global address register A0 is reserved as
the base register for short form loads and stores.
Register A1 is also reserved for compiler use.
Registers A8 and A9 are not used by the compiler, and
are available for holding critical system address
variables.
0 Write permission to global registers A0, A1, A8,

and A9 is disabled
1 Write permission to global registers A0, A1, A8,

and A9 is enabled

Field Bits Type Description
User’s Manual 2-19 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
IS 9 rwh Interrupt Stack Control
Determines whether the current execution thread is
using the shared global (interrupt) stack or a user
stack.
0 User Stack. If an interrupt is taken when the IS

bit is 0, then the stack pointer register is loaded
from the ISP register before execution starts at
the first instruction of the Interrupt Service
Routine.

1 Shared Global Stack. If an interrupt is taken
when the IS bit is 1, then the current value of the
stack pointer register is used by the Interrupt
Service Routine.

IO [11:10] rwh Access Privilege Level Control
This 2-bit field selects determines the access level to
special function registers and peripheral devices.
00B User-0 Mode: No peripheral access. Access to

segments 14 and 15 is prohibited and will result
in a trap. This access level is given to tasks that
need not directly access peripheral devices.
Tasks at this level do not have permission to
enable or disable interrupts.

01B User-1 Mode: regular peripheral access. This
access level enables access to common
peripheral devices that are not specially
protected, including read/write access to serial
I/O ports, read access to timers, and access to
most I/O status registers. Tasks at this level may
disable interrupts.

10B Supervisor Mode. This access level enables
access to all peripheral devices. It enables read/
write access to core registers and protected
peripheral devices. Tasks at this level may
disable interrupts.

11B Reserved; this encoding is reserved and is not
defined.

Field Bits Type Description
User’s Manual 2-20 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
2.2.1.3 Previous Context Information Register (PCXI)

This register holds information about the previous task’s context, and is saved and
restored together with both the Upper and the Lower Context. It also contains the
Previous Context Pointer (PCX), which holds the address of the previous task’s context
save area (CSA).

PRS [13:12] rwh Protection Register Set Selection
The PRS field selects one of two possible sets of
memory protection register values controlling load and
store operations and instruction fetches within the
current process. This field indicates the current
protection register set.
00 Protection register set 0 selected
01 Protection register set 1 selected
10 Reserved; don’t use this combination
11 Reserved; don’t use this combination

0 [26:14] r Reserved; read as 0; should be written with 0;

SAV 27 rwh Sticky Advance Overflow Flag
This flag is set whenever the advanced overflow flag is
set. It remains set until it is explicitly cleared by an
RSTV (Reset Overflow bits) instruction.

AV 28 rwh Advance Overflow Flag
This flag is updated by all instructions that update the
overflow flag and no others. This flag is determined as
the boolean exclusive of the two most significant bits of
the result.

SV 29 rwh Sticky Overflow Flag
This flag is set when an overflow occurs. This flag
remains set until it is explicitly reset by an RSTV
(Reset Overflow bits) instruction.

V 30 rwh Overflow Flag
This flag is set when an overflow occurs.

C 31 rwh Carry Flag
This flag is set when a carry occurs.

Field Bits Type Description
User’s Manual 2-21 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
PCXI
Previous Context Information Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PCPN PIE UL 0 PCXS

rwh rwh rwh r rwh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PCXO

rwh

Field Bits Type Description

PCXO [15:0] rwh Previous Context Pointer Offset Field
The combined PCXO and PCXS fields form the
pointer PCX, which points to the CSA of the previous
context.

PCXS [19:16] rwh PCX Segment Address
This field contains the segment address portion of
the PCX.

0 20, 21 r Reserved; read as 0; should be written with 0;

UL 22 rwh Upper/Lower Context Tag
The UL context tag bit identifies the type of context
saved.
0 Lower Context
1 Upper Context
If the type does not match the type expected when a
context restore operation is performed, a trap is
generated.

PIE 23 rwh Previous Interrupt Enable
PIE indicates the state of the interrupt enable bit
(ICR.IE) for the interrupted task.

PCPN [31:24] rwh Previous CPU Priority Number
This bit field contains the priority level number of the
interrupted task.
User’s Manual 2-22 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
2.2.2 Context Management Registers

The Context Management Registers (CMR) are comprised of three pointer registers,
FCX, PCX, and LCX. These pointers handle context management and are used during
context save/restore operations.

Each pointer register consists of two fields: a 16-bit offset and a 4-bit segment specifier.
A Context Save Area (CSA) is an address range containing sixteen word locations
(64 bytes). Each CSA can save one Upper Context or one Lower Context. Incrementing
a CMR pointer offset value by 1 will point it at the CSA that is sixteen word locations
above the previous one.

The FCX pointer register points to the head of the CSA free list. The previous context
pointer (PCX) points to the CSA of the previous task. PCX is part of the previous context
information register PCXI. The LCX pointer register is used to recognize impending CSA
list underflows. If the value of FCX used on an interrupt or CALL instruction matches the
limit value, the context-save operation will be completed, but the target address will be
forced to the trap vector address that handles CSA list depletion.

2.2.2.1 Free Context List Head Pointer (FCX)

The FCX register points to the address of the next available context save area (CSA) in
the linked list of CSAs. It is automatically updated on a context save operation to point
to the next available CSA.

FCX
Free Context List Head Pointer Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 FCXS

R rwh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FCXO

rwh
User’s Manual 2-23 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
2.2.2.2 Previous Context Pointer (PCX)

The Previous Context Pointer (PCX) holds the address of the CSA of the previous task.
PCX is part of PCXI. It is shown for easy reference. The bits not relevant to the pointer
function are shaded.

Note: The shaded bit fields are described at register PCXI.

Field Bits Type Description

FCXO [15:0] rwh FCX Offset Address Field
The combined FCXO and FCXS fields form the FCX
pointer, which points to the next available CSA.

FCXS [19:16] rwh FCX Segment Address Field
This bit field is used in conjunction with the FCXO
field.

0 [31:20] r Reserved; read as 0; should be written with 0;

PCX
Previous Context Pointer Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PCPN PIE UL 0 PCXS

rwh rwh rwh r rwh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PCXO

rwh

Field Bits Type Description

PCXO [15:0] rwh Previous Context Pointer Offset Field
The combined PCXO and PCXS fields form the
pointer PCX, which points to the CSA of the previous
context.

PCXS [19:16] rwh PCX Segment Address
This field is used in conjunction with the PCXO field-

0 20, 21 r Reserved; read as 0; should be written with 0;
User’s Manual 2-24 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
2.2.3 Free Context List Limit Pointer (LCX)

The LCX register points to the last context save area (CSA) in the linked list of free CSAs.
The value is used on a context save operation to detect the usage of the last entry, and
to trigger a trap to the CPU to allow proper software reaction.

LCX
Free Context List Limit Pointer Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 LCXS

R rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LCXO

rw

Field Bits Type Description

LCXO [15:0] rw Previous Context Pointer Offset Field
The LCXO and LCXS fields form the pointer LCX,
which points to the last available CSA.

LCXS [19:16] rw LCX Segment Address
This bit field is used in conjunction with the LCXO field.
User’s Manual 2-25 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
2.2.4 Stack Management

General purpose address register A10 is designated as the Stack Pointer (SP). The
initial contents of this register are usually set by an RTOS instruction when a task is
created. This allows a private stack area to be assigned to individual tasks.

When entering Interrupt Service Routines (ISRs), the Stack Pointer is loaded with the
contents of a separate register — the Interrupt Stack Pointer (ISP) — after saving its
previous contents with the Upper Context. This helps to prevent interrupt service
routines from accessing the private stack areas and possibly interfering with the context
of software-managed tasks.

2.2.4.1 Interrupt Stack Pointer (ISP)

To separate the private stack of software managed tasks from the stack used for
interrupt service routines (ISRs), an automatic switch is implemented in the TC1775 to
use the Interrupt Stack Pointer (ISP) when entering ISRs. After saving the Upper
Context, and with it register A10 (used as the stack pointer), register A10 is loaded with
the contents of register ISP. When returning from the ISR, the previous value of the
Stack Pointer is restored through the Upper Context restore operation.

Note: Register ISP is EndInit-protected!

ISP
Interrupt Stack Pointer Reset Value: 0000 0100H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ISP[31:16]

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ISP15:1] 0

rw r

Field Bits Type Description

ISP [31:1] rw Interrupt Stack Pointer

0 0 r Reserved; read as 0; should be written with 0;
User’s Manual 2-26 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
2.2.5 Interrupt and Trap Control

Three CSFRs support interrupt and trap handling: the Interrupt Control Register (ICR),
the Interrupt Vector Table Pointer (BIV), and the Trap Vector Table Pointer (BTV).

The ICR holds the current CPU priority number (CCPN), the enable/disable bit for the
interrupt system, the pending interrupt priority number, and an implementation-specific
control for the interrupt arbitration scheme. The other two registers hold the base
addresses for the interrupt (BIV) and trap vector tables (BTV).

2.2.5.1 Interrupt Vector Table Pointer (BIV)

The BIV register points to the start address of the Interrupt Vector Table in code memory.
More detailed information on the functions associated with this register and the Interrupt
Vector Table can be found in Chapter 13.

Note: Register BIV is EndInit-protected!

BIV
Interrupt Vector Table Pointer Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BIV[31:16]

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BIV[15:1] 0

rw r

Field Bits Type Description

BIV [31:1] rw Base Address of Interrupt Vector Table

0 0 r Reserved; read as 0; should be written with 0;
User’s Manual 2-27 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
2.2.5.2 Trap Vector Table Pointer (BTV)

The BTV register points to the start address of the Trap Vector Table in code memory.
More detailed information on the functions associated with this register and the Trap
Vector Table can be found in Chapter 14.

Note: Register BTV is EndInit-protected,

BTV
Trap Vector Table Pointer Reset Value: A000 0100H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BTV[31:16]

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BTV[15:1] 0

rw r

Field Bits Type Description

BTV [31:1] rw Base Address of Trap Vector Table

0 0 r Reserved; read as 0; should be written with 0;
User’s Manual 2-28 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
2.2.6 System Control Register

The System Configuration Control Register (SYSCON) provides the enable/disable bit
for the memory protection system and a status flag for a Free Context List Depletion
condition.

SYSCON
System Configuration Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 PRO
TEN

FCD
SF

r rw rwh

Field Bits Type Description

FCDSF 0 rwh Free Context List Depletion Sticky Flag
This sticky bit indicates that a FCD trap occurred since
the bit was last cleared by software.
0 No FCD trap occurred since the last clear
1 An FCD trap occurred since the last clear

PROTEN 1 rw Memory Protection Enable
PROTEN enables the memory protection system.
Memory protection is controlled through the memory
protection register sets. Note that it is required to
initialize the protection register sets prior to setting
PROTEN to 1.
0 Memory Protection is disabled
1 Memory Protection is enabled

0 [31:2] r Reserved; read as 0; should be written with 0;
User’s Manual 2-29 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
2.2.7 Memory Protection Registers

As described in Section 2.1.11.2, memory ranges are protected from unauthorized
read-, write-, or instruction-fetch accesses. The TC1775 contains register sets (PRSs)
that specify the addresses and the access permissions for a number of memory ranges.
The TC1775 incorporates two sets each for data and code memory protection. See
Chapter 10 for detailed register descriptions.

2.2.8 Debug Registers

Six registers are implemented in the CPU to support debugging. These registers define
the conditions under which a debug event is generated, the actions taken on the
assertion of a debug event, and the status information supplied to the debug functions.
See Chapter 20 for detailed register descriptions.
User’s Manual 2-30 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
2.2.9 CSFR Address Table

Table 2-2 lists all CSFRs of the TC1775 and their physical addresses. Except for the
General Purpose Registers (GPRs), two addresses are given for each of the CSFRs.
The 32-bit address represents the mapped address of the register in segment 15.
Access to these mapped locations can be performed through the CPU’s Slave Interface
(CPS) by any FPI Bus master other than the CPU itself. The 16-bit address given for a
register is the associated address when performing an access by the CPU through the
MTCR and MFCR instructions.

Access modes to the CSFRs are described in the following notes and, therefore, are not
contained in Table 2-2.

Note: The General Purpose Registers (GPRs) cannot be accessed by the CPU through
MTCR and MFCR instructions. Therefore, they do not have a 16-bit address.

Note: Write accesses to CSFRs through the CPS interface by an FPI Bus master while
the CPU is running might lead to unexpected behavior. It is strongly advised to
write to these registers only when the CPU is halted.

Note: Read and write accesses from the FPI Bus must only be made with word-aligned
word accesses. Any access not following this rule will be flagged with a bus error.
The read or write operation will not be performed.

Note: Read accesses from the FPI Bus can be performed in User or Supervisor Mode.
Write accesses from the FPI Bus must be performed in Supervisor Mode. A write
attempt in User Mode will be flagged with a bus error. The write operation will not
be performed.

Note: Registers ISP, BIV, and BTV are EndInit-protected. To write successfully to these
registers, the ENDINIT bit in register WDT_CON0 of the Watchdog Timer must be
cleared. See Chapter 18 for detailed information on the EndInit-protection.
User’s Manual 2-31 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
Table 2-2 CSFR Register Table

Register
Short Name

Register Long Name Address

Core Special Function Registers (CSFRs)

PCXI Previous Context Information Register FFFF FE00H

PSW Program Status Word FFFF FE04H

PC Program Counter FFFF FE08H / FE08H

SYSCON System Configuration Register FFFF FE14H / FE14H

BIV Interrupt Vector Table Pointer FFFF FE20H / FE20H

BTV Trap Vector Table Pointer FFFF FE24H / FE24H

ISP Interrupt Stack Pointer FFFF FE28H / FE28H

ICR ICU Interrupt Control Register FFFF FE2CH / FE2CH

FCX Free CSA List Head Pointer FFFF FE38H / FE38H

LCX Free CSA List Limit Pointer FFFF FE3CH / FE3CH

General Purpose Registers (GPRs)

D0 Data Register D0 (DGPR) FFFF FF00H

D1 Data Register D1 (DGPR) FFFF FF04H

D2 Data Register D2 (DGPR) FFFF FF08H

D3 Data Register D3 (DGPR) FFFF FF0CH

D4 Data Register D4 (DGPR) FFFF FF10H

D5 Data Register D5 (DGPR) FFFF FF14H

D6 Data Register D6 (DGPR) FFFF FF18H

D7 Data Register D7 (DGPR) FFFF FF1CH

D8 Data Register D8 (DGPR) FFFF FF20H

D9 Data Register D9 (DGPR) FFFF FF24H

D10 Data Register 10 (DGPR) FFFF FF28H

D11 Data Register 11 (DGPR) FFFF FF2CH

D12 Data Register 12 (DGPR) FFFF FF30H

D13 Data Register 13 (DGPR) FFFF FF34H

D14 Data Register 14 (DGPR) FFFF FF38H

D15 Data Register 15 (DGPR) FFFF FF3CH

A0 Address Register 0 (AGPR)
Global Address Register

FFFF FF80H
User’s Manual 2-32 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
A1 Address Register 1 (AGPR)
Global Address Register

FFFF FF84H

A2 Address Register 2 (AGPR) FFFF FF88H

A3 Address Register 3 (AGPR) FFFF FF8CH

A4 Address Register 4 (AGPR) FFFF FF90H

A5 Address Register 5 (AGPR) FFFF FF94H

A6 Address Register 6 (AGPR) FFFF FF98H

A7 Address Register 7 (AGPR) FFFF FF9CH

A8 Address Register 8 (AGPR)
Global Address Register

FFFF FFA0H

A9 Address Register 9 (AGPR)
Global Address Register

FFFF FFA4H

A10 (SP) Address Register 10 (AGPR)
Stack Pointer

FFFF FFA8H

A11 (RA) Address Register 11 (AGPR)
Return Address

FFFF FFACH

A12 Address Register 12 (AGPR) FFFF FFB0H

A13 Address Register 13 (AGPR) FFFF FFB4H

A14 Address Register 14 (AGPR) FFFF FFB8H

A15 Address Register 15 (AGPR) FFFF FFBCH

Table 2-2 CSFR Register Table (cont’d)

Register
Short Name

Register Long Name Address
User’s Manual 2-33 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
2.3 Instruction Set Overview

This section provides an overview of the TriCore instruction set architecture. The basic
properties and uses of each instruction type are described, as well as the selection and
use of the 16-bit (short) instructions.

Note: The “TriCore Architecture Manual” describes each instruction more detailed.

2.3.1 Arithmetic Instructions

Arithmetic instructions operate on data and addresses in registers. Status information
about the result of the arithmetic operations is recorded in the five status flags in the
Program Status Word (PSW) register. The status flags are described in Table 2-3.

The two signed overflow conditions (overflow and advance overflow) are calculated for
all arithmetic instructions. In the case of packed instructions, the conditions are the OR
of the conditions for each byte or half-word (parallel) operation. In the case of the
multiply-accumulate instructions, the conditions are calculated after the accumulate
operation. The unsigned overflow condition is carry for addition or borrow (no carry) for
subtraction.

Table 2-3 PSW Status Flags

Status
Flag

Description

C Carry Flag
This flag is set as the result of a carry out from an addition or subtraction
instruction. Carry out can result from either signed or unsigned operations. It is
also set by arithmetic shift.

V Overflow Flag
This flag is set when the signed result cannot be represented in the data size
of the result; for example, when the result of a signed 32-bit operation is greater
than 231 - 1.

SV Sticky Overflow Flag
This flag is set when the overflow flag is set. It remains set until it is explicitly
cleared by an RSTV (Reset Overflow bits) instruction.

AV Advance Overflow Flag
This flag is updated by all instructions that update the overflow flag and no
others. This flag is determined as the Boolean exclusive-or of the two most-
significant bits of the result.

SAV Sticky Advance Overflow Flag
This flag is set whenever the advanced overflow flag is set. It remains set until
it is explicitly cleared by an RSTV (Reset Overflow bits) instruction.
User’s Manual 2-34 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
Numerically, overflow for signed 32-bit values occurs when a positive result is greater
than 7FFFFFFFH or a negative result is smaller than 80000000H. Overflow for unsigned
32-bit values occurs when the result is greater than FFFFFFFFH or less than
00000000H.

The status flags can be read by software using the Move From Core Register (MFCR)
instruction and can be written using the Move to Core Register (MTCR) instruction. The
Trap on Overflow (TRAPV) and Trap on Sticky Overflow (TRAPSV) instructions can be
used to cause a trap if the V and SV bits, respectively, are set. The overflow bits can be
cleared using the Reset Overflow Bits instruction (RSTV).

Individual arithmetic operations can be checked for overflow by reading and testing V. If
it is necessary to know only if an overflow occurred somewhere in an entire block of
computation, then the SV bit is reset before the block (using the RSTV instruction) and
is tested after completion of the block (using MFCR). Jumping based on the overflow
result can be done using a MFCR followed by a JZ.T or JNZ.T (conditional jump on the
value of a bit).

The AV and SAV bits are set as a result of the exclusive OR of the two most-significant
bits of the particular data type (byte, half-word, word, or double-word) of the result, which
indicates that an overflow almost occurred.

Because most signal-processing applications can handle overflow by simply saturating
the result, most of the arithmetic instructions have a saturating version for signed and
unsigned overflow. Note that saturating versions of all instructions can be synthesized
using short code sequences.

When saturation is used for 32-bit signed arithmetic overflow, if the true result of the
computation is greater than (231 - 1) or less than -231, the result is set to (231 - 1) or -231,
respectively. The bounds for 16-bit signed arithmetic are (215 - 1) and -215. The bounds
for 8-bit signed arithmetic are (27 - 1) and -27. When saturation is used for unsigned
arithmetic, the lower bound is always zero and the upper bounds are (232 - 1), (216 - 1),
and (28 - 1). Saturation is indicated in the instruction mnemonic by an “S”, and unsigned
is indicated by a “U” following the period (.). For example, the instruction mnemonic for
a signed saturating addition is ADDS, and the mnemonic for an unsigned saturating
addition is ADDS.U. Saturation is also used for signed fractions in DSP operations.

2.3.1.1 Integer Arithmetic

Move

Move instructions move a value in a data register or a constant value in the instruction
to a destination data register. Move can be used to quickly load a large constant into a
data register. A 16-bit constant is created using MOV (which sign-extends the value to
32 bits) or MOV.U (which zero-extends to 32 bits). The MOVH (Move Highword)
instruction loads a 16-bit constant into the most-significant sixteen bits of the register and
zero fills the least significant sixteen bits, which is useful for loading a left-justified
User’s Manual 2-35 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
constant fraction. Loading a 32-bit constant can be done using a MOVH instruction
followed by an ADDI (Add Immediate), or by a MOV.U followed by ADDIH (Add
Immediate High Word).

Addition and Subtraction

There are three types of addition instructions: no saturation (ADD), signed saturation
(ADDS), and unsigned saturation (ADDS.U). For extended precision addition, the ADDX
(Add Extended) instruction sets the PSW carry bit to the value of the ALU carry out. The
ADDC (Add with Carry) instruction uses the PSW carry bit as the carry in, and updates
the PSW carry bit with the ALU carry out. For extended precision addition, the least
significant word of the operands is added using the ADDX instruction, and the remaining
words are added using the ADDC instruction. The ADDC and ADDX instructions do not
support saturation.

Often it is necessary to add 16-bit or 32-bit constants to integers. The ADDI (Add
Immediate) and ADDIH (Add Immediate High) instructions add a 16-bit, sign-extended
constant or a 16-bit constant, left-shifted by 16. Addition of any 32-bit constant can be
done using ADDI followed by an ADDIH.

All add instructions except those with constants have similar corresponding subtract
instructions. Because the large immediate of ADDI is sign-extended, it may be used for
both addition and subtraction.

The RSUB (Reverse Subtract) instruction subtracts a register from a constant. Using
zero as the constant yields negation as a special case.

Multiply and Multiply-Add

Multiplication of two 32-bit integers that produce a 32-bit result can be handled using
MUL (Multiply Signed), MULS (Multiply Signed with Saturation), and MULS.U (Multiply
Unsigned with Saturation). The MULM (Multiply with Multiword Result) and MULM.U
(Multiply with Multiword Result Unsigned) instructions produce the full 64-bit result,
which is stored to a register pair; MULM is for signed integers, and MULM.U is for
unsigned integers. Special multiply instructions are used for DSP operations.

The Multiply-Add instruction (MADD) multiplies two signed operands, adds the result to
a third operand, and stores the result in a destination. Because the third operand and the
destination do not use the same registers, the intermediate sums of a multi-term multiply-
add instruction can be saved without requiring any additional register moves. The
MADD, MADDS (Multiply-Add with Saturation), and MADDS.U (Multiply-Add with
Saturation Unsigned) instructions operate on and produce 32-bit integers; MADDS and
MADDS.U will saturate on signed and unsigned overflow, respectively. The instructions
MADDM (Multiply-Add with Multiword Result), MADDM.U (Multiply-Add with Multiword
Result Unsigned), MADDMS (Multiply-Add Multiword with Saturation), and MADDMS.U
(Multiply-Add Multiword with Saturation Unsigned) can be used to add the 64-bit product
to a 64-bit source and produce a 64-bit result.
User’s Manual 2-36 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
The set of Multiply-Subtract (MSUB) instructions that supports the accumulation of
products using subtraction instead of addition provides the same set of variations as the
MADD instructions.

Division

Division of 32-bit by 32-bit integers is supported for both signed and unsigned integers.
Because an atomic divide instruction would require an excessive number of cycles to
execute, a divide-step sequence is used to reduce interrupt latency. The divide step
sequence allows the divide time to be proportional to the number of significant quotient
bits expected.

The sequence begins with a Divide-Initialize instruction (DVINIT(.U), DVINIT.H(U), or
DVINIT.B(U), depending on the size of the quotient and whether the operands are to be
treated as signed or unsigned). The divide initialization instruction extends the 32-bit
dividend to 64 bits, then shifts it left by 0, 16, or 24 bits. Simultaneously it shifts in that
many copies of the quotient sign bit to the low-order bit positions. Then follows 4, 2, or
1 Divide-Step instructions (DVSTEP or DVSTEP.U). Each divide step instruction
develops eight bits of quotient.

At the end of the divide step sequence, the 32-bit quotient occupies the low-order word
of the 64-bit dividend register pair and the remainder is held in the high-order word. If the
divide operation was signed, the Divide-Adjust instruction (DVADJ) is required to
perform a final adjustment of negative values. If the dividend and the divisor are both
known to be positive, the DVADJ instruction can be omitted.

Absolute Value, Absolute Difference

A common operation on data is the computation of the absolute value of a signed
number or the absolute value of the difference between two signed numbers. These
operations are provided directly by the ABS and ABSDIF instructions and there is a
version of each instruction which saturates when the result is too large to be represented
as a signed number.

Min, Max, Saturate

Instructions are provided that directly calculate the minimum or maximum of two
operands. The MIN and MAX instructions are used for signed integers, MIN.U and
MAX.U are used for unsigned integers. The SAT instructions can be used to saturate the
result of a 32-bit calculation before storing it in a byte or half-word in memory or a
register.

Conditional Arithmetic Instructions

The conditional instructions — Conditional Add (CADD), Conditional Subtract (CSUB),
and Select (SEL) — provide efficient alternatives to conditional jumps around very short
User’s Manual 2-37 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
sequences of code. All of the conditional instructions use a condition operand that
controls the execution of the instruction. The condition operand is a data register with
any non-zero value interpreted as TRUE and a zero value interpreted as FALSE. For the
CADD and CSUB instructions, the addition/subtraction is performed if the condition is
TRUE. For the CADDN and CSUBN instructions it is performed if the condition is FALSE.

The SEL instruction copies one of its two source operands to its destination operand,
with the selection of source operands determined by the value of the condition operand
(This operation is the same as the C language “?” operation). A typical use might be to
record the index value yielding the larger of two array elements:

index_max = (a[i] > a[j]) ? i : j;

If one of the two source operands in a Select instruction is the same as the destination
operand, then the Select instruction implements a simple conditional move. This occurs
fairly often in source statements of the general form:

if (<condition>) then <variable> = <expression>;

Provided that <expression> is simple, it is more efficient to evaluate it unconditionally
into a source register, using a SEL instruction to perform the conditional assignment,
rather than conditionally jumping around the assignment statement.

Logical

The TriCore architecture provides a complete set of 2-operand, bit-wise logic operations.
In addition to the AND, OR, and XOR functions, there are the negations of the output —
NAND, NOR, and XNOR — and negations of one of the inputs — ANDN and ORN (the
negation of an input for XOR is the same as XNOR).

Count Leading Zeroes, Ones, and Signs

To provide efficient support for normalization of numerical results, prioritization, and
certain graphics operations, three Count Leading instructions are provided: CLZ (Count
Leading Zeros), CLO (Count Leading Ones), and CLS (Count Leading Signs). These
instructions are used to determine the amount of left shifting necessary to remove
redundant zeros, ones, or signs.

Note that the CLS instruction returns the number of leading redundant signs, which is the
number of leading signs minus one. Furthermore, the following special cases are
defined: CLZ(0) = 32, CLO(-1) = 32, and CLS(0) = CLS(-1) = 31.

For example, CLZ returns the number of consecutive zeros starting from the most-
significant bit of the value in the source data register. In the example shown below
(Table 2-8), there are seven zeros in the most-significant portion of the input register. If
the most-significant bit of the input is a 1, CLZ returns 0.
User’s Manual 2-38 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
Figure 2-8 Operation of CLZ Instruction

The Count Leading instructions are useful for parsing certain Huffman codes and bit
strings consisting of Boolean flags because the code or bit string can be quickly
classified by determining the position of the first one (scanning from left to right).

Shift

The shift instructions support multi-bit shifts. The shift amount is specified by a signed
integer (n), which may be the contents of a register or a sign-extended constant in the
instruction. If n ≥ 0, the data is shifted left by n[4:0]; otherwise, the data is shifted right by
(-n)[4:0]. The (logical) shift instruction, SH, shifts in zeroes for both right and left shifts;
the arithmetic shift instruction, SHA, shifts in sign bits for right shifts and zeroes for left
shifts. The arithmetic shift with saturation instruction, SHAS, will saturate (on a left shift)
if the sign bits that are shifted out are not identical to the sign bit of the result.

Bit Field Extract and Insert

The TriCore architecture supports three bit field extract instructions. The EXTR.U and
EXTR instructions extract w (width) consecutive bits from the source, beginning with the
bit number specified by the pos (position) operand. The width and position can be
specified by two immediate values, by an immediate value and a data register, or by a
data register pair. The EXTR.U instruction (Figure 2-9) zero-fills the most significant
(32-w) bits of the result.

1 10

MCA04690

0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 1 1 0 1 0 1 0 1 1 1 0 1 0 1 1 0

Data Register

Count Leading Zero Logic

1 1 100
User’s Manual 2-39 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
Figure 2-9 Operation of EXTR.U Instruction

The EXTR instruction (Figure 2-10) fills the most-significant bits of the result by sign-
extending the bit field extracted (thus duplicating the most-significant bit of the bit field).

Figure 2-10 Operation of EXTR Instruction

The DEXTR instruction (Figure 2-11), concatenates two data register sources to form a
64-bit value from which 32 consecutive bits are extracted. The operation can be thought
of as a left shift by pos bits, followed by the truncation of the least significant 32 bits of
the result. The value of pos is contained in a data register or is an immediate value in the
instruction.

The DEXTR instruction can be used to normalize the result of a DSP filter accumulation
in which a 64-bit accumulator is used with several guard bits. The value of pos can be
determined by using the CLS (Count Leading Signs) instruction. The DEXTR instruction
can also be used to perform a multi-bit rotation by using the same source register for both
of the sources that are concatenated.

MCA04691

Source Registers

31 0

0Destination Registers

31 0

Zero Fill
Width

Pos

MCA04692

Source Registers

31 0

SDestination Registers

31 0

Sign Fill
Width

Pos

S

S

User’s Manual 2-40 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
Figure 2-11 Operation of DEXTR Instruction

The INSERT instruction (Figure 2-12) takes the w least significant bits of a source data
register, shifted left by pos bits and substitutes them into the value of another source
register. All other (32-w) bits of the value of the second register are passed through. The
values of width and pos are specified in the same way as for EXTR(.U). There is also an
alternative form of INSERT that allows a zero-extended 4-bit constant to be the value
which is inserted.

Figure 2-12 Operation of INSERT Instruction

MCA04693

Source Registers

Destination Registers

Pos
63 32 31 0

31 0

MCA04694

Width

31 0
Destination Registers

31

Source Registers
0

Pos
User’s Manual 2-41 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
2.3.1.2 DSP Arithmetic

DSP arithmetic instructions operate on 16-bit, signed fractional data in the 1.15 format
(also known as Q15) and 32-bit signed fractional data in 1.31 format (also known as Q31).
Data values in this format have a single high-order sign bit with a value of 0 or -1, followed
by an implied binary point and fraction. Their values are in the range [-1, 1].

16-bit DSP data is loaded into the most significant half of a data register, with the 16 least
significant bits set to zero. The left alignment of 16-bit data allows it to be added directly
to 32-bit data in 1.31 format. All other fractional formats can be synthesized by explicitly
shifting data as required.

Operations created for this format are multiplication, multiply-add, and multiply-subtract.
The signed fractional formats 1.15 and 1.31 are supported with the MUL.Q and MULR.Q
instructions. These instructions operate on two left-justified signed fractions and return
a 32-bit signed fraction.

Scaling

The multiplier result can be shifted in two ways:

• Left shifted by 1
– One sign bit is suppressed and the result is left-aligned, conserves the input format.

• Not shifted
– The result retains its two sign bits (2.30 format).
– This format can be used with IIR filters, in which some of the coefficients are

between 1 and 2, and to have one guard bit for accumulation.

Special Case = -1 × -1 = +1

When multiplying the two maximum negative values (-1), the result should be the
maximum positive number (+1). For example,

0x8000 * 0x8000 = 0x4000 0000

is correctly interpreted in Q format as:

-1(1.15 format) * -1(1.15 format) = +1 (2.30 format)

However, when the result is shifted left by one, the result is 0x8000 0000, which is
incorrectly interpreted as:

-1(1.15 format) * -1(1.15 format) = -1 (1.31 format)

To avoid this problem, the result of a Q format operation (-1 * -1) that has been left-
shifted by one (left-justified), is saturated to the maximum positive value. Thus,

0x8000 * 0x8000 = 0x7FFF FFFF

is correctly interpreted in Q format as:

-1(1.15 format) * -1(1.15 format) = (nearest representation of)+1 (1.31
format)
User’s Manual 2-42 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
This operation is completely transparent to the user and does not set the overflow flags.

Guard Bits

When accumulating sums (for example, in filter calculations) guard bits are often
required to prevent overflow. The instruction set directly supports the use of one guard
bit when using a 32-bit accumulator. When more guard bits are required, a register pair
(64 bits) can be used.

Rounding

Rounding is used to retain the 16-bit most-significant bits of a 32-bit result. Rounding is
combined with the MUL, MADD, MSUB instructions, and is implemented by adding 1 to
bit 15 of a 32-bit register.

Overflow and Saturation

Saturation on signed and unsigned overflow is implemented as part of the MUL, MADD,
and MSUB instructions.

Sticky Advance Overflow and Block Scaling in FFT

The Sticky Advance Overflow (SAV) bit is set whenever an overflow “almost” occurs. It
can be used in block scaling of intermediate results during an FFT calculation. Before
each pass of applying a butterfly operation, the SAV bit is cleared, and after the pass the
SAV bit is tested. If it is set, all of the data is scaled (using an arithmetic right shift) before
starting the next pass. This procedure gives the greatest dynamic range for intermediate
results without the risk of overflow.

Packed Arithmetic

The packed arithmetic instructions partition a 32-bit word into several identical objects,
which can then be fetched, stored, and operated on in parallel. These instructions, in
particular, allow the full exploitation of the 32-bit word of the TriCore architecture in signal
and data processing applications.

The TriCore architecture supports two packed formats. The first format (Figure 2-13)
divides the 32-bit word into two, 16-bit (half-word) values. Instructions which operate on
data in this way are denoted in the instruction mnemonic by the “.H” and “.HU” data type
modifiers.
User’s Manual 2-43 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
Figure 2-13 Packed Half-word Data Format

The second packed format (Figure 2-14) divides the 32-bit word into four, 8-bit values.
Instructions that operate this way are denoted by the “.B” and “.BU” data type modifiers.

Figure 2-14 Packed Byte Data Format

The loading and storing of packed values into data registers is supported by the normal
Load Word (LD.W) and Store Word (ST.W) instructions. The packed objects can then be
manipulated in parallel by a set of special packed arithmetic instructions that perform
such arithmetic operations as addition, subtraction, multiplication, etc.

Addition is performed on individual packed bytes or half-words using the ADD.B and
ADD.H instructions and their saturating variations ADDS.B and ADDS.H. ADD.B ignores

MCA04695

Half-word 1 Half-word 0 Operand m

Half-word 1 Half-word 0 Operand n

Destination 1 Destination 0 Result

Operation

MCA04696

Byte 3 Operand m

Byte 3 Operand n

Destination 3 Result

Operation

Destination 2

Byte 2

Destination 1

Byte 1

Destination 0

Byte 0

Byte 2 Byte 1 Byte 0
User’s Manual 2-44 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
overflow/underflow within individual bytes, while ADDS.B will saturate individual bytes to
the most positive, 8-bit signed integer (127) on individual overflow, or to the most
negative, 8-bit signed integer (-128) on individual underflow. Similarly, the ADD.H
instruction ignores overflow/underflow within individual half-words, while the ADDS.H
will saturate individual half-words to the most positive 16-bit signed integer (215 - 1) on
individual overflow, or to the most negative 16-bit signed integer (- 215) on individual
underflow. Saturation for unsigned integers is also supported by the ADDS.BU and
ADDS.HU instructions. Arithmetic on packed data also includes subtraction,
multiplication, absolute value, and absolute difference.
User’s Manual 2-45 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
2.3.2 Compare Instructions

The compare instructions use a perform operation on the contents of two registers. The
Boolean result (1 = true and 0 = false) is stored in the least significant bit of a data
register, and the remaining bits in the register are cleared to zero. Figure 2-15 illustrates
the operation of the LT (Less Than) compare instruction.

Figure 2-15 LT Comparison

The comparison instructions are: equal (EQ), not equal (NE), less than (LT), and greater
than or equal to (GE), with versions for both signed and unsigned integers.

Comparison conditions not explicitly provided in the instruction set can be obtained by
either swapping the operands when comparing two registers, or by incrementing the
constant by one when comparing a register and a constant (Table 2-4).

To accelerate the computation of complex conditional expressions, the accumulation of
versions of the comparison instructions are supported. These instructions — as
indicated in the instruction mnemonic by “op” preceding the “.” (for example, op.LT) —
combine the result of the comparison with a previous comparison result. The
combination is a logic AND, OR, or XOR; for example, AND.LT, OR.LT, and XOR.LT.
Figure 2-16 illustrates combining the LT instruction with a Boolean operation.

Table 2-4 Equivalent Comparison Operations

“Missing” Comparison Operation TriCore Equivalent Comparison Operation

LE Dc, Da, Db GE Dc, Db, Da

LE Dc, Da, const LT Dc, Da, (const + 1)

GT Dc, Da, Db LT Dc, Db, Da

GT Dc, Da, const GE Dc, Da, (const + 1)

MCA04697

ADa Db

A < B?

B

31 0 31 0

0Dc

031
User’s Manual 2-46 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
Figure 2-16 Combining LT Comparison with Boolean Operation

The evaluation of the following C expression can be optimized using the combined
compare-Boolean operation:

d5 = (d1 < d2) || (d3 == d4);

Assuming all variables are in registers, two instructions will compute the value in d5:

lt d5,d1,d2 ; compute (d1 < d2)
or.eq d5,d3,d4 ; or with (d3 == d4)

Certain control applications require that several Booleans be packed into a single
register. These packed bits can be used as an index into a table of constants or a jump
table, which permits complex Boolean functions and/or state machines to be evaluated
efficiently. To facilitate the packing of Boolean results into a register, compound
Compare with Shift instructions (for example, SH.EQ) are supported. The result of the
comparison is placed in the least significant bit of the result after the contents of the
destination register have been shifted left by one position. Figure 2-17 illustrates the
operation of the SH.LT (Shift Less Than) instruction.

MCA04698

ADa Db

A < B?

B

Dc

31 0 31 0

031

Dc

031

op op = AND, OR or XOR
User’s Manual 2-47 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
Figure 2-17 SH.LT Instruction

For packed bytes, there are special compare instructions that perform four individual
byte comparisons and produce a 32-bit mask consisting of four “extended” Booleans.
For example, EQ.B yields a result where individual bytes are FFH for a match or 00H for
no match. Similarly, for packed half-words there are special compare instructions that
perform two individual half-word comparisons and produce two extended Booleans. The
EQ.H instruction results in two extended Booleans: FFFFH for a match and 0000H for no
match. There are even abnormal packed-word compare instructions that compare two
words in the normal way but produce a single extended Boolean. The EQ.W instruction
results in the extended Boolean FFFFFFFFH for match and 00000000H for no match.

Extended Booleans are useful as masks, that can be used by subsequent bit-wise logic
operations. Also, CLZ (count leading zeros) or CLO (count leading ones) can be used
on the result to quickly find the position of the left-most match. Figure 2-18 shows an
example of the EQ.B instruction.

MCA04699

ADa Db

A < B?

B

Dc

0

Dc

31 0 31 0

031

Discarded Left Shift 1
User’s Manual 2-48 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
Figure 2-18 EQ.B Instruction Operation

MCA04700

ADa B C D E F G H Db

A = E? B = F? C = G? D = H?

Dc
User’s Manual 2-49 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
2.3.3 Bit Operations

Instructions are provided that operate on single bits, denoted in the instruction mnemonic
by the “T” data type modifier (for example, AND.T). There are eight instructions for
combinatorial logic functions with two inputs, eight instructions with three inputs, and
eight with two inputs and a shift. The one-bit result of a two-input function (for example,
AND.T) is stored in the least significant bit of the destination data register, and the most-
significant 31 bits are set to zero. The source bits can be any bit of any data register. This
is illustrated in Figure 2-19. The available Boolean operations are: AND, NAND, OR,
NOR, XOR, XNOR, ANDN, and ORN.

Figure 2-19 Boolean Operations

Evaluation of complex Boolean equations can use the 3-input Boolean operations in
which the output of a two-input instruction is combined with the least significant bit of a
third data register to form the input to a further operation. The result is written to bit 0 of
the third data register, with the remaining bits unchanged (Figure 2-20).

MCA04701

Da Db

Boolean op

p1 p2

0Dc

0

31 031 0

31 0
User’s Manual 2-50 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
Figure 2-20 Three-Input Boolean Operation

Of the many possible three-input operations, eight have been singled out for the efficient
evaluation of logical expressions. The eight instructions provided are: AND.AND.T,
AND.ANDN.T, AND.NOR.T, AND.OR.T, OR.AND.T, OR.ANDN.T, OR.NOR.T, and
OR.OR.T.

Just as for the comparison instructions, the results of bit operations often need to be
packed into a single register for controller applications. For this reason, the basic two-
input instructions can be combined with a shift prefix (for example, SH.AND.T). These
operations first perform a single-bit left shift on the destination register and then store the
result of the two-input logic function into its least significant bit (Figure 2-21).

Figure 2-21 Shift Plus Boolean Operation

MCA04702

Da Db

Boolean op

p1

Dc

p2

Boolean op

Dc

op = AND or OR

31 0

31 0

31 0

31 0

MCA04703

Da Db

Boolean op

p1

Dc

0

p2

Dc

31 0 31 0

31

031

Discarded Left Shift 1
User’s Manual 2-51 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
2.3.4 Address Arithmetic

The TriCore architecture provides selected arithmetic operations on the address
registers. These operations supplement the address calculations inherent in the
addressing modes used by the load and store instructions.

Initialization of base pointers requires loading a constant into an address register. When
the base pointer is in the first 16 KBytes of each segment, this can be done using the
Load Effective Address (LEA) instruction, using the absolute addressing mode. Loading
a 32-bit constant into an address register can be accomplished using MOVH.A followed
by an LEA that uses the base plus 16-bit offset addressing mode. For example,

movh.a a5, ((ADDRESS+0x8000)>>16) & 0xffff
lea a5, [a5](ADDRESS & 0xffff)

The MOVH.A instruction loads a 16-bit immediate into the most-significant 16-bits of an
address register and zero-fills the least significant 16-bits. Adding a 16-bit constant to an
address register can be done using the LEA instruction with the base plus offset
addressing mode. Adding a 32-bit constant to an address register can be done in two
instructions: an Add Immediate High Word (ADDIH.A), which adds a 16-bit immediate to
the most-significant 16 bits of an address register, followed by an LEA using the base
plus offset addressing mode. For example,

addih.a a8, ((OFFSET+0x8000)>>16) & 0xffff
lea a8, [a8](OFFSET & 0xffff)

The Add Scaled (ADDSC.A) instruction directly supports the use of a data variable as an
index into an array of bytes, half-words, words, or double-words.
User’s Manual 2-52 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
2.3.5 Address Comparison

As with the comparison instructions that use the data registers (see Section 2.3.2), the
comparison instructions using the address registers put the result of the comparison in
the least significant bit of the destination data register and clear the remaining register
bits to zeros. An example of the Less Than (LT.A) instruction is shown in Figure 2-22.

Figure 2-22 LT.A Comparison Operation

There are comparison instructions for equal (EQ.A), not equal (NE.A), less than (LT.A),
and greater than or equal to (GE.A). As with the comparison instructions using the data
registers, comparison conditions not explicitly provided in the instruction set can be
obtained by swapping the two operand registers (Table 2-5).

In addition to these instructions, instructions that test whether an address register is
equal to zero (EQZ.A), or not equal to zero (NEZ.A) are supported. These instructions
are useful to test for null pointers — a frequent operation when dealing with linked lists
and complex data structures.

Table 2-5 Comparison Operations

“Missing” Comparison Operation TriCore Equivalent Comparison Operation

LE.A Dc, Aa, Ab GE.A Dc, Ab, Aa

GT.A Dc, Aa, Ab LT.A Dc, Ab, Aa

MCA04704

AAa Ab

A < B?

B

0Dc

True
False

1
0

031

031

031
User’s Manual 2-53 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
2.3.6 Branch Instructions

Branch instructions change the flow of program control by modifying the value in the PC
register. There are two types of branch instructions: conditional and unconditional.
Whether or not a conditional branch is taken depends on the result of a Boolean compare
operation (see Section 2.3.2) rather than on the state of condition codes.

2.3.6.1 Unconditional Branch

There are three groups of unconditional branch instructions: Jump instructions, Jump
and Link instructions, and Call and Return instructions.

A Jump instruction simply loads the Program Counter with the address specified in the
instruction. A Jump and Link instruction does the same, and also stores the address of
the next instruction in the “return address register” A11/RA. A Jump and Link instruction
can be used to implement a subroutine call when the called routine does not modify any
of the caller’s non-volatile registers. The Call instructions differ from a Jump and Link in
that they save the caller’s non-volatile registers in a dynamically-allocated save area.
The Return instruction, in addition to performing the return jump, restores the non-
volatile registers.

Each group of unconditional Jump instructions contains separate instructions that differ
in how the target address is specified. There are instructions using a relative 24-bit
signed displacement (J, JL, and CALL), instructions using 24 bits of displacement as an
absolute address (JA, JLA, and CALLA), and instructions using the address contained
in an address register (JI, JLI, CALLI, RET, and RFE).

There are additional 16-bit instructions for a relative jump using an 8-bit displacement
(J), an instruction for an indirect jump (JI), and an instruction for a return (RET).

Both the 24-bit and 8-bit relative displacements are scaled by two before they are used,
because all instructions must be aligned on an even address. The use of a 24-bit
displacement is shown in Figure 2-23.

Figure 2-23 Displacement as Absolute Address

MCA04705

20 19 0

20 0

Displacement

0 Address

23

21

0000000

272831
User’s Manual 2-54 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
2.3.6.2 Conditional Branch

The conditional branch instructions use the relative addressing mode, with a
displacement value encoded in 4, 8, or 15 bits. The displacement is scaled by 2 before
it is used, because all instructions must be aligned on an even (half-word) address. The
scaled displacement is sign-extended to 32 bits before it is added to the program
counter, unless otherwise noted.

The Boolean test uses the contents of data registers, address registers, or individual bits
in data registers.

Conditional Jumps on Data Registers

Six of the Conditional Jump instructions use a 15-bit signed displacement field:
comparison for equality (JEQ), non-equality (JNE), less than (JLT), less than unsigned
(JLT.U), greater than or equal (JGE), and greater than or equal unsigned (JGE.U). The
second operand to be compared may be an 8-bit sign- or zero-extended constant. There
are two 16-bit instructions that test whether the implicit D15 register is equal to zero (JZ)
or not equal to zero (JNZ). The displacement is 8-bit in this case. Another two 16-bit
instructions compare the implicit D15 register with a 4-bit, sign-extended constant (JEQ,
JNE). The jump displacement field is limited to 4 zero-extended bits in this case.

There is a full set of 16-bit instructions that compare a data register to zero: JZ, JNZ,
JLTZ, JLEZ, JGTZ, and JGEZ. Because any data register may be specified, the jump
displacement is limited to 4-bit zero-extended constant in this case.

Conditional Jumps on Address Registers

The Conditional Jump instructions that use address registers are a subset of the data
register Conditional Jump instructions. Four Conditional Jump instructions use a 15-bit
signed displacement field: comparison for equality (JEQ.A), non-equality (JNE.A), equal
to zero (JZ.A), and non-equal to zero (JNZ.A).

Because testing pointers for equality to zero is so frequent, two 16-bit instructions are
provided (JZ.A and JNZ.A) with a displacement field limited to four zero-extended bits.

Conditional Jumps on Bits

Conditional jumps can be performed based on the value of any bit in any data register.
The JZ.T instruction jumps when the bit is clear, and the JNZ.T instruction jumps when
the bit is set. For these instructions, the jump displacement field is 15 bits.

There are two 16-bit instructions that test any of the lower 16 bits in the implicit register
D15 and have a displacement field of four zero-extended bits.
User’s Manual 2-55 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
2.3.6.3 Loop Instructions

Four special versions of Conditional Jump instructions are intended for efficient
implementation of loops. The JNEI and JNED instructions are like a normal JNE
instruction, but with an additional increment or decrement operation of the first register
operand. The increment or decrement operation is performed unconditionally after the
comparison. The jump displacement field is 15 bits. For example, a loop that should be
executed for D3 = 3, …, 10 can be implemented as follows:

 lea d3,3
loop1:
 ...
 jnei d3,10,loop1

The LOOP instruction is a special kind of jump that utilizes the special TriCore hardware
that implements “zero overhead” loops. The LOOP instruction only requires execution
time in the pipeline the first and last time it is executed (for a given loop). For all other
iterations of the loop, the LOOP instruction has zero execution time. For example, a loop
that should be executed 100 times may be implemented as:

 mova a2,99
loop2:
 ...
 loop a2,loop2

The LOOP instruction above requires execution cycles the first and 100th time it is
executed, but the other 98 executions require no cycles.

Note that the LOOP instruction differs from the other Conditional Jump instructions in
that it uses an address register for the iteration count, rather than a data register. This
allows it to be used in filter calculations in which a large number of data register reads
and writes occur each cycle. Using an address register for the LOOP instruction reduces
the need for an extra data register read port.

The LOOP instruction has a 32-bit version using a 15-bit displacement field (left-shifted
by one bit and sign-extended), and a 16-bit version that uses a 4-bit displacement field.
Unlike other 16-bit relative jumps, the 4-bit value is one-extended rather than zero-
extended, because this instruction is specifically intended for loops.

An unconditional variant of the LOOP instruction is provided (LOOPU) which utilizes the
zero overhead LOOP hardware. Such an instruction is used at the end of a while LOOP
body to optimize the jump back to the start of the while construct.
User’s Manual 2-56 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
2.3.7 Load and Store Instructions

The Load and Store instructions use seven addressing modes to move data between
registers and memory (Table 2-6). The addressing mode determines the effective byte
address for the Load or Store instruction and any update of the base pointer address
register.

2.3.7.1 Load/Store Basic Data Types

The TriCore architecture defines loads and stores for the basic data types —
corresponding to bytes, half-words, words and double-words — as well as for signed
fractions and addresses. The movement of data between registers and memory for the
basic data types is illustrated in Figure 2-24. Note that when the data loaded from
memory is smaller than the destination register (that is, 8- and 16-bit quantities), the data
is loaded into the least significant bits of the register (except for fractions which are
loaded into the most significant bits of a register), and the remaining register bits are
sign- or zero-extended to 32 bits, depending on the particular instruction.

Table 2-6 Addressing Modes

Addressing Mode Syntax Effective Address Instruction
Format

Absolute constant {offset18[17:14], 14’bo, offset
18[13:0]}

ABS

Base + Short Offset [An]offset A[a]+sign_ext(offset10) BO

Base + Long Offset [An]offset A[a]+sign_ext(offset16) BOL

Pre-increment [+An]offset A[a]+sign_ext(offset10) BO

Post-increment [An+]offset A[a] BO

Circular [An+c]offset A[b]+A[b+1][15:0] (b is even) BO

Bit-reverse [An+r] A[b]+A[b+1][15:0] (b is even) BO
User’s Manual 2-57 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
Figure 2-24 Load/Store Basic Data Types

MCA04706

m1

015

m1

07

m1

015

m1

07

s

m1

07

m1

015

m1

015

s

m1

015

m1

031

m1

063

Memory Data

LD.W /
LD.A

m1

031

ST.W /
ST.A

LD.D /
LD.DA

ST.D /
ST.DA

m1(63:32)

031

m1(31:0)

031

Dn+1 / An+1 Dn / An

Dn0

31

m1

01516

zero fill

LD.HU

s

31 16

sign fill

LD.H
m1

015

s Dn

ST.H
Dnx

31

m1

01516

0

31

zero fill

0

Dnm1

8 7
LD.BU

s

31

sign fill

0

Dnm1

8 7
LD.B

x

31 0

Dnm1

8 7
ST.B

LD.Q
Dn0

31

m1

01516

zero fill

ST.Q
Dnx

31

m1

01516

Registers

Dn / An
User’s Manual 2-58 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
2.3.7.2 Load Bit

The approach used to load individual bits depends on whether the bit within the word (or
byte) is given statically or dynamically.

Loading a single bit with a fixed bit offset from a byte pointer is accomplished with an
ordinary load instruction. One then can extract, logically operate on, or jump on any bit
in a register.

Loading a single bit with a variable bit offset from a word-aligned byte pointer is done
with a special scaled offset instruction. This offset instruction shifts the bit offset to the
right by three positions (producing a byte offset), adds this result to the byte pointer
above, and finally zeroes out the two lower bits, thus, aligning the access on a word
boundary. A word load can then access the word that contains the bit which can be
extracted with an extract instruction. The extract instruction uses only the lower five bits
of the bit pointer, that is, the bits that were either shifted out or masked out above. An
example is:

ADDSC.AT A8,A9,D8 ; A9 = byte pointer. D8 = bit offset.
LD.W D9,[A8]
EXTR.U D10,D9,D8,1 ; D10[0] = loaded bit.

2.3.7.3 Store Bit and Bit Field

The ST.T instruction can clear or set single memory or peripheral bits, resulting in
reduced code size. ST.T statically specifies a byte address and a bit number within that
byte, and indicates whether the bit should be set or cleared. The addressable range for
this instruction is the first 16 KBytes of each of the 16 memory segments.

Using any of the addressing modes, the Insert Mask (IMASK) instruction can be used in
conjunction with the Load-Modify-Store (LDMST instruction) to store a single bit or a bit
field to a location in memory. This operation is especially useful for reading and writing
memory-mapped peripherals. The IMASK instruction is very similar to the INSERT
instruction, but IMASK generates a data register pair that contains a mask and a value.
The LDMST instruction uses the mask to indicate which portion of the word to modify.
An example of a typical instruction sequence is:

imask E8,3,4,2 ; insert value = 3, position = 4, width = 2
ldmst _IOREG,E8 ; at absolute address "_IOREG"

To clarify the operation of the IMASK instruction, consider the following example. The
binary value 1011B is to be inserted starting at bit position 7 (the width is four). The
IMASK instruction would result in the following two values:

0000 0000 0000 0000 0000 0111 1000 0000 MASK
0000 0000 0000 0000 0000 0101 1000 0000 VALUE

To store a single bit with a variable bit offset from a word-aligned byte pointer, first the
word address is determined in the same way as for the load above. Next the special
scaled offset instruction shifts the bit offset to the right by three positions — which
User’s Manual 2-59 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
produces a byte offset — then adds this offset to the byte pointer above, and finally zeroes
out the two lower bits, thus aligning the access on a word boundary. An IMASK and
LDMST instruction can store the bit into the proper position in the word. An example is:

ADDSC.AT A8,A9,D8 ; A9 = byte pointer. D8 = bit offset.
IMASK E10,D9,D8,1 ; D9[0] = data bit.
LDMST [A8],E10

2.3.8 Context Related Instructions

As well as the instructions that implicitly save and restore contexts (such as Calls and
Returns), the TriCore instruction set includes instructions that allow a task’s contexts to
be explicitly saved, restored, loaded, and stored. These instructions are detailed in the
following sections.

2.3.8.1 Context Saving and Restoring

The Upper Context of a task is always automatically saved on a call, interrupt, or trap. It
is automatically restored on a return. However, the Lower Context of a task must be
saved/restored explicitly.

The SVLCX instruction (Save Lower Context) saves registers A2 through A7 and D0
through D7 together with the return address in register A11/RA and the PCXI. This
operation is performed when using the FCX and PCX pointers to manage the CSA lists.

The RSLCX instruction (Restore Lower Context) restores the Lower Context. It loads
registers A2 through A7 and D0 through D7 from the CSA. It also loads A11/RA from the
saved PC field. This operation is performed when using the FCX and PCX pointers to
manage the CSA lists.

The BISR instruction (Begin Interrupt Service Routine) enables the interrupt system
(ICR.IE is set to one), allows the modification of the CPU priority number (CCPN), and
saves the Lower Context in the same manner as the SVLCX instruction.

2.3.8.2 Context Loading and Storing

The effective address of the memory area in which the context is stored to or loaded from
is part of the Load or Store instruction. The effective address must resolve to a memory
location aligned on a 16-word boundary; otherwise a data address alignment trap (ALN)
is generated.

The STUCX instruction (Store Upper Context) stores the same context information that
is saved with an implicit Upper Context save operation: Registers A10 – A15 and D8 –
D15, and the current PSW and PCXI.

The LDUCX instruction (Load Upper Context) loads registers A10 – A15 and D8 – D15.
The PSW and link word fields in the saved context in memory are ignored. The PSW,
FCX, and PCXI are unaffected.
User’s Manual 2-60 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
The STLCX instruction (Store Lower Context) stores the same context information that
is saved with an explicit Lower Context save operation: Registers A2 – A7 and D0 – D7,
together with the return address (RA) in A11 and the PCXI. The LDLCX instruction (Load
Lower Context) loads registers A2 through A7 and D0 through D7. The saved return
address and the link word fields in the context stored in memory are ignored. Registers
A11/RA, FCX, and PCXI are not affected.

2.3.9 System Instructions

The system instructions allow user-mode and supervisor-mode programs to access and
control various system services, including interrupts, and the TriCore’s debugging
facilities. There are also instructions that read and write the core registers, for both user
and supervisor-only mode programs.

2.3.9.1 System Call

The SYSCALL instruction generates a system call trap, providing a secure mechanism
for user-mode application code to request supervisor services. The system call trap —
like other traps — vectors to the trap handler table, using the three-bit hardware-
furnished trap class ID as an index. The trap class ID for system call traps is six. The trap
identification number (TIN) is specified by an immediate constant in the SYSCALL
instruction, and serves to identify the specific supervisor service that is being requested.

2.3.9.2 Synchronization Primitives

The TriCore architecture provides two synchronization primitives. These primitives
provide a mechanism to software through which it can guarantee the ordering of various
events within the machine.

DSYNC

The first primitive, DSYNC, provides a mechanism through which a data memory barrier
can be implemented. The DSYNC instruction guarantees that all data accesses
associated with instructions semantically prior to the DSYNC instruction are completed
before any data memory accesses associated with an instruction semantically after
DSYNC are initiated. This includes all accesses to the system bus and local data
memory.

ISYNC

The second primitive, ISYNC, provides a mechanism through which the following can be
guaranteed:

• If an instruction semantically prior to ISYNC make a software visible change to a piece
of architectural state, then the effects of this change are seen by all instructions
semantically after ISYNC. For example, if an instruction changes a code range in the
User’s Manual 2-61 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
protection table, the use of an ISYNC will guarantee that all instructions after the
ISYNC are fetched and matched against the new protection table entry.

• All cached states in the pipeline, such as loop cache buffers, are invalidated.

Operation of the ISYNC instruction is thus described as follows:

1. Wait until all instructions semantically prior to the ISYNC have completed.
2. Flush the CPU pipeline and cancel all instructions semantically after the ISYNC.
3. Invalidate all cached state in the pipeline.
4. Prefetch the next instruction after the ISYNC.

2.3.9.3 Access to the Core Special Function Registers

The TriCore accesses the CSFRs through two instructions: MFCR and MTCR. The
MFCR instruction (Move From Core Register) moves the contents of the addressed
CSFR into a data register. MFCR can be executed at any privilege level. The MTCR
instruction (Move To Core Register) moves the contents of a data register to the
addressed CSFR. To prevent unauthorized writes to the CSFRs, the MTCR instruction
can only be executed at the supervisor privilege level.

The CSFRs are also mapped into the top of segment 15 in the memory address space.
This mapping makes the complete architectural state of the core visible in the address
map, which allows efficient debug and emulator support.

Note: It is not permitted for the core to access the CSFRs through this mechanism; it
must use MFCR and MTCR.

There are no instructions allowing bit, bit field, or load-modify store accesses to the
CSFRs. The RSTV instruction (Reset Overflow Flags) resets the overflow flags in the
PSW, without modifying any of the other bits in the PSW. This instruction can be
executed at any privilege level.

2.3.9.4 Enabling/Disabling the Interrupt System

For non-interruptible operations, the ENABLE and DISABLE instructions allow the
explicit enabling and disabling of interrupts in user and supervisor modes. While
disabled, an interrupt will not be taken by the CPU regardless of the relative priorities of
the CPU and the highest interrupt pending. The only “interrupt” that will be serviced while
interrupts are disabled is the NMI (non-maskable interrupt) since it is a trap.

If a user process accidentally disables interrupts for longer than a specified time, the
Watchdog Timer can be used to recover.

Programs executing in supervisor mode can use the 16-bit Begin ISR (BISR) instruction
to save the Lower Context of the current task, set the current CPU priority number, and
re-enable interrupts (which are disabled by the processor when an interrupt is taken).
User’s Manual 2-62 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
2.3.9.5 RET and RFE

The function return instruction (RET) is used to return from a function that was invoked
via a CALL instruction. The return from exception instruction (RFE) is used to return from
an interrupt or trap handler. The two instructions perform very similar operations; they
restore the Upper Context of the calling function or interrupted task, and branch to the
return address contained in register A11 (prior to the context restore operation). The
instructions differ in the error checking they perform for call depth management. Issuing
an RFE instruction when the current call depth (as tracked in the PSW) is nonzero
generates a context nesting error trap. Conversely, a context call depth underflow trap
is generated when an RET instruction is issued when the current call depth is zero.

2.3.9.6 Trap Instructions

The Trap on Overflow (TRAPV) and Trap on Sticky Overflow (TRAPSV) instructions can
be used to cause a trap if the PSW’s V and SV bits, respectively, are set (Section 2.3.1).

2.3.9.7 No Operation

Although there are many ways to represent a no-operation (for example, adding zero to
a register), an explicit NOP instruction is included so that it can be easily recognized,
allowing the CPU to minimize power consumption during its execution. For example, a
sequence of NOP instructions in a loop could be used as a low-power state that has a
very fast interrupt response time.

2.3.10 16-Bit Instructions

The 16-bit instructions are a subset of the 32-bit instruction set, chosen because of their
frequency of static use. They significantly reduce static code size and thus provide a
reduction in the cost of code memory and a higher effective instruction bandwidth.
Because the 16-bit and 32-bit instructions all differ in the primary opcode, the two
instruction sizes can be freely intermixed.

The 16-bit instructions are formed by imposing one or more of the following format
constraints: smaller constants, smaller displacements, smaller offsets, implicit source,
destination, or base address registers, and combined source and destination registers
(the 2-operand format). In addition, the 16-bit load and store instructions support only a
limited set of addressing modes.

The registers D15 and A15 are used as implicit registers in many 16-bit instructions. For
example, there is a 16-bit compare instruction (EQ) that puts a Boolean result in D15,
and a 16-bit conditional move instruction (CMOV) which is controlled by the Boolean in
D15.

The 16-bit load and store instructions are limited to the register indirect (base plus zero
offset), base plus offset (with implicit base or source/destination register), and post-
increment (with default offset) addressing modes.
User’s Manual 2-63 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
2.4 CPU Pipelines

This section describes the TC1775 CPU pipelines including the integer and load/store
pipelines, and the loop pipeline.

2.4.1 CPU Pipeline Overview

As specified by the TriCore architecture, the TC1775 implements a pipelined,
superscalar processor architecture that allows the execution of up to three instructions
in parallel. The processor pipeline design reduces branch latency, data dependencies,
and overall system complexity.

Two major pipelines perform integer operations and load/store operations. Each of these
has four stages: Fetch (common to both), Decode, Execute, and Write-back. A third
minor pipeline optimizes DSP loops. The three pipelines are illustrated in Figure 2-25.

2.4.2 Integer and Load/Store Pipelines

The Integer Pipeline executes the following operation types.

• Integer arithmetic and logical operations
• Bit-wise logical operations
• Multiply-accumulate (MAC) operations
• Integer division
• Conditional data jumps

The Load/Store Pipeline executes the following operation types.

• Load and Store operations
• Context-switch operations
• System operations
• Address arithmetic calculations
• Unconditional and conditional branch target calculations
User’s Manual 2-64 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
Figure 2-25 Pipeline Architecture

The pipelines share a common fetch stage that can issue one instruction to each pipeline
per cycle. Certain issue constraints apply. For instance, when two instructions are issued
in parallel, the first instruction must be an integer pipeline instruction. An integer ADD
followed by a load instruction can be issued in parallel, but a load followed in the pair by
an integer ADD cannot.

For example, the following code sequence takes four cycles.

 add d0, d1, d2
 sub d0, d0, d3
 ld.w d1, [a0]0
 xor d2, d1, d0
 st.w [a1]0, d2
 ld.a a0, [a5]4

Cycle Integer Load/Store

1 add –

2 sub ld.w

3 xor st.w

4 – ld.a

Load / Store
Pipeline

Integer
Pipeline

MCB04711

Integer
Decode

Integer
Execute

Write-back

MAC
Exe. 1

MAC
Exe. 2

Load / Store
Execute Write-back

Loop
Pipeline

Loop
Execute Write-back

Fetch

Load / Store
Decode

Loop Cache
Buffer
User’s Manual 2-65 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
Note that on the third cycle, the XOR instruction and dependent store are dual-issued.
The result from the XOR can be forwarded to the store instruction without any stall
penalty. In general, all required forwarding paths are implemented so that dependent
instructions can be executed without stall penalties.

All simple integer operations, bit operations, and address arithmetic instructions execute
in a single cycle. Divide instructions, such as DVSTEP, require eight uninterruptable
cycles to execute.

The multiply-accumulate (MAC) instructions are executed in a special two-stage MAC
pipeline. The first stage contains two 16 × 16-bit multipliers. The second stage contains
the accumulation, rounding and saturation logic. The MAC pipeline can perform a
32 × 32-bit multiply every two cycles with a latency of three cycles, or two 16 × 16-bit
multiplies every cycle with a latency of two cycles.

2.4.3 Loop Pipeline

The Loop Pipeline optimizes the execution of loops, such as those typically found in DSP
applications. This pipeline is driven by the Loop Cache Buffer (LCB), which stores the
location, target, and other required information. The loop instruction is executed in the
Load/Store Pipeline on its first iteration, and in the loop pipeline thereafter. If the loop is
single-issued, the LCB is updated when it is detected in the decode stage of the pipeline.
On subsequent iterations of the loop, when the LCB detects the end of the loop, it
automatically fetches the start of the loop body. Unlike a normal Branch Target Buffer
hit, the loop instruction itself is not fetched. It is injected from the LCB into the Loop
Pipeline during the last execute cycle.

For example, the following code will execute as shown below:

 mov.a a0, number_of_iterations - 1
loop_start:
 add d0, d0, d1
 ld.w d1, [a0+]4
 loop d0, loop_start

Cycle Integer Load/Store Loop

1 – mov.a –

2 add ld.w –

3 – loop –

4 – – –

5 add ld.w loop

6 add ld.w loop

7 add ld.w loop

8 add ld.w loop
User’s Manual 2-66 V2.0, 2001-02

TC1775
System Units

TC1775 Processor Architecture
As can be seen, after the first pass through the loop, each subsequent iteration will take
only one clock cycle, thereby providing zero overhead loop capability.

2.4.4 Context Operations

Context save and context restore operations associated with calls, returns, interrupts,
and so on, use the 128-bit data bus between the register file and the local on-chip data
memory. The CPU contains dedicated hardware to optimize context switching, resulting
in a context-save time to the on-chip local memory of between two and four cycles.
User’s Manual 2-67 V2.0, 2001-02

TC1775
System Units

Clock System
3 Clock System
This chapter describes the TC1775’s clock system. Topics covered include clock gating,
clock domains, clock generation, the operation of clock circuitry, boot-time operation,
fail-safe operation, clock control registers, and power management.

The TC1775 clock system performs the following functions:

• Acquires and buffers incoming clock signals to create a master clock frequency
• Distributes in-phase synchronized clock signals throughout the TC1775’s entire clock

tree
• Divides a system master clock frequency into lower frequencies required by the

different modules for operation.
• Dynamically reduces power consumption during operation in some functional units
• Statically reduces power consumption through programmable power-saving modes
• Reduces electromagnetic interference (EMI)
• Provides a separate RTC clock

The clock system must be operational before the TC1775 can function, so it contains
special logic to handle power-up and reset operations. Its services are fundamental to
the operation of the entire system, so it contains special fail-safe logic.

Figure 3-1 shows the structure of the TC1775 clock system. The system clock fSYS is
generated by the oscillator circuit and the phase-locked loop (PLL) unit. The module
clocks are all derived from the system clock. Each peripheral module can define a
specific operation frequency of its module clock fMOD.

The functionality of the control blocks shown in Figure 3-1 varies depending on the
functional unit being controlled. Some functional units, such as the FPI Bus or the
watchdog timer, are directly driven by the system clock Detailed descriptions on the
clock control register options for each unit are described in Section 3.2.
User’s Manual 3-1 V2.0, 2001-02

TC1775
System Units

Clock System
Figure 3-1 TC1775 Clocking System

MCB04712

ASC0_CLC
RegisterWDT ASC0

ASC0_CLK
fASC0

ASC1_CLC
RegisterICU ASC1

ASC1_CLK
fASC1

SSC0_CLC
Register

FPI Bus
(BCU) SSC0

SSC0_CLK
fSSC0

SSC1_CLC
RegisterSCU SSC1

SSC1_CLK
fSSC1

CAN_CLC
RegisterPMU CAN

CAN_CLK
fCAN

SDLM_CLC
Register

TriCore
CPU SDLM

SDLM_CLK
fSDLM

GPTU_CLC
RegisterDMU GPTU

GPTU_CLK
fGPTU

GPTA_CLC
Register GPTA

GPTA_CLK
fGPTA

ADC0_CLC
Register ADC0

ADC0_CLK
fADC0

ADC1_CLC
Register ADC1

ADC1_CLK
fADC1

Main
Oscillator

& PLL

PLL_CLC
Register

System_CLK
fSYS

XTAL1

XTAL2 STM_CLC
Register STM

STM_CLK
fSTM

RTC_CLC
Register RTC

RTC_CLK
fRTC

RTC
Oscillator
(32 kHz)

XTAL3

XTAL4
The module clock for these modules is
switched off after reset (module is disabled).

For these modules fMOD = fSYS. Its module clock
can only be switched on or off (no clock divider).

EBU_CLC
Register EBU

EBU_CLK
fEBU

PCP
PCP_CLK

fPCP
User’s Manual 3-2 V2.0, 2001-02

TC1775
System Units

Clock System
3.1 Clock Generation Unit

The Clock Generation Unit in the TC1775, shown in Figure 3-2, consists of an oscillator
circuit and a Phase-Locked Loop (PLL). The PLL can convert a low-frequency external
clock signal to a high-speed internal clock for maximum performance. The PLL also has
fail-safe logic that detects degenerate external clock behavior such as abnormal
frequency deviations or a total loss of the external clock. It can execute emergency
actions if it looses its lock on the external clock.

In general, the clock generation unit is controlled through the System Control Unit (SCU)
module of the TC1775.

Figure 3-2 Clock Generation Unit Block Diagram

Besides the two XTAL pins for the oscillator, input pins CFG[3:0], CLKSEL[2:0] and
BYPASS are used for configuration of the clock generation unit. These inputs are
checked by the SCU which generates the appropriate control signals and latches the
state of these signals into register PLL_CLC.

The following sections give descriptions of the various blocks of the clock generation
unit.

MCA04713

Oscillator
Circuit

XTAL1

XTAL2

&
fOSC

Phase
Detect. VCO

N
Divider

PLL

fVCO

1

0

K
Divider

fSYS

System_
CLK

Lock
Detector

OSC_OK PLL
Locked

Deep
Sleep

NDIV[2:0] VCO_
BYPASS

KDIV[2:0] PLL_
BYPASS

CLKSEL[2:0]

BYPASS
Register PLL_CLC

MUX

1

0
MUX

Clock Generation Unit
CGU

System Control Unit
SCU
User’s Manual 3-3 V2.0, 2001-02

TC1775
System Units

Clock System
3.1.1 Oscillator Circuit

The oscillator circuit, designed to work with both, an external crystal oscillator or an
external stable clock source, basically consists of an inverting amplifier with XTAL1 as
input, and XTAL2 as output.

When using a crystal, a proper external oscillator circuitry must be used, connected to
both pins, XTAL1 and XTAL2. The on-chip oscillator frequency can be within the range
of 1 MHz to 16 MHz. When using an external clock signal it must be connected to
XTAL1. XTAL2 is left open (unconnected). For direct drive operation without PLL, the
frequency of an external clock must not exceed 40 MHz.

Further specifications on the frequency limits of the clock circuitry are given in the
TC1775 device specifications (Data Sheet).

Figure 3-3 shows the recommended external oscillator circuitries for both operating
modes, external crystal mode and external input clock mode.

Figure 3-3 TC1775 Main Oscillator Circuitries

MCS04714

TC1775
Main

Oscillator

VDDOSC

VSSOSC

C1

1-16
MHz

C2

XTAL1

XTAL2

TC1775
Main

Oscillator

VDDOSC

VSSOSC

XTAL1

XTAL2

External
Clock Signal
User’s Manual 3-4 V2.0, 2001-02

TC1775
System Units

Clock System
3.1.2 Phase-Locked Loop (PLL)

The PLL consists of a voltage controlled oscillator (VCO) with a feedback path. A divider
in the feedback path divides the VCO frequency down. The resulting frequency is then
compared to the externally applied frequency. The phase detection logic determines the
difference between the two clock signals and accordingly controls the frequency of the
VCO. During start-up, the VCO increases its frequency until the divided feedback clock
matches the external clock frequency. A lock detection logic monitors and signals this
condition. The phase detection logic continues to monitor the two clock signals and
adjusts the VCO clock if required.

Due to this operation, the VCO clock of the PLL has a frequency which is a multiple of
the externally applied clock. The factor for this is controlled through the value applied to
the divider in the feedback path. That is why this factor is often called a multiplier,
although it actually controls a divider.

3.1.2.1 N-Divider

Control of the feedback divider is performed through three PLL configuration inputs,
CLKSEL[2:0]. The state of these pins is sampled during a power-on reset, and latched
into field NDIV in register PLL_CLC with the rising edge of the power-on reset signal,
PORST. The possible values for NDIV and the resulting divider factor are listed in
Table 3-2.

3.1.2.2 VCO Frequency Ranges

Stable and reliable operation of the VCO, and minimization of the jitter (the frequency
variations of the VCO output between adjustment points), is critical for precise clock
generation. To provide optimum behavior, the following frequency range for fVCO must
be selected:

150 MHz ≤ fVCO ≤ 200 MHz [3.1]

3.1.2.3 Lock Detection

A lock detector circuit determines whether the PLL is locked appropriately to the external
clock signal, and indicates the PLL lock state to the SCU. If the PLL looses
synchronization to the external clock due to a failure of the external clock, the SCU
detects this case and shuts off the oscillator input to the VCO via deactivation of the
OSC_OK signal.
User’s Manual 3-5 V2.0, 2001-02

TC1775
System Units

Clock System
3.1.2.4 K-Divider

The K-Divider is a software controlled divider. The bit field KDIV is provided in register
PLL_CLC. Software can write to this field in order to change the system frequency fSYS.
Table 3-3 lists the possible values for KDIV and the resulting division factor.

The divider is designed such that a synchronous switching of the clock is performed
without spurious or shortened clock pulses when software changes the divider factor
KDIV. However, special attention has to be paid concerning the effect of such a clock
change to the various modules in the system. For instance, changing the clock frequency
while an external memory access is performed by the EBU could result in a failure of the
access. It is strongly recommended to perform clock frequency changes only when no
critical system operations are in progress to avoid hazardous effects.

The K-Divider can be used in PLL operation and when direct clock input is selected
(bypassing the VCO of the PLL).

3.1.2.5 Clock Source Control

The clock system provides three ways for the generation of the system clock:

• PLL Bypass Operation:
The system clock is directly derived from the oscillator clock. In this case fSYS = fOSC.
This option is controlled through the signal PLL_BYPASS.

• VCO Bypass Operation:
The system clock is derived from the oscillator clock, but optionally divided by the
K-divider: fSYS = fOSC / KDIV. This option is controlled through the signal
VCO_BYPASS (with PLL_BYPASS inactive, see Table 3-1).

• PLL Operation:
The system clock is derived from the oscillator clock, but multiplied by the PLL and
optionally divided by the K-divider. fSYS = fOSC × N / KDIV. Both, VCO_BYPASS and
PLL_BYPASS, must be inactive for this PLL operation.

The external PLL configuration input pin BYPASS is provided to enable the bypass
options. This pin is sampled during a power-on reset. Its state is latched in register
PLL_CLC with the rising edge of PORST. Signals VCO_BYPASS and PLL_BYPASS are
generated using the value of the BYPASS pin and the state of the pin CLKSEL[2] (the
N-Divider is not used in the bypass mode). Table 3-1 shows how the clock source
options are selected.
User’s Manual 3-6 V2.0, 2001-02

TC1775
System Units

Clock System
Note: Using the internal oscillator and bypassing the PLL might cause spikes during
waking-up the CPU from idle mode, sleep mode or deep sleep mode. This is due
to the fact, that the output of the internal oscillator is not filtered.

3.1.2.6 Enable/Disable Control

If one of the bypass modes or Deep Sleep Mode is selected, the PLL is shut off by the
SCU via the DEEP_SLEEP signal. In Deep Sleep Mode, also the main oscillator circuit
is disabled.

3.1.3 Determining the System Clock Frequency

This section gives the formulas for the determination of the system clock frequency for
the three different clock source options.

3.1.3.1 PLL Bypass Operation

In PLL bypass operation, the system clock has exactly the same frequency as the
external clock source:

 fSYS = fVCO [3-2]

It is recommended to use this mode only when using an external stable clock source.
When using a crystal oscillator in this mode, the system clock might not have a duty cycle
of 50% due to asymmetric thresholds and voltages at the oscillator circuitry. It has to be
assured, that the minimum clock phase produced does not violate the specifications.
Usually, a slower frequency than the specified maximum speed for the chip needs to be
used in such a case.

Table 3-1 Clock Source Selection

Pin Internal Signal Selected Operation

CLKSEL[2:0] BYPASS PLL_
BYPASS

VCO_
BYPASS

– 0 0 0 PLL Operation
System clock is generated by the PLL.

0XXB 1 1 0 PLL Bypass Operation
System clock generated directly by
external clock

1XXB 1 0 1 VCO Bypass Operation
System clock generated by external
clock, divided by the K-Divider.
User’s Manual 3-7 V2.0, 2001-02

TC1775
System Units

Clock System
3.1.3.2 VCO Bypass Operation

In VCO bypass operation, the system clock is derived from the external clock frequency,
divided by the K-factor. The possible K-factors are listed in Table 3-2. Note that the reset
value for the KDIV is 111B, resulting in a K-factor of 10.

 [3.3]

Since the minimum K-factor is 2, the external clock is at least divided by 2. This results
in a 50% duty cycle of the clock. Thus, the limitations mentioned for the PLL bypass
operation do not apply in the VCO bypass mode.

3.1.3.3 PLL Operation

In PLL operation, the system clock is derived from the VCO frequency fVCO divided by
the K-factor. fVCO is generated from the external clock multiplied by the N-factor.

The system clock frequency fSYS can be made proportional to the ratio N / K, where the
CLKSEL[2:0] input pins determine the clock scale factor N, and bit field PLL_CLC.KDIV
determines the clock scale factor K. The selectable clock scale factors are summarized
in Table 3-2.

The VCO output frequency is determined by

fVCO = N × fOSC [3.4]

Table 3-2 PLL Scale Factors

CLKSEL[2:0]
NDIV[2:0]

Selected N Factor KDIV[2:0] Selected K Factor

000 8 000 2

001 9 001 16

010 10 010 4

011 11 011 5

100 12 100 6

110 13 101 8

110 14 110 9

111 15 111 10

fSYS =
fOSC

K

User’s Manual 3-8 V2.0, 2001-02

TC1775
System Units

Clock System
and the resulting system clock is determined by

[3.5]

Since stable operation of the VCO is only guaranteed if fVCO remains inside of the
defined frequency range for the VCO (see Equation [3.1]), the external frequency fOSC
is also confined to certain ranges depending on the chosen N-factor. Table 3-3 lists
these ranges.

Note: Shaded combinations should not be used because the maximum oscillator
frequency of 16 MHz is exceeded.

Table 3-3 Input Frequencies and N Factor for fVCO

CLKSEL[2:0] N-Factor fVCO = 150 MHz fVCO = 160 MHz fVCO = 200 MHz

000B 8 18.75 20 25

001B 9 16.67 17.76 22.22

010B 10 15 16 20

011B 11 13.64 14.55 18.18

100B 12 12.5 13.33 16.67

101B 13 11.54 12.31 15.38

110B 14 10.71 11.43 14.29

111B 15 10 10.67 13.33

fSYS fVCO K⁄ N
K
---- fOSC×= =
User’s Manual 3-9 V2.0, 2001-02

TC1775
System Units

Clock System
Note: Shaded combinations cannot be used because the maximum system clock of
40 MHz is exceeded.

Note: Further PLL characteristics are given in the TC1775 device specifications (Data
Sheet).

Table 3-4 Output Frequencies fSYS derived from Various Output Factors

K-Factor fSYS Duty
Cycle [%]

Jitter

Selected
Factor

KDIV fVCO =
150 MHz

fVCO =
160 MHz

fVCO =
200 MHz

2 000B 75 80 100 50 linear depending
on
fVCO;
at fVCO = 200 MHz
± 200 ps

at fVCO = 150 MHz
± 250 ps

additional jitter for
odd K factors TBD

4 010B 37.5 40 50 50

51) 011B 30 32 40 40

6 100B 24.5 26.67 33.33 50

8 101B 18.75 20 25 50

91) 110B 16.67 17.78 22.22 44

10 111B 15 16 20 50

16 001B 9.38 10 12.5 50

1) These odd K-Factors should not be used (not tested because of the unsymmetrical duty cycle).
User’s Manual 3-10 V2.0, 2001-02

TC1775
System Units

Clock System
3.1.4 PLL Clock Control and Status Register

The PLL Clock Control and Status Register PLL_CLC is located in the address range
reserved for the System Control Unit (SCU). It holds the hardware configuration bits of
the PLL, latched at the end of power-on reset, and provides the control for the K-Factor
as well as the PLL Lock status bit.

Note that register PLL_CLC is specially protected. In order to write to PLL_CLC, the
WDT_CON0.ENDINIT bit must be set to 0 through a password-protected access
mechanism to register WDT_CON.

The indicator “U” in the reset value of PLL_CLC indicates that the reset values for these
bits are user-defined through the value applied to the PLL configuration pins.

PLL_CLC
PLL Clock Control Register Reset Value: 0007 UU00H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 KDIV

r rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PLL
BYP NDIV 0 VCO

BYP 1 LO
CK 0

rh rh r rh r rh r

Field Bits Type Description

LOCK 8 rh PLL Lock Status Flag
0 PLL is not locked
1 PLL is locked

VCOBYP 10 rh VCO Bypass Status Flag
Indicates the state of the BYPASS control input line
latched with the rising edge of PORST.

NDIV [14:12] rh PLL N-Factor Status
Indicates the state of the CLKSEL[2:0] input lines
latched with the rising edge of PORST.
Definitions see Table 3-2

PLLBYP 15 rh PLL Bypass Status Flag
Indicates the state of the BYPASS control input line
latched with the rising edge of PORST.

KDIV [18:16] PLL K-Factor Selection
Definitions see Table 3-2
User’s Manual 3-11 V2.0, 2001-02

TC1775
System Units

Clock System
3.1.5 Startup Operation

When power is switched on to the TC1775, a low level has to be applied to the power-
on reset pin, PORST. The part is asynchronously held in reset and the state of the PLL
N-factor multiplier selection pins, CLKSEL[2:0], as well as the state of the PLL bypass
pin, BYPASS, are enabled to control the operation of the clock circuitry.

If pin BYPASS is at a high level, the PLL is disabled, and direct clock input is selected.
The low level at pin PORST has to be held long enough to make sure that a stable clock
is provided to the TC1775. In case of an external crystal oscillator, it can take several ms
until the oscillator has started up and is stable. If the clock input is provided by another
clock source with faster startup characteristics, the requirements for the PORST low
level can be relaxed accordingly.

If BYPASS is at a low level during power-on reset, both, the oscillator and the PLL start
to operate. The voltage controlled oscillator (VCO) of the PLL will start up very quickly
and generate an internal clock with the PLL base frequency. Usually, the oscillator with
its external crystal and supporting external circuitry requires a time in the range of some
ms to startup. As soon as it provides a stable clock frequency, the PLL will lock to this
frequency according to the multiplier selection made through the CLKSEL[2:0] pins. This
state is signalled by setting bit PLL_CLC.LOCK.

Two situations are possible when PORST becomes inactive (low-to-high transition):

1. PLL is not locked (PLL_CLC.LOCK = 0):
The PLL provides an emergency clock at PLL base frequency. The system clock will
be at this PLL base frequency as long as the LOCK bit is not set. In this case, a
program should wait for bit LOCK to be set before it proceeds time critical initialization
procedures and operations.

2. PLL is locked (PLL_CLC.LOCK = 1):
The PLL is already at its nominal frequency.

With the low-to-high transition of the signal at PORST, the state of the pins BYPASS,
CLKSEL[2:0], OCDSE, BRKIN and CFG[2:0] are latched internally in the SCU. The state
of BYPASS, PLL_LOCK and CLKSEL[2:0] is latched into register PLL_CLC, while the
state of the debug pins OCDSE and BRKIN, and the state of the configuration pins
CFG[2:0] is latched in the reset status register RST_SR.

1 9 r Reserved; returns 1 if read; any write operation to this
bit has no effect.

0 [7:0], 11,
[31:16]

r Reserved; returns 0 if read; should be written with 0.

Field Bits Type Description
User’s Manual 3-12 V2.0, 2001-02

TC1775
System Units

Clock System
3.1.6 PLL Loss of Lock Operation

The PLL provides mechanisms to detect a failure of the external clock and to bring the
TC1775 into a safe state in such a case. If the PLL loses the lock to the external clock,
either due to a break of the crystal or an external line, it resets its lock line PLL_LOCK.
The clock control circuitry then sets the PLL Loss of Clock NMI flag (PLLNMI) in register
NMISR and activates a NMI trap request to the CPU. In addition, it disables the oscillator
input clock fOSC to the PLL to avoid unstable operation due to noise or sporadic clock
pulses coming from the oscillator circuit and the PLL still trying to lock onto this invalid
clocks. Without having an input clock, the PLL gradually slows down to its base
frequency and remains there. While this frequency is defined within a certain frequency
range, emergency actions can be taken by the CPU since the TC1775 is still clocked.

The TC1775 remains in this state until the next power-on reset through pin PORST,
where then the PLL tries to restart and lock to the external clock again. No other reset
cause can terminate this loss-of-clock state to avoid unstable operation due to the PLL
trying to lock again.

Note that this fail safe mechanism is only provided if the PLL is enabled (BYPASS = 0),
but not if direct clock input is selected (BYPASS = 1).
User’s Manual 3-13 V2.0, 2001-02

TC1775
System Units

Clock System
3.2 Power Management and Clock Gating

Because power dissipation is related to the frequency of gate transitions, the TC1775
performs power management principally by clock gating - that is, controlling whether the
clock is supplied to its various functional units. Gating off the clock to unused functional
modules also reduces electromagnetic interference (EMI) since EMI is related to both
the frequency and the number of gate transitions.

Clock gating is done either dynamically or statically. Dynamic clock gating in this context
means that the TC1775 itself enables or disables clock signals within some functional
modules to conserve power. Static gating means that software must enable or disable
clock signals to functional modules. Clock gating is performed differently at different
levels of system scope: dynamic gating is generally performed at the lowest levels, either
within a small region of logic, or at functional-unit boundaries for uncomplicated functions
where hardware can dynamically determine whether that functionality is required, and
can enable or disable it appropriately without software intervention. Static gating - which
requires software intervention - is used to enable or disable clock delivery to individual
high-level functional units, or to disable clock delivery globally at the clock’s source.
When the clock to individual functional units is gated off, they are said to be in Sleep
Mode. When the TC1775’s clock is gated off at its source, the TC1775 as a whole is said
to be in Deep Sleep Mode.

The TC1775 implements four levels of clock gating:

1. Gated dynamically at the register
The clock is shut off to a particular local resource in a functional module when this
resource is not being used in that clock cycle. This operation is done primarily in the
CPU and the PCP data paths, where unused resources are easily identified and
controlled in each clock cycle.

2. Gated dynamically at the functional unit (Idle Mode)
The clock is shut off at the functional unit boundary when the unit has nothing useful
to do. This operation is done primarily in the CPU and the PCP. For the CPU, idle
mode is controlled via software. The PCP disables its own clock when no program is
running.

3. Gated statically at each functional unit (Sleep Mode)
Software can send a global sleep request to individual functional units requesting that
they enter Sleep Mode. Software must determine when conditions are such that
entering Sleep Mode is appropriate. The individual units can be programmed to ignore
or respond to this signal. If programmed to respond, units will first complete pending
operations, then will shut off their own clocks according to their own criteria.

4. Gated at the clock source (Deep Sleep Mode)
The PLL and oscillator are shut off, thereby gating the clock to all functional units. The
system can only be restored to operation by receiving a power-on reset signal from
the PORST pin or a non-maskable interrupt signal from the NMI pin. Entering Deep
User’s Manual 3-14 V2.0, 2001-02

TC1775
System Units

Clock System
Sleep Mode is under software control. Software must determine when conditions are
such that entering Deep Sleep Mode is appropriate.

3.2.1 Clock Control

The functionality of the clock control registers varies depending on the functional unit
being controlled. The clock for the CPU is controlled by the CPU hardware itself. The
clock is switched off to the CPU automatically during Idle and Sleep Mode.

The PCP also controls its own clock automatically. Whenever the PCP is idle - that is
when no channel program is running - the PCP shuts off its clock. It will automatically re-
enable the clock again when a PCP interrupt is detected. The PCP also controls the
clocking of the PICU and PCP interrupt arbitration logic. The Peripheral Interrupt Control
Unit (PICU) arbitrates service requests for the PCP and administers the PCP Interrupt
Arbitration Bus.

The FPI Bus clock has no clock control feature. It always runs at the system clock
frequency fSYS. However, the FPI Bus is so designed that no signal lines are switching
when there is no activity on the bus. Hence, power consumption of the FPI Bus is
minimized by design.

Similar operation applies to the CPU interrupt system. It runs with the system clock
frequency fSYS, however, signal lines do only change when activity, such as an
arbitration round, is required.

The on-chip peripheral units of the TC1775, including the GPTU, GPTA, ASC0, ASC1,
SSC0, SSC1, CAN, SDLM, and the System Timer (STM) each have dedicated clock-
control registers. The generic name of these registers is given in this chapter as CLC. All
clock control registers have the same bit field layout, however not all peripheral units
implement all functions of these registers. In general, these registers control on/off state,
clock frequency for Run Mode, operation in Sleep Mode, and operation during Debug
Suspend Mode.
User’s Manual 3-15 V2.0, 2001-02

TC1775
System Units

Clock System
3.2.2 Module Clock Generation

As shown in Figure 3-1 most of the of on-chip peripheral modules of the TC1775 have
clock control registers implemented. The generic name of these registers is “CLC”. This
section describes the general functionality of these CLC registers.

All CLC registers have basically the same bit and bit field layout. However, not all CLC
register functions are implemented for each peripheral unit. Table 3-5 defines in detail
which bits and bit fields of the CLC registers are implemented for each peripheral
module.

The CLC register basically controls the generation of the peripheral module clock which
is derived from the system clock. The following functions for the module are associated
with the CLC register:

• Peripheral clock static on/off control
• Peripheral clock frequency in Run Mode
• Peripheral clock frequency/behavior in Sleep Mode
• Operation during Debug Suspend Mode

Figure 3-4 Module Clock Generation

MCA04715

fSYS

System
Clock Module Clock

Generation

CLC Register

fMOD

Peripheral
Module Clock
User’s Manual 3-16 V2.0, 2001-02

TC1775
System Units

Clock System
3.2.3 Clock Control Registers

MOD_CLC
Clock Control Register Reset Value: Module Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RMC 0 0 FS
OE

SB
WE

E
DIS

SP
EN

DIS
S

DIS
R

rw r r rw w rw rw r rw

Field Bits Type Description

DISR 0 rw Module Disable Request Bit
Used for enable/disable control of the module.
0 Module disable is not requested
1 Module disable is requested

DISS 1 r Module Disable Status Bit
Bit indicates the current status of the module
0 Module is enabled
1 Module is disabled

SPEN 2 rw Module Suspend Enable
Used for enabling the suspend mode.
0 Module cannot be suspended

(suspend is disabled).
1 Module can be suspended (suspend is enabled).
This bit is writable only if SBWE is set to 1 during the
same write operation.

EDIS 3 rw Sleep Mode Enable Control
Used for module sleep mode control.
0 Sleep mode request is regarded. Module is

enabled to go into sleep mode.
1 Sleep mode request is disregarded: Sleep mode

cannot be entered on a request.
User’s Manual 3-17 V2.0, 2001-02

TC1775
System Units

Clock System
Module Enable/Disable Control

If a module is not used at all by an application, it can be completely shut off by setting bit
DISR in its clock control register. For peripheral modules with a run mode clock divider
field RMC, a second option to completely switch off the module is to set bit field RMC to
00H. This also disables the module’s operation.

The status bit DISS always indicates whether a module is currently switched off
(DISS = 1) or switched on (DISS = 0). With a few exceptions (STM_CLC, RTC_CLC,
EBU_CLC), the default state of a peripheral module after reset is “module disabled” with
DISS set.

Write operations to the registers of disabled modules are not allowed. However, the CLC
of a disabled module can be written. An attempt to write to any of the other writable
registers of a disabled module except CLC will cause the Bus Control Unit (BCU) to
generate a bus error.

A read operation of registers of a disabled module (except ADC0/ADC1 and CAN) is
allowed and does not generate a bus error.

SBWE 4 w Module Suspend Bit Write Enable for OCDS
Defines whether SPEN and FSOE are write protected.
0 Bits SPEN and FSOE are write protected
1 Bits SPEN and FSOE are overwritten by

respective value of SPEN or FSOE
This bit is a write only bit. The value written to this bit is
not stored. Reading this bit returns always 0.

FSOE 5 rw Fast Switch Off Enable
Used for fast clock switch off in OCDS suspend mode.
0 Clock switch off in OCDS suspend mode via

Disable Control Feature (Secure Clock Switch
Off)

1 Fast clock switch off in OCDS suspend mode
This is writable only if SBWE is set to 1 during the same
write operation.

RMC [15:8] rw 8-Bit Clock Divider Value in Run Mode
Max. 8-bit divider value
If RMC is set to 0 the module is disabled.

0 7, 6,
[31:16]

r Reserved; returns 0 if read; should be written with 0;

Field Bits Type Description
User’s Manual 3-18 V2.0, 2001-02

TC1775
System Units

Clock System
Note: A destructive read access occurring while a module is disabled is treated as a
normal read access. This means, if a module register or a bit of it is cleared as a
side-effect of a read access of an enabled module, it will not be cleared by this
read access while the module is disabled.

Sleep Mode Control

The EDIS bit in the CLC register controls whether a module is stopped during sleep
mode or not. If EDIS is 0 (default after reset), a sleep mode request can be recognized
by the module and, when received, its clock is shut off.

If EDIS is set to 1, a sleep mode request is disregarded by the module and the module
continues its operation.

Debug Suspend Mode Control

During emulation and debugging of TC1775 applications, the execution of an application
program can be suspended. When an application is suspended, normal operation of the
application’s program is halted, and the TC1775 begins (or resumes) executing a special
debug monitor program. When the application is suspended, a suspend signal is
generated by the TC1775 and sent to all modules. If bit SPEN is set to 1, the operation
of the peripheral module is stopped when the suspend signal is asserted. If SPEN is set
to 0, the module does not react to the suspend signal but continues its normal operation.
This feature allows each peripheral module to be adapted to the unique requirements of
the application being debugged. Setting SPEN bits is usually performed by a debugger.

This feature is necessary because application requirements typically determine whether
on-chip modules should be stopped or left running when an application is suspended for
debugging. For example, a peripheral unit that is controlling the motion of an external
device through motors in most cases must not be stopped so as to prevent damage of
the external device due to the loss of control through the peripheral. On the other hand,
it makes sense to stop the system timer while the debugger is actively controlling the chip
because it should only count the time when the user’s application is running.

Note that it is never appropriate for application software to set the SPEN bit. The debug
suspend mode should only be set by a debug software. To guard against application
software accidently setting SPEN, bit SPEN is specially protected by the mask bit
SBWE. The SPEN bit can only be written if, during the same write operation, SBWE is
set, too. Application software should never set SBWE to 1. In this way, user software can
not accidentally alter the value of the SPEN bit that has been set by a debugger.

Note: The operation of the Watchdog Timer is always automatically stopped in debug
suspend mode.
User’s Manual 3-19 V2.0, 2001-02

TC1775
System Units

Clock System
Entering Disabled Mode

Software can request that a peripheral unit shall be put into Disabled Mode by setting
DISR. A module will also be put into Disabled Mode if the sleep mode is requested and
the module is configured to allow Sleep Mode.

In Secure Shut-off Mode, a module first finishes any operation in progress, then
proceeds with an orderly shut down. When all sub-components of the module are ready
to be shut down, the module signals its clock control unit, which turns off the clock to this
peripheral unit, that it is now ready for shut down. The status bit DISS is updated by the
peripheral unit accordingly.

The kernel logic of the peripheral unit and its FPI Bus interface must both perform shut-
down operations before the clock can be shut off in Secure Shut-off Mode. This is
performed as follows. The peripheral module’s FPI Bus interface provides an internal
acknowledge signal as soon as any current bus interface operation is finished. For
example, if there is a PCP write access to a peripheral in progress when a disable
request is detected, the access will be terminated correctly. Similarly, the peripheral’s
kernel provides an internal acknowledge signal when it has entered a stable state. The
clock control unit for that peripheral module shuts off the module’s clock when it receives
both acknowledge signals.

During emulation and debugging, it may be necessary to monitor the instantaneous state
of the machine - including all or most of its modules - at the moment a software
breakpoint is reached. In such cases, it may not be desired that the kernel of a module
finish whatever transaction is in progress before stopping, because that might cause
important states in this module to be lost. Fast Shut-off Mode, controlled by bit FSOE, is
available for this situation.

If FSOE = 0, modules are stopped as described above. This is called Secure Shut-off
Mode. The module kernel is allowed to finish whatever operation is in progress. The
clock to the unit is then shut off if both the bus interface and the module kernel have
finished their current activity. If Fast Shut-off Mode is selected (FSOE = 1), clock
generation to the unit is stopped as soon as any outstanding bus interface operation is
finished. The clock control unit does not wait until the kernel has finished its transaction.
This option stops the unit’s clock as fast as possible, and the state of the unit will be the
closest possible to the time of the occurrence of the software breakpoint.

Note: The Fast Shut-off Mode is the only shut down operating mode available in the
TC1775, regardless of the state of the FSOE bit.

Whether Secure Shut-off Mode or Fast Shut-off Mode is required depends on the
application, the needs of the debugger, and the type of unit. For example, the analog-to-
digital converter might allow the converter to finish a running analog conversion before
it can be suspended. Otherwise the conversion might be corrupted and a wrong value
could be produced when Debug Suspend Mode is exited and the unit is enabled again.
This would affect further emulation and debugging of the application’s program.
User’s Manual 3-20 V2.0, 2001-02

TC1775
System Units

Clock System
On the other hand, if a problem is observed to relate to the operation of the external
analog-to-digital converter itself, it might be necessary to stop the unit as fast as possible
in order to monitor its current instantaneous state. To do this, the Fast Shut-off Mode
option would be selected. Although proper continuation of the application’s program
might not be possible after such a step, this would most likely not matter in such a case.

Note that it is never appropriate for application software to set the FSOE bit. Fast Shut-
off Mode should only be set by debug software. To guard against application software
accidently setting FSOE, bit FSOE is specially protected by the mask bit SBWE. The
SPEN bit can only be written if, during the same write operation, SBWE is set, too.
Application software should never set SBWE to 1. In this way, user software can not
accidentally alter the value of the FSOE bit. Note that this is the same guard mechanism
used for the SPEN bit. In this way, user software can not accidentally alter the value of
the FSOE bit.

Module Clock Divider Control

Most of the TC1775 peripheral modules have an 8-bit or 2-bit control field in their CLC
registers for Run Mode clock control (RMC). The clock divider circuit is located in the bus
interface of these peripheral modules.

A value of 00H in RMC disables the clock signals to these modules (module clock is
switched off). If RMC is not equal to 00H, the module clock for a unit is generated

[3.6]

where “MOD” stands for the module name and “RMCMOD” is the content of its CLC
register RMC field with a range of 1..255.

Note: The number of module clock cycles (wait states) which are required for a
“destructive read” access (means: flags/bits are set/reset by a read access) to a
module register of a peripheral unit depends on the selected module clock
frequency.
Therefore, a slower module clock (selected via bit field RMC in the CLC register)
results in a longer read access time for peripheral units with “destructive read”
access (e.g. ASC, SSC).

fMOD = fSYS / RMCMOD
User’s Manual 3-21 V2.0, 2001-02

TC1775
System Units

Clock System
3.2.4 CLC Register Implementations

Table 3-5 shows which of the CLC register bits/bit fields is implemented for each
peripheral module in the TC1775.

Note: The ports of the TC1775 don’t provide CLC registers.

Table 3-5 CLC Registers in the TC1775

Register Module DISS,
DISR,
Bit [1:0]

SPEN
Bit 2

EDIS
Bit 3

SBWE
Bit 4

FSOE
Bit 5

RMC
Bit
[15:8]

Name State after
Reset

CAN_CLC CAN disabled ■ ■ ■ ■ – ■

SDLM_CLC SDLM disabled ■ ■ ■ ■ – ■

ADC0_CLC ADC0 disabled ■ ■ ■ ■ ■ ■

ADC1_CLC ADC1 disabled ■ ■ ■ ■ ■ ■

SSC0_CLC SSC0 disabled ■ ■ ■ ■ ■ ■

SSC1_CLC SSC1 disabled ■ ■ ■ ■ ■ ■

ASC0_CLC ASC0 disabled ■ ■ ■ ■ ■ ■

ASC1_CLC ASC1 disabled ■ ■ ■ ■ ■ ■

GPTU_CLC GPTU disabled ■ ■ ■ ■ ■ ■

GPTA_CLC GPTA disabled ■ ■ ■ ■ ■ ■

EBU_CLC EBU enabled ■ – – – – –

STM_CLC STM enabled ■ ■ ■ ■ ■ –

RTC_CLC RTC enabled ■ ■ ■ ■ ■ –

PLL_CLC PLL enabled completely different bit definitions
(see Section 3.1.4)
User’s Manual 3-22 V2.0, 2001-02

TC1775
System Units

Clock System
3.3 RTC Clock Generator

The real time clock module (RTC) is provided with a separate 32.768 kHz clock
generator (XTAL3 and XTAL4). The RTC oscillator operates fully asynchronous to the
main oscillator of the TC1775 and is optimized for low power consumption.

Figure 3-5 TC1775 RTC Oscillator Circuitry

MCS04716

TC1775
RTC

Oscillator

VDD

VSS

C1

32.768
kHz

C2

XTAL3

XTAL4
User’s Manual 3-23 V2.0, 2001-02

TC1775
System Units

System Control Unit
4 System Control Unit

4.1 Overview

The System Control Unit (SCU) of the TC1775 handles the system control tasks. All
these system functions are tightly coupled, thus, they are conveniently handled by one
unit, the SCU. The system tasks of the SCU are:

• Reset Control (described in Chapter 5)
– Generation of all internal reset signals
– Generation of external HDRST reset signal

• PLL Control (described in Chapter 3)
– PLL_CLC Clock Control Register

• Power Management Control (described in Chapter 6)
– Enabling of several power-down modes
– Control of the PLL in power-down modes

• Watchdog Timer (described in Chapter 18)
• Port 5 Trace Control
• Device Identification

This chapter describes the last two tasks in this feature list. The other tasks are
described in other chapters of this document, as indicated.
User’s Manual 4-1 V2.0, 2001-02

TC1775
System Units

System Control Unit
4.2 Registers Overview

The basic SCU registers can be divided into three types, as shown in Figure 4-1.
Table 4-1 provides the long name, offset address, and location details for each of the
basic registers.

Figure 4-1 SCU Registers

In the TC1775, the registers of the SCU are located in the following address range:

– Module Base Address: F000 0000H
Module End Address: F000 00FFH

– Absolute Register Address = Module Base Address + Offset Address
(offset addresses see Table 4-1)

Table 4-1 SCU Registers

Register
Short Name

Register Long Name Offset
Address

Description
see

SCU_CON Control Register 0050H Page 4-3

SCU_TRSTAT Trace Status Register 0054H Page 4-7

MANID Manufacturer Identification Register 0070H Page 4-8

CHIPID Chip Identification Register 0074H Page 4-9

RTID Redesign Tracing Identification Register 0078H Page 4-10

MCA04717

SCU_CON MANIDSCU_TRSTAT

Control Register Trace Register Identification
Registers

CHIPID

RTID
User’s Manual 4-2 V2.0, 2001-02

TC1775
System Units

System Control Unit
4.3 SCU Control Register

The bits in the SCU Control Register SCU_CON are used for:

– Trace enable control (ETEN)
– Trace source select (CPU or PCP)
– BRKIN and BRKOUT pin function control
– Control of pull-up/pull-down resistors during power-down mode
– External instruction fetch path selection and enable control
– Clock output CLKOUT enable control
– EBU enable control
– RTC register access enable control

SCU_CON
SCU Control Register Reset Value: 00F0 0030H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

EBU
DIS 0 1 0

RTC
ACC
EN

rw r rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EBU
EN

CLK
OUT
DIS

0
EN
SW
IF

EXT
IF

DIS
PR

DPD
0

TCU
BOU
TEN

TCU
BIN
EN

PCP
BOU
TEN

PCP
BIN
EN

ET
SEL

ET
EN

rw rw r rw rw rw r rw rw rw rw rw rw

Field Bits Type Description

ETEN 0 rw Port 5 Emulation Trace Enable
0 Emulation trace on Port 5 disabled
1 Emulation trace on Port 5 enabled

ETSEL 1 rw Port 5 Emulation Trace Select
0 CPU trace selected
1 PCP trace selected

PCPBINEN 2 rw PCP Break Input Enable
0 BRKIN signal disabled for PCP
1 BRKIN signal enabled for PCP break in

function

PCPBOUTEN 3 rw PCP Break Output Enable
0 BRKOUT signal disabled for PCP
1 BRKOUT signal enabled for PCP break out

function
User’s Manual 4-3 V2.0, 2001-02

TC1775
System Units

System Control Unit
TCUBINEN 4 rw TCU Break Input Enable
0 BRKIN signal disabled for TCU
1 BRKIN signal enabled for TCU break in

function

TCUBOUTEN 5 rw TCU Break Output Enable
0 BRKOUT signal disabled for TCU
1 BRKOUT signal enabled for TCU break out

function

DISPRDPD 7 rw Disable Pull-up/Pull-down Resistors During
Power-Down Mode
0 Pull-up/pull-down resistors are enabled

during power-down mode (default).
1 Pull-up/pull-down resistors are disabled

during power-down mode.

EXTIF 8 rw External Instruction Fetch Path Select
0 Instruction fetch via FPI Bus (default)
1 Instruction fetch direct

ENSWIF 9 rw Enable Switch of Instruction Fetch Path
Enables or disables switching of the instruction
fetch path selection (see bit EXTIF).
0 Disable switching
1 Enable switching

CLKOUTDIS 14 rw CLKOUT Disable Control
0 Clock signal at pin CLKOUT is enabled

(default after reset)
1 Clock signal at pin CLKOUT is disabled. In

this case, CLKOUT drives a low level.

Field Bits Type Description

EXTIF ENSWIF Description

X 0 Switch of external
instruction fetch path
selection disabled

0 1 Instruction fetch via FPI Bus

1 1 Instruction fetch direct
User’s Manual 4-4 V2.0, 2001-02

TC1775
System Units

System Control Unit
EBUEN 15 rw EBU Enable
0 No effect
1 Enables the EBU, when it is currently

disabled. Setting EBUEN has no effect when
the EBU is enabled.

The value last written to this bit is always read. Bit
EBUEN overwrites the boot configuration selected
through pins CFG[3:0].
(see also description of bit EBUDIS)

RTCACCEN 16 rw RTC Register Access Enable
0 RTC register access disabled (default after

reset)
1 RTC register access enabled

0 [19:17] rw Reserved; bits with no function; writing to these bits
stores the value which is written; default after reset
is 0

1 [23:20] rw Reserved; bits with no function; writing to these bits
stores the value which is written; default after reset
is 1

0 6,
[13:10],
[30:24]

r Reserved; read as 0; writing to these bits has no
effect.

EBUDIS 15 rw EBU Disable
0 No effect
1 Disables the EBU, when it is currently

enabled. Setting EBUDIS has no effect when
the EBU is disabled.

The value last written to this bit is always read. Bit
EBUDIS overwrites the boot configuration selected
through pins CFG[3:0].

Field Bits Type Description

EBUEN EBUDIS Description

0 0 No action

0 1 Disable EBU

1 0 Enable EBU

1 1 Forbidden
User’s Manual 4-5 V2.0, 2001-02

TC1775
System Units

System Control Unit
4.4 Port 5 Trace Control

This part of the SCU controls the interconnections of Port 5 with the trace interfaces of
the Trace Control Unit (TCU) and the Peripheral Control Processor (PCP).

Figure 4-2 Port 5 Trace Control within the SCU

Note: The trace features of the TC1775 are described in detail in Chapter 20 of this
User’s Manual.

SCU

MCA04718

Port 5
BRKIN

BRKOUT

TCU
BOU
TEN

TCU
BIN
EN

PCP
BIN
EN

PCP
BOU
TEN

ET
SEL

ET
EN

&
1

&

SCU_CON

&

&

FPI
Bus

16

16

TCU

BRKOUT

BRKIN

PCP

BRKOUT

BRKIN

MUX

MUX
User’s Manual 4-6 V2.0, 2001-02

TC1775
System Units

System Control Unit
SCU_TRSTAT
SCU Trace Status Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 TCU
BSR

TCU
BS

PCP
BSR

PCP
BS

r w rh w rh

Field Bits Type Description

PCPBS 0 rh PCP Break Status
PCPBS is set with the falling edge of the PCP
Break In signal.

PCPBSR 1 w PCP Break Status Reset
0 No operation
1 Reset PCPBS flag
Bit is always read as 0.

TCUBS 2 rh TCU Break Status
TCUBS is set with the falling edge of the TCU
Break In signal.

TCUBSR 3 w TCU Break Status Reset
0 No operation
1 Reset TCUBS flag
Bit is always read as 0.

0 [31:4] r Reserved; read as 0; should be written with 0.
User’s Manual 4-7 V2.0, 2001-02

TC1775
System Units

System Control Unit
4.5 Identification Registers

The SCU includes four identification register: one for the SCU module identification and
three for device identification.

MANID
Manufacturer Identification Register Reset Value: 0000 1820H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MANUF DEPT

r r

Field Bits Type Description

DEPT [4:0] r Department Identification Number
= 00H: indicates the department AI MC within
Infineon Technologies.

MANUF [15:5] r Manufacturer Identification Number
This is a JEDEC normalized manufacturer code.
MANUF = C1H for Infineon Technologies.

0 [31:16] r Reserved; read as 0.
User’s Manual 4-8 V2.0, 2001-02

TC1775
System Units

System Control Unit

CHIPID
Chip Identification Register Reset Value: 0000 8002H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CHID CHREV

r r

Field Bits Type Description

CHREV [7:0] r Chip Revision Number
01H = first revision

CHID [15:8] r Chip Identification Number
80H = TC1775

0 [31:16] r Reserved; read as 0.
User’s Manual 4-9 V2.0, 2001-02

TC1775
System Units

System Control Unit
RTID
Redesign Tracing Identification Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LC 0 RIX

r r r

Field Bits Type Description

RIX [2:0] r Redesign Index
0H Original revision
1H-7H Modified revisions

LC 15 r Laser Correction Flag
0 No laser correction
1 Laser correction

0 [14:3],
[31:16]

r Reserved; read as 0.
User’s Manual 4-10 V2.0, 2001-02

TC1775
System Units

Reset and Boot Operation
5 Reset and Boot Operation
This chapter describes the conditions under which the TC1775 will be reset, the reset
and boot operations, and the available boot options.

5.1 Overview

When the TC1775 device is first powered up, several boot parameters must be defined
to enable proper start operation of the device. Two such parameters are the operation of
the PLL and the start location of the code. To accomplish parameter definition, the
device has a separate Power-On Reset (PORST) pin and a number of configuration pins
that are sampled during the power-on reset sequence. At the end of this sequence, the
sampled values are latched, and cannot be modified until the next power-on reset. This
guarantees stable conditions during the normal operation of the device.

There are two ways to reset the device while it is operating: a hardware reset or a
software reset. For reset causes coming from the external world, a reset input pin,
HDRST, is provided. If software detects conditions which require the device to be reset,
a software reset can be performed by writing to a special register, the Reset Request
(RST_REQ) register.

The Watchdog Timer (WDT) module is also capable of resetting the device if it detects
a malfunction in the system. If the WDT is not serviced correctly and/or in time, it first
generates an NMI request to the CPU (this allows the CPU to gather debug information),
and then resets the device after a predefined time-out period.

Another type of reset which needs to be detected in many applications is a reset while
the device is in Deep Sleep mode (Wake-Up reset). This makes it possible to distinguish
a wake-up reset from a power-on reset. For a power-on reset, the contents of the
memories are undefined; but, the memory contents are well defined after a wake-up
reset from deep sleep.

After a reset has been executed, the Reset Status (RST_SR) register provides
information on the type of the last reset and the selected boot configuration.

The external reset pin, HDRST, has a double-function. It serves as a reset input from the
external world to reset the device, and it serves as a reset output to the external world to
indicate that the device has executed a reset. For this purpose, pin HDRST is
implemented as a bidirectional open-drain pin with an internal weak pull-up device.

The boot configuration information required by the device to perform the desired start
operation after a power-up reset includes the frequency selections for the PLL, the start
location for the code execution, and the activation of special modes. Some of the special
modes include: enabling the on-chip debugging features or placing the pins of the chip
into a high-impedance mode. This information is supplied to the chip via a number of
dedicated input pins which are sampled and latched with a power-on reset. However, the
software reset provides the special option to alter these parameters (except for the PLL
configuration) to allow a different start configuration after the software reset has finished.
User’s Manual 5-1 V2.0, 2001-02

TC1775
System Units

Reset and Boot Operation
5.2 Reset Registers

The two reset registers are shown in Figure 5-1. The long name, offset address, and
location of detailed information are provided in Table 5-1.

Figure 5-1 Reset Registers

In the TC1775, the reset registers are located in the address range of the SCU.

– Module Base Address. F000 0000H
Module End Address. F000 00FFH

– Absolute Register Address = Module Base Address + Offset Address
(offset addresses see Table 5-1)

Table 5-1 Reset Registers

Register
Short Name

Register Long Name Offset
Address

Description
see

RST_REQ Reset Request Register 0010H Page 5-5

RST_SR Reset Status Register 0014H Page 5-3

MCA04719

RST_REQ RST_SR

Control Register Status Register
User’s Manual 5-2 V2.0, 2001-02

TC1775
System Units

Reset and Boot Operation
5.2.1 Reset Status Register (RST_SR)

After a reset, the Reset Status Register RST_SR indicates the type of reset that occurred
and indicates which parts of the TC1775 were affected by the reset. It also holds the
state of the boot configuration pins that are latched at power-on reset. Register RST_SR
is a read-only register.

RST_SR
Reset Status Register

Power-On Reset Value: 0000 1000 00UU UUUU 0000 0000 0000 0111B
Hardware Reset Value: 0001 0000 00UU UUUU 0000 0000 0000 0010B
Software Reset Value: 0010 0000 00UU UUUU 0000 0000 0000 0UUUB

Watchdog Timer Reset Value: 0100 0000 00UU UUUU 0000 0000 0000 0101B
Power-Down Wake-up Reset Value: 1000 0000 00UU UUUU 0000 0000 0000 0011B

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PWD
RST

WDT
RST

SFT
RST

HD
RST

PWO
RST 0

HW
BRK

IN

HW
OCD
SE

HWCFG

rh rh rh rh rh r rh rh rh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 RS
EXT X RS

STM

r rh r rh

Field Bits Type Description

RSSTM 0 rh System Timer Reset Status
0 System Timer was not reset
1 System Timer was reset

X 1 r Reserved; bit has an undefined value when it is read;
default after reset state depends on reset cause.

RSEXT 2 rh HDRST Line State during Last Reset
0 HDRST was not activated as output by TC1775
1 HDRST was activated as output by TC1775

HWCFG [19:16] rh Boot Configuration Selection Status
Status of the configuration pins CFG[3:0] latched with
power-on reset.

HWOCDSE 20 rh State of OCDSE Pin
Value of the OCDS enable pin latched at the end of
power-on reset.
User’s Manual 5-3 V2.0, 2001-02

TC1775
System Units

Reset and Boot Operation
HWBRKIN 21 rh State of BRKIN Pin
Value of the break input pin latched at the end of power-
on reset.

PWORST 27 rh Power-On Reset Status Flag
0 The last reset was not a power-on reset
1 The last reset was a power-on reset

HDRST 28 rh Hardware Reset Status Flag
0 The last reset was not a hardware reset
1 The last reset was a hardware reset

SFTRST 29 rh Software Reset Status Flag
0 The last reset was not a software reset
1 The last reset was a software reset

WDTRST 30 rh Watchdog Reset Status Flag
0 The last reset was not a watchdog reset
1 The last reset was a watchdog reset

PWDRST 31 rh Power-Down/Wake-Up Reset Status Flag
0 The last reset was not a wake-up from power-

down reset
1 The last reset was a wake-up from power-down

reset

0 [15:3],
[26:22]

r Reserved; returns 0 if read.

Field Bits Type Description
User’s Manual 5-4 V2.0, 2001-02

TC1775
System Units

Reset and Boot Operation
5.2.2 Reset Request Register (RST_REQ)

The Reset Request Register RST_REQ is used to generate a software reset. Unlike the
other reset types, the software reset can exclude two functions from the reset. These are
the System Timer and the external reset output HDRST. In addition, it can change the
boot configuration.

A software reset is invoked by any write to register RST_REQ. This register is EndInit-
protected, meaning that bit WDT_CON0.ENDINIT must be set to 0 first through the
password-protected access scheme for WDT_CON0. Once access is gained through
the Endinit protection scheme, RST_REQ can be written, causing a software reset.

RST_REQ
Reset Request Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0
SW

BOO
T

0
SW

BRK
IN

SW
OCD
SE

SWCFG

r rw r rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 RR
EXT X RR

STM

r rw rw rw

Field Bits Type Description

RRSTM 0 rw Reset Request for the System Timer
0 Do not reset the System Timer
1 Reset the System Timer

X 1 rw Reserved; bit with no function; writing to this bit stores
the value which is written; default after reset is 0.

RREXT 2 rw Reset Request for External Devices
0 Do not activate reset output HDRST
1 Activate reset output HDRST

SWCFG [19:16] rw Software Boot Configuration
A software boot configuration different from the external
applied hardware configuration can be specified with
these bits. The configuration encoding is equal to the
CFG[3:0] encoding.

SWOCDSE 20 rw Software OCDS Enable Signal Boot Value
Determines the desired value for the OCDS enable
input signal to be used for software boot.
User’s Manual 5-5 V2.0, 2001-02

TC1775
System Units

Reset and Boot Operation
SWBRKIN 21 rw Software Break Signal Boot Value
Determines the desired value for the break input signal
to be used for software boot.

SWBOOT 24 rw Software Boot Configuration Selection
0 Use the previously latched hardware

configuration
1 Use the programmed software configuration

0 [15:3],
22, 23,
[31:25]

r Reserved; read as 0; should be written with 0.

Field Bits Type Description
User’s Manual 5-6 V2.0, 2001-02

TC1775
System Units

Reset and Boot Operation
5.3 Reset Operations

A detailed description of each of the reset options is given in the following sections.

5.3.1 Power-On Reset

The PORST pin performs a power-on reset, also called cold reset. Driving the PORST
pin low causes an asynchronous reset of the entire device. The device then enters its
power-on reset sequence.

The external configuration input pins for the PLL are sampled in order to select the
proper operating mode of the PLL. The PLL itself has its own power-on reset circuitry,
and is not affected by any other reset condition other than a low signal transition on the
PORST pin. The values of the PLL configuration pins are sampled in register PLL_CLC.

Simultaneously, the reset circuitry drives the HDRST pin low, and then waits for the
following two conditions to occur:

1. The system clock is active
2. Pin PORST is negated (driven high)

When both of these conditions are met and HDRST is pulled to high level externally, the
power-on reset sequence is terminated. The power-on reset indication flag PWORST in
the Reset Status Register RST_SR is set, while all other reset cause indication flags are
cleared. (Fields in this register that are set include the power-on reset indication flag
(PWORST), as well as the reset status flags for the System Timer (RSSTM) and the
reset output pin (RSEXT).

5.3.2 External Hardware Reset

The external hardware reset pin HDRST serves as an external reset input as well as a
reset output. It is an active-low, bidirectional open-drain pin with an internal weak pull-
up. An active-low signal at this pin causes the chip to enter its hard-reset sequence
synchronously with the next system clock transition. The HDRST pin is held low by the
reset circuitry until its internal reset sequence is terminated.

When the sequence is terminated, the reset circuitry then releases HDRST (that is, it
does not actively drive this pin anymore, so the weak pull-up can try to drive the pin high).
It then begins monitoring the level of the pin. If the pin is still low (indicating that it is still
being driven low externally), the reset circuitry holds the chip in hardware reset until a
high level is detected on HDRST. The hardware reset sequence is then terminated. The
following flags in the Reset Status Register are then set: HDRST, RSSTM, RSDBG, and
RSEXT. Other reset cause indication flags are cleared.
User’s Manual 5-7 V2.0, 2001-02

TC1775
System Units

Reset and Boot Operation
Note that a hardware reset does not cause the configuration pins for the PLL and boot
options to be latched. The configuration state that was latched at the end of the last
power-on reset still controls these functions. Also, the PLL is not affected by an external
hardware reset, but continues to operate according to its selected mode.

5.3.3 Software Reset

A software reset is invoked by writing the appropriate bits in the Reset Request Register
(RST_REQ). Unlike the other forms of reset, the software reset can exclude two system
functions from being reset. These are the System Timer and the external reset output
HDRST. Also, a software reset can change the boot configuration as a side-effect.

Excluding some system functions from a software reset offers these potential
advantages:

• The System Timer can continue to clock accumulated elapsed time.
• The external components of a system can continue to operate while only the TC1775

is reset.

To perform a software reset, the Reset Request Register RST_REQ must be written.
However, RST_REQ is EndInit-protected to avoid an unintentional software reset. The
ENDINIT bit in the Watchdog Timer control register WDT_CON0 must be cleared via the
password-protected access scheme. When this is done, a write access to RST_REQ
can then be performed.

To exclude system functions from software reset, the appropriate bits in RST_REQ must
be set to 0:

• Set RREXT to 0 to avoid activating the reset output HDRST
• Set RRSTM to 0 to avoid resetting the System Timer

To change the boot configuration latched at the end of power-on reset, the software boot
selection bit SWBOOT must be set, and the desired boot configuration must be written
to bits SWBRKIN, SWOCDSE, and SWCFG[3:0].

When the software reset is terminated, bit RST_SR.SFTRST is set, indicating that the
last reset was a software reset. All other reset cause indication flags are cleared. The
reset status of the System Timer (RSSTM) and HDRST pin (RSEXT) are set according
to the bits in RST_REQ at the time the software reset was initiated.

The PLL is not affected by a software reset; it continues to operate according to its
previous mode.

Note that the boot configuration bits in the Reset Request Register RST_REQ are only
used on software reset. In particular, the SWCFG bits that can be set to cause the
TC1775 to boot using internal memory (if SWCFG is set to 0) are not effective on
hardware boot. Regardless of the state of RST_REQ, any reset other than a software
reset always uses the hardware configuration.
User’s Manual 5-8 V2.0, 2001-02

TC1775
System Units

Reset and Boot Operation
5.3.4 Watchdog Timer Reset

A Watchdog Timer overflow or access error occurs only in response to severe and/or
unknown malfunctions of the TC1775, caused by software or hardware errors.
Therefore, the entire TC1775 is given a Watchdog Timer reset whenever the Watchdog
Timer overflows.

Before the Watchdog Timer generates its reset, it first signals a non-maskable interrupt
(NMI) and enters a time-out mode. The NMI invokes a Trap Service Routine (NMI is
really a trap, not an interrupt). The trap handler can save critical state of the machine for
subsequent examination of the cause of the Watchdog Timer failure. However, it is not
possible to stop or terminate the Watchdog Timer’s time-out mode or prevent the
pending watchdog reset.

However, software can preempt the Watchdog Timer by issuing a software reset on its
own. Because the cause of the system failure is presumably unknown at that time, and
it is presumably uncertain which functions of the TC1775 are operating properly, it is
recommended that the software reset be configured to reset all system functions
including the System Timer and external reset output HDRST, and to use the hardware
boot configuration.

Eventually, if the NMI trap handler does not perform a software reset, or if the system is
so compromised that the trap handler cannot be executed, the Watchdog Timer will
cause a Watchdog Timer reset to occur at the end of its time-out mode period. The
actions performed on a Watchdog Timer reset sequence are the same as are performed
for an external hardware reset. At the end of the Watchdog Timer reset sequence, bits
WDTRST, RSSTM, RSDBG, and RSEXT are set in register RST_SR. All other reset
cause indication flags are cleared.

5.3.4.1 Watchdog Timer Reset Lock

When the system emerges from any reset condition, the Watchdog Timer becomes
active, and, — unless prevented by initialization software — will eventually time out.
Ordinarily, initialization software will configure the Watchdog Timer and commence
servicing it on a regular basis to indicate that it is functioning appropriately. Should the
system be malfunctioning so that initialization and service are not performed in a timely
fashion, the Watchdog Timer will time out, causing a Watchdog Timer reset.

If the TC1775 system is so corrupted that it is chronically unable to service the Watchdog
Timer, the danger could arise that the system would be continuously reset every time the
Watchdog Timer times out. This could lead to serious system instability, and to the loss
of information about the original cause of the failure. However, the reset circuitry of the
TC1775 is designed to detect this condition. If a Watchdog Timer error occurs while one
or both of the Watchdog Timer error flags (WDT_SR.WDTAE and WDT_SR.WDTOE)
are already set to 1, the reset circuitry locks the TC1775 permanently in reset (Reset
Lock) until the next power-on reset occurs by activation of the PORST pin.
User’s Manual 5-9 V2.0, 2001-02

TC1775
System Units

Reset and Boot Operation
This situation could arise, for example, if the connection to external code memory is lost
or memory becomes corrupt, such that no valid code can be executed, including the
initialization code. In this case, the initial time-out period of the Watchdog Timer cannot
be properly terminated by software. The Watchdog Timer error flag WDTOE will be set
when the Watchdog Timer overflows, and a Watchdog Timer reset will be triggered (after
the watchdog reset pre-warning phase). The error flag WDTOE is not cleared by the
Watchdog Timer reset which subsequently occurs. After finishing the Watchdog Timer
reset sequence, the TC1775 will again attempt to execute the initialization code. If the
code still cannot be executed because of connection problems, the WDTOE bit will not
have been cleared by software. Again, the Watchdog Timer will time out and generate a
Watchdog Timer reset. However, this time the reset circuitry detects that WDTOE is still
set while a Watchdog Timer error has occurred, indicating danger of cyclic resets. The
reset circuitry then puts the TC1775 in Reset Lock. This state can only be deactivated
again through a power-on reset.

5.3.4.2 Deep-Sleep Wake-Up Reset

Power is still applied to the TC1775 during Deep Sleep power-management mode, which
preserves the contents of the TC1775’s static RAM. If Deep Sleep mode is entered
appropriately, all important system state information will have been preserved in static
RAM by software. The only way to terminate Deep Sleep mode is for the TC1775 to be
externally reset. However, while external reset will cause the TC1775’s registers to
return to their default reset values, the contents of the static RAM is not affected. This
can be important to the application software because initialization of the static RAM can
be skipped, and data written to it before Deep Sleep mode was entered will still be valid.

If the TC1775 is in Deep Sleep mode, there are three options to awaken it:

1. A power-on reset PORST
2. An external NMI event with a reset sequence
3. An external NMI event without a reset sequence

Selection between the two types of external NMI event is made via the control bit
PM_CON.DSRW. The advantage of using an external NMI event without a reset
sequence is that the system can be more quickly awakened.
User’s Manual 5-10 V2.0, 2001-02

TC1775
System Units

Reset and Boot Operation
5.3.5 State of the TC1775 after Reset

Table 5-2 lists the modules/functions and types of reset and indicates whether and how
the various functions of the TC1775 are affected. A ■ indicates that a function is reset to
its default state.

Table 5-2 Effect of Reset Types on TC1775 Modules/Functions

Module /
Function

Wake-up
Reset

Watchdog
Reset

Software
Reset

Hardware
Reset

Power-On
Reset

CPU Core ■ ■ ■ ■ ■

Peripherals
(except
System Timer)

■ ■ ■ ■ ■

On-Chip Static
RAM
(code or data)

Not
affected

Not affected;
contents
may be

unreliable

Not
affected

Not
affected

Not affected;
contents are

invalid

On-Chip
Cache
(see note)

■ ■ ■ ■ ■

System Timer ■ ■ Optional ■ ■

Debug Unit ■ ■ Optional ■ ■

Oscillator / PLL ■ Not affected Not affected Not affected ■

External Bus
Control Unit

■ ■ ■ ■ ■

External Bus
Pins

Tri-stated Tri-stated Tri-stated Tri-stated Tri-stated

Port Pins Tri-stated Tri-stated Tri-stated Tri-stated Tri-stated

Reset output
pin HDRST

■ ■ Optional ■ ■
User’s Manual 5-11 V2.0, 2001-02

TC1775
System Units

Reset and Boot Operation
Note: The actual data contents of the cache are not affected through a reset; however
the cache tag information is cleared, resulting in an ‘empty’ cache.

Boot
Configuration
taken from

Latched
hardware
configur-

ation

Latched
hardware
configur-

ation

Optional
latched

hardware or
software
configur-

ation

Latched
hardware
configur-

ation

External
pins

PLL
Configuration
taken from

Latched
hardware
configur-

ation

Latched
hardware
configur-

ation

Latched
hardware
configur-

ation

Latched
hardware
configur-

ation

External
pins

Table 5-2 Effect of Reset Types on TC1775 Modules/Functions (cont’d)

Module /
Function

Wake-up
Reset

Watchdog
Reset

Software
Reset

Hardware
Reset

Power-On
Reset
User’s Manual 5-12 V2.0, 2001-02

TC1775
System Units

Reset and Boot Operation
5.4 Booting Scheme

When the TC1775 is reset, it needs to know the type of configuration required to start in
after the reset sequence is finished. Internal state is usually cleared through a reset. This
is especially true in the case of a power-up reset. Thus, boot configuration information
needs to be applied by the external world through input pins.

Boot configuration information is required:

• for the PLL to select the proper operating mode and frequency,
• for the start location of the code execution,
• and activation of special modes and conditions

PLL configuration is only sampled and latched with a power-on reset.

For the start of code execution and activation of special mode, the TC1775 implements
two basic booting schemes: a hardware scheme which is invoked through external pins,
and a software scheme in which software can determine the boot options, overriding the
externally-applied options.

5.4.1 Hardware Booting Scheme

The hardware booting scheme uses the state of a number of external input pins —
sampled and latched with a power-on reset — to determine the start configuration of the
chip. The state of these pins is latched into the Reset Status Register RST_SR when the
power-on reset signal (pin PORST) is released. This hardware configuration determined
through the bits HWOCDSE, HWBRKIN, and HWCFG[3:0] is used for all hardware-
invoked reset options (power-on, hard, watchdog and wake-up reset).

5.4.2 Software Booting Scheme

The Reset Request Register RST_REQ, used for generating a software reset, contains
five bits that have the same meaning as the corresponding five bits in the RST_SR
register. On a software reset, software can choose to set a different boot configuration
from the one latched with power-on reset. This option is selected through bit SWBOOT
in register RST_REQ. When writing to this register, the desired values for bits
SWOCDSE, SWBRKIN, and SWCFG[3:0] are written along with bit SWBOOT set to 1.
This causes the device to start in the configuration selected through the software boot
configuration bits in register RST_REQ instead of starting with the hardware boot
configuration stored in register RST_SR.
User’s Manual 5-13 V2.0, 2001-02

TC1775
System Units

Reset and Boot Operation
5.4.3 Boot Options

The architecture of the TriCore booting schemes provides a number of different boot
options for the start of code execution. Table 5-3 shows the boot options available in the
TC1775. Note that the signals OCDSE, BRKIN, and CFG[3:0] can be either the
corresponding bits HWOCDSE, HWBRKIN, and HWCFG[3:0] in register RST_SR, or
the software configuration bits SWOCDSE, SWBRKIN and SWCFG[3:0] in register
RST_REQ.

Table 5-3 TC1775 Boot Selections

OCDSE BRKIN CFG
[3]

CFG
[2:0]

Type of Boot Boot Source PC Start
Value

1 1 X 000B Start from Boot ROM Boot ROM BFFFFFFCH

001B

010B

0 100B External memory as
slave directly via EBU

External
Memory
(cached)

A000 0000H

1 100B External memory as
master directly via EBU

0 101B External memory as
slave via FPI Bus

1 101B External memory as
master via FPI Bus

X 011B
110B
111B

Reserved; don’t use these combinations;

0 1 0 100B
or
101B

Go to halt with EBU
enabled as slave

– –

1 Go to halt with EBU
enabled as master

all other
combina-
tions

Go to halt with EBU
disabled

0 0 don’t care Go to external emulator
space

– BE00 0000H

1 0 don’t care Tri-state chip
(deep sleep)

– –
User’s Manual 5-14 V2.0, 2001-02

TC1775
System Units

Reset and Boot Operation
5.4.4 Boot Configuration Handling

• The inputs CFG[3:0] are latched internally with the rising edge of PORST to guarantee
a stable value during normal operation (during PORST active the latches are
transparent). The latched values can only be changed by another power-on reset.

• The CFG[3:0] pins determine the hardware boot configuration after power-on reset /
hardware reset. This configuration can be changed by software in conjunction with a
software reset (software boot configuration).

• The boot software must read the actual software configuration (register RST_REQ) to
determine how to proceed (for example: entering boot-strap loader). It is also possible
to read the latched value of the configuration pins.

5.4.5 Normal Boot Options

The normal boot options are invoked when both, OCDSE and BRKIN are set to 1.

In order to access external memory, the External Bus Unit (EBU) must have information
about the type and access mechanism of the external boot code memory. This
information is not available through the boot configuration pins. Special actions must be
taken first by the EBU in order to determine the configuration settings.

The EBU initiates a special external bus access in order to retrieve information about the
external code memory. This access is performed to address A000 0004H such that
regardless of the type and characteristics of the external memory, configuration
information can be read from the memory into the EBU. By examining this information,
the EBU determines the exact requirements for accesses to the external memory. It then
configures the control registers accordingly, and performs the first instruction fetch from
address A000 0000H.

5.4.6 Debug Boot Options

Debug boot options are selected if the states of the bits OCDSE and BRKIN are not both
activated.

Two of the options enable emulators to take control over the TC1775. If only OCDSE is
activated (OCDSE = 0), the TC1775 goes into the HALT state. External hardware
emulators can then configure the TC1775 via the JTAG interface. If BRKIN and OCDSE
are activated (BRKIN = OCDSE = 0), the TC1775 starts execution out of a special
external memory region reserved for debugging.

After configuring the TC1775 via either of these boot options, the regular application
configuration can be invoked by executing a software reset with a software boot option.
By setting the software configuration bits in register RST_REQ such that the debug boot
options are deactivated, a normal boot of the TC1775 is accomplished after the software
reset terminates.

Note: The state of the external OCDSE pin is also latched by other circuitry in the
TC1775, enabling special debugging features if a low signal level is latched at this
User’s Manual 5-15 V2.0, 2001-02

TC1775
System Units

Reset and Boot Operation
pin when the power-on reset (PORST) signal is raised. A software boot with a
normal boot configuration (that is, bit SWOCDSE = 1) does not affect this
operation.

The third debug boot option places the TC1775 into a tri-state mode. All pins are
deactivated, including the oscillator, and internal circuitry is held in a low-power mode.
This mode can be used to connect emulator probes to a TC1775 soldered onto a board
to perform testing.
User’s Manual 5-16 V2.0, 2001-02

TC1775
System Units

Power Management
6 Power Management
This chapter describes the power management system for the TC1775. Topics include
the internal system interfaces, external interfaces, state diagrams, and the operations of
the CPU and peripherals. The Power Management State Machine (PMSM) is also
described.

6.1 Power Management Overview

The TC1775 power management system allows software to configure the various
processing units so that they automatically adjust to draw the minimum necessary power
for the application.

As shown in Table 6-1, there are four power management modes:

• Run Mode
• Idle Mode
• Sleep Mode
• Deep Sleep Mode

Table 6-1 Power Management Mode Summary

Mode Description

Run The system is fully operational. All clocks and peripherals are enabled,
as determined by software.

Idle The CPU clock is disabled, waiting for a condition to return it to Run
Mode. Idle Mode can be entered by software when the processor has no
active tasks to perform. All peripherals remain powered and clocked.
Processor memory is accessible to peripherals. A reset, Watchdog Timer
event, a falling edge on the NMI pin, or any enabled interrupt event will
return the system to Run Mode.

Sleep The system clock continues to be distributed only to those peripherals
programmed to operate in Sleep Mode. Interrupts from operating
peripherals, the Watchdog Timer, a falling edge on the NMI pin, or a reset
event will return the system to Run Mode. Entering this state requires an
orderly shut-down controlled by the Power Management State Machine.

Deep Sleep The system clock is shut off; only an external signal will restart the
system. Entering this state requires an orderly shut-down controlled by
the Power Management State Machine (PMSM).
User’s Manual 6-1 V2.0, 2001-02

TC1775
System Units

Power Management
The operation of each system component in each of these states can be configured by
software. The power management modes provide flexible reduction of power
consumption through a combination of techniques, including:

– Stopping the CPU clock
– Stopping the clocks of other system components individually
– Clock-speed reduction of some peripheral components individually
– Power-down of the entire system with fast restart capability

The Power Management State Machine (PMSM) controls the power management mode
of all system components during Run Mode, Idle Mode, and Sleep Mode. The PMSM
continues to operate in Idle Mode and Sleep Mode, even if all other system components
have been disabled, so that it can re-awaken the system as needed. In Deep Sleep
Mode, even the PMSM is disabled and the system must be re-awakened from an
external source. This flexibility in power management provides minimum power
consumption for any application.

The Power Management State Machine is implemented in the System Control Unit
(SCU) module of the TC1775. Thus, it is accessible through the FPI Bus interface by any
FPI Bus master.

As well as these explicit software-controlled power-saving modes, special attention has
been paid in the TC1775 to provide automatic power-saving in those operating units that
are currently not required or idle. To save power, these are shut off automatically until
their operation is required again.

In typical operation, Idle Mode and Sleep Mode will be entered and exited frequently
during the runtime of an application. For example, system software will typically cause
the CPU to enter Idle Mode each time it must wait for an interrupt before continuing its
tasks. In Sleep Mode and Idle Mode, wake-up is performed automatically when any
enabled interrupt signal is detected or if the Watchdog Timer signals the CPU with an
NMI trap.

No clock is running in a system in Deep Sleep Mode, so it cannot be awakened by an
interrupt or the Watchdog Timer. It will be awakened only when it receives an external
non-maskable interrupt (NMI) or reset signal, as described Section 6.3.3. Software must
prepare the external environment of the TC1775 to cause one of these signals under the
appropriate conditions before entering Deep Sleep Mode. If Deep Sleep Mode were
entered unintentionally without an event of this nature first being prepared, the TC1775
might never emerge from Deep Sleep Mode. For this reason, the register used to set up
Deep Sleep Mode can be changed only by way of a password-protected access
mechanism (see Section 6.3.3).
User’s Manual 6-2 V2.0, 2001-02

TC1775
System Units

Power Management
6.2 Power Management Control Registers

The set of registers used for power management is divided between central TC1775
components and peripheral components. The PMG_CSR and the PMG_CON registers
provide software control and status information for the Power Management State
Machine (PMSM). There are individual clock control registers for peripheral components
because the Sleep Mode behavior of each peripheral component is programmable.
When entering Idle Mode and Sleep Mode, the PMSM directly controls TC1775
components such as the CPU, but indirectly controls peripheral components through
their clock control registers.

Figure 6-1 Power Management Registers

In the TC1775, the reset registers are located in the address range of the SCU:

– Module Base Address. F000 0000H
Module End Address. F000 00FFH

– Absolute Register Address = Module Base Address + Offset Address
(offset addresses see Table 6-2)

Table 6-2 Power Management Registers

Register
Short Name

Register Long Name Offset
Address

Description
see

PMG_CON Power Management Control Register 0030H Page 6-4

PMG_CSR Power Management Control and Status
Register

0034H Page 6-5

MCA04720

PMG_CON

Control Registers

PMG_CSR
User’s Manual 6-3 V2.0, 2001-02

TC1775
System Units

Power Management
6.2.1 Power Management Control Register PMG_CON

The Power Management Control Register PMG_CON is used to request Deep Sleep
Mode. This register is specially protected to avoid unintentional invocation of Deep Sleep
Mode.

Note: The PMG_CON register is specially protected to avoid unintentional invocation of
Deep Sleep Mode. In order to write to PMG_CON.DSREQ, the
WDT_CON0.ENDINIT bit must be set to 0 through a password-protected access
mechanism. WDT_CON0.ENDINIT must then be set to 1 to make the changed
value of DSREQ become effective.

PMG_CON
Power Management Control Register Reset Value: 0000 0001H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 DS
REQ

DS
RW

r rwh rw

Field Bit Type Function

DSRW 0 rw Reset On Wake-Up From Deep Sleep
Wake-up from deep sleep can be caused by either a
power-on reset or through a low level at the NMI pin.
The state of DSRW determines whether a full internal
hardware reset should be performed on exit from deep
sleep.
0 No internal reset will be performed on exit from

deep sleep
1 An internal hardware reset will be performed on

exit from deep sleep

DSREQ 1 rwh Deep Sleep Request Bit
0 Normal Mode
1 Deep Sleep Mode requested
Bit is reset by hardware on wake-up from deep sleep
mode.

0 [31:2] r Reserved; read as 0; should be written with 0.
User’s Manual 6-4 V2.0, 2001-02

TC1775
System Units

Power Management
6.2.2 Power Management Control and Status Register PMG_CSR

The Power Management Control and Status Register PMG_CSR stores Idle Mode and
Sleep Mode request bits. It also shows the status of the Power Management State
Machine. Its fields are described below.

PMG_CSR
Power Management Control and Status Register Reset Value: 0000 0100H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 PMST 0 REQSLP

r rh r rwh

Field Bit Type Function

REQSLP [1:0] rwh Idle Mode and Sleep Mode Request Bits
00 Normal Run Mode
01 Request Idle Mode
10 Request Sleep Mode
11 Reserved; do not use this combination;
In Idle Mode, Sleep Mode, or Deep Sleep Mode, these
bits are cleared in response to an enabled interrupt, a
wake-up from Deep Sleep Mode via the NMI pin or
PORST pin, or when bit 15 of the Watchdog Timer
count register (the WDT_SR.TIM[15] bit) changes from
0 to 1.

PMST [10:8] rh Power Management State Machine Status
000 Waiting for PLL Lock condition
001 Normal Run Mode
010 Idle Mode requested
011 Idle Mode acknowledged
100 Sleep Mode
101 Deep Sleep Mode
110 Undefined, reserved
111 Undefined, reserved

0 [7:2],
[31:11]

r Reserved; read as 0; should be written with 0.
User’s Manual 6-5 V2.0, 2001-02

TC1775
System Units

Power Management
6.3 Power Management Modes

This section describes power management modes, their operations, and how power
management modes are entered and exited. It also describes the behavior of TC1775
system components in all power management modes.

6.3.1 Idle Mode

Software requests the Idle Mode by setting the PMG_CSR.REQSLP bit field to 01B.

The Power Management State Machine (PMSM) posts an idle request signal to the
CPU. The CPU finishes its current operation, sends an acknowledge signal back to the
PMSM, and then enters an inactive state in which the CPU clocks and the DMU and
PMU memory units are shut off.

In Idle Mode, memory accesses to the DMU and PMU via the FPI Bus cause these units
to awaken automatically to handle the transactions. When memory transactions are
complete, the DMU and PMU return to Idle Mode again.

The system will be returned to Run Mode through occurrence of any of the following
conditions:

• An interrupt signal is received from an enabled interrupt source
• An NMI request is received either from an external source via the NMI pin or from the

Watchdog Timer. The Watchdog Timer triggers an NMI trap request in Idle mode
when its count value (WDT_SR.TIM) transitions from 7FFFH to 8000H.

• An external power-on signal PORST or hardware reset signal HDRST is received
• A software reset is requested by another FPI Bus agent (such as the PCP) by writing

to the reset request register RST_REQ.

If any of these conditions arise, the TC1775 immediately awakens and returns to Run
Mode. If it is awakened by a hardware or software reset signal, the TC1775 system
begins its reset sequence. If it is awakened by a Watchdog Timer overflow event, it
executes the instruction following the one which was last executed before Idle Mode was
entered. If it is awakened by an NMI signal or interrupt signal, the CPU will immediately
vector to the appropriate handler.
User’s Manual 6-6 V2.0, 2001-02

TC1775
System Units

Power Management
6.3.2 Sleep Mode

Software can request the Sleep Mode by setting PMG_CSR.REQSLP = 10B.

6.3.2.1 Entering Sleep Mode

Sleep Mode is entered in two steps. In the first step, the CPU is put into Idle Mode in the
same manner as described in Section 6.3.1. When the PMSM receives the Idle
acknowledge signal back from the CPU, it goes on to the second step.

In the second step, a sleep signal is then broadcast on the FPI Bus. Each FPI Bus
interface unit receives this signal. The response of each FPI Bus unit to the sleep signal
is determined by its own clock control register (CLC). These registers must have been
previously configured by software.

6.3.2.2 TC1775 State During Sleep Mode

Sleep Mode is disabled for a unit if its CLC_EDIS bit field is 1. The sleep signal is ignored
by this unit and it continues normal operation.

If the unit’s clock control register bit CLC_EDIS is 0, Sleep Mode is enabled for this unit.
In this case, the sleep signal will cause this unit to enter Sleep Mode. Two actions then
occur:

1. The unit’s bus interface finishes whatever transaction was in progress when the signal
was received.

2. The unit’s functions are suspended.

The TriCore architecture qualifies the actions in step 2 as follows. Depending on the
module’s Fast Shut-Off Enable bit CLC.FSOE in the clock control registers, the module’s
clocks are either immediately stopped (CLC.FSOE = 1), or the unit is allowed time to
finish ongoing operations (CLC.FSOE = 0) before the clocks are stopped. For example,
setting CLC.FSOE to 1 for a serial port will stop all actions in the serial port immediately
when the sleep signal is received. Ongoing transmissions or receptions will be aborted.
If CLC.FSOE is 0, ongoing transmissions or receptions will be completed, and then the
clock will be shut off. The purpose of setting CLC.FSOE = 1 is to allow a debugger to
observe the internal state of a peripheral unit immediately.

Please refer to the respective peripheral unit chapters for discussions of the exact
implementation of Sleep Mode (Clock Control Register) for a specific peripheral unit.

6.3.2.3 Exiting Sleep Mode

The system will be returned to Run Mode by the same events that exit Idle Mode, as
described in Section 6.3.1. The response of the CPU to being awakened is also the
same as for Idle Mode. Peripheral units which have entered Sleep Mode will switch back
to their selected Run Mode operation.
User’s Manual 6-7 V2.0, 2001-02

TC1775
System Units

Power Management
6.3.3 Deep Sleep Mode

In Deep Sleep Mode, the PMSM shuts off all clocks, the PLL, and the oscillator.
Therefore, Deep Sleep Mode consumes the least power of all TC1775 states.

Deep Sleep Mode is requested through software by setting the PMG_CON.DSREQ bit
to 1. The request bits for Deep Sleep Mode have been separated intentionally from the
Idle Mode and Sleep Mode request bits to minimize the chance of inadvertently invoking
Deep Sleep Mode.

Because no clock is running in a system in Deep Sleep Mode, it can not be awakened
by any interrupt source, including the Watchdog Timer. It can only be awakened when it
receives an external reset or NMI signal, as described in this section. Software must
prepare the external environment of the TC1775 to cause one of these signals under the
appropriate conditions before entering Deep Sleep Mode. If Deep Sleep Mode were
entered unintentionally without an event of this nature first being prepared, the TC1775
might never emerge from Deep Sleep Mode. For this reason, the PMG_CON register
which sets up Deep Sleep Mode is specially protected. In order to write to PMG_CON,
the WDT_CON0.ENDINIT bit must be set to 0 through a password-protected access
mechanism to register WDT_CON. In order for the request to be activated,
WDT_CON0.ENDINIT must first be set to 1 after the write to PMG_CON.

6.3.3.1 Entering Deep Sleep Mode

Deep Sleep Mode is entered in three steps. In the first step, the CPU is put into Idle Mode
in the same way as described in Section 6.3.1. When the PMSM receives the Idle
acknowledge signal back from the CPU, it goes on to the second step in which the
PMSM activates the sleep signal, as described in Section 6.3.2. In the third step, the
PMSM shuts off all clocks, the PLL, and the oscillator.

Note: The Power-On Reset Pin PORST should be kept stable when powering the
TC1775 down.

Note: The software which turns on deep sleep mode must reside in the internal code
scratch pad RAM to ensure that no external code accesses via the EBU are
running when the PLL clock is shut down.

6.3.3.2 TC1775 State During Deep Sleep Mode

In Deep Sleep Mode, all port pins hold their state when Deep Sleep Mode is entered.
The Deep Sleep Reset Enable Bit PMG_CON.DSRW controls whether the TC1775 is
reset when Deep Sleep Mode is left.

– PMG_CON.DSRW = 0: TC1775 is not reset when Deep Sleep Mode is left.
– PMG_CON.DSRW = 1: TC1775 is reset when Deep Sleep Mode is left. Port pins

are put into the reset state.
User’s Manual 6-8 V2.0, 2001-02

TC1775
System Units

Power Management
6.3.3.3 Exiting Deep Sleep Mode

Deep Sleep Mode can be exited in two ways:

• A power-on reset signal is detected (PORST)
• The NMI pin detects a falling edge

When returning to full-power operation, the first step is to restart the oscillator and PLL,
and re-enable the system clocks. This generally requires external hardware to wait until
the PLL has had time to lock to its external clock source before the system can return to
reliable operation.

Exactly how the TC1775 system returns from Deep Sleep Mode depends upon which
signal re-awakens it. If awakened by a falling edge on the NMI pin, it further depends
upon the state of the PMG_CON.DSRW bit.

6.3.3.4 Exiting Deep Sleep Mode With A Power-On Reset Signal

When awakened through a power-on reset signal (PORST), the system initiates the
same reset sequence as is used when power is first applied. The TC1775 automatically
initiates its clock-acquisition sequence. This provides the time needed for the PLL to lock
to the oscillator. The TC1775 will remain in the reset state until both the PLL is locked
and the PORST signal is deactivated.

6.3.3.5 Exiting Deep Sleep Mode With an NMI Signal

The state of the Deep Sleep Reset Enable Bit, PMG_CON.DSRW, determines what
happens when the TC1775 is awakened through a falling edge on the NMI pin.

If DSRW was set to 1 before entering Deep Sleep Mode, the TC1775 will execute a reset
sequence similar to the power-on reset sequence. Therefore, all port pins are put into
their reset state and stay in this state until they are affected in some way by boot
operation or program execution. Note that the PLL configuration latched at the last
power-on reset is still valid; the appropriate bits in register PLL_CLC have not been reset
by entering and exiting Deep Sleep mode.

If DSRW was set to 0 before entering Deep Sleep Mode, a fast wake-up sequence is
used. In this case, the TC1775 does not wait for the PLL to stabilize and lock to the
external clock. Instead, it resumes operation as soon as the PLL provides clock signals.
Note that the PLL configuration latched at the last power-on reset is still valid; the
appropriate bits in register PLL_CLC have not been reset by entering and exiting Deep
Sleep mode. The port pins continue to hold their state which was valid during Deep Sleep
Mode until they are affected somehow by boot operation or program execution.

Special attention must be paid when using this type of wake-up. As soon as the device
is woken up from Deep Sleep mode, the PLL begins generating clocks starting with the
PLL’s base frequency. When the external oscillator begins to generate clock signals, the
PLL will begin to increase its frequency in order to achieve the programmed frequency
User’s Manual 6-9 V2.0, 2001-02

TC1775
System Units

Power Management
(fOSC × N). Note that the start-up time of an external crystal oscillator can be in the range
of some ms. This will continue until the PLL is locked to the external clock. Thus, since
the TC1775 does not wait until the PLL has locked, its operation is based on a clock
which will increase in frequency until the PLL is locked to the programmed frequency.
Software can poll the PLL Lock Status bit (PLL_CLC.LOCK) for the lock status of the
PLL.

Note: For wake-up through NMI, the NMI signal must held active until the clock system
starts. Otherwise, the TC1775 will not enter the NMI trap handler routine.

6.3.4 Summary of TC1775 Power Management States

Table 6-3 summarizes the state of the various units of the TC1775 during Run Mode,
Idle Mode, Sleep Mode, and Deep Sleep Mode.

Table 6-3 State of TC1775 Units During Power Management Modes

Unit Run Mode Idle Mode Sleep Mode Deep Sleep
Mode

Main Oscillator
& PLL

On On On Off

CPU Executing Idle Idle Off (no clock)

DMU & PMU Active Idle, but
accessible

Idle, but
accessible

Off (no clock).
Memory units hold
their contents

Watchdog
Timer

Functioning as
programmed

Functioning as
programmed

Functioning as
programmed

Off (no clock)

FPI Bus
Peripherals

Functioning as
programmed

Functioning as
programmed

Functioning as
programmed

Off (no clock)

Debug Unit Functioning Functioning Functioning Off (no clock)

External Bus
Controller
(EBU)

Functioning as
programmed

Functioning as
programmed

Functioning as
programmed

Off (no clock); The
EBU pins hold the
last value.

Ports Functioning as
programmed

Functioning as
programmed

Functioning as
programmed

Off (no clock). The
EBU pins hold the
last value.

RTC Oscillator Functioning as
programmed

Functioning as
programmed

Functioning as
programmed

On
User’s Manual 6-10 V2.0, 2001-02

TC1775
System Units

Memory Map of On-Chip Local Memories
7 Memory Map of On-Chip Local Memories
The memory system of the TC1775 provides the following memories:

• Program Memory Unit (PMU) with
– 8 KBytes Boot ROM (BROM)
– 32 KBytes Code Scratch-Pad RAM (SPRAM)
– 1 KByte Instruction Cache (ICache)

• Data Memory Unit (DMU) with
– 40 KBytes Data Memory (SRAM)
– includes 8 KBytes static RAM (SBRAM) for standby operation using a battery

• Peripheral Control Processor (PCP) with
– 16 KBytes Data Memory (PCODE)
– 4 KBytes Parameter RAM (PRAM)

This chapter gives an overview on the TC1775 memory map. Details on the specific
features of the memories in the PMU, DMU, and PCP modules are described in the
specific Chapter 8, Chapter 9 and Chapter 15 in this User’s Manual.
User’s Manual 7-1 V2.0, 2001-02

TC1775
System Units

Memory Map of On-Chip Local Memories
7.1 TC1775 Address Map

Table 7-1 defines the specific segment oriented address blocks of the TC1775 with its
corresponding address range, size, and PMU/DMU access view.

Table 7-1 TC1775 Block Address Map

Seg-
ment

Address
Range

Size Description DMU
Acc.

PMU
Acc.1)

0-7 0000 0000H –
7FFF FFFFH

2 GB Reserved – –

8 8000 0000H –
8FFF FFFFH

256 MB Reserved via
FPI

PMU
local

ca
ch

ed9 9000 0000H –
9FFF FFFFH

256 MB Reserved DMU
local

via
FPI

10 A000 0000H –
AFFF FFFFH

256 MB External Memory Space via
FPI

via
EBU or
FPI

11

B000 0000H –
BDFF FFFFH

224 MB External Memory Space
mappable into seg. 10

via
FPI

via
EBU

no
n-

ca
ch

ed

BE00 0000H –
BEFF FFFFH

16 MB External Emulator Space via
FPI

BF00 0000H –
BFFF DFFFH

– Reserved

PMU
localBFFF E000H –

BFFF FFFFH

8 KB Boot ROM
4 KBytes general purpose
4 KBytes factory test support

12

C000 0000H –
C000 7FFFH –

32 KB Local Code Scratch-Pad RAM
(SPRAM)

via
FPI

PMU
local

C000 8000H –
C7FF FEFFH

– Reserved

C7FF FF00H –
C7FF FFFFH

256 B PMU Control Registers

C800 0000H –
CFFF FFFFH

128 MB Reserved
User’s Manual 7-2 V2.0, 2001-02

TC1775
System Units

Memory Map of On-Chip Local Memories
13

D000 0000H –
D000 7FFFH

32 KB Local Data Memory (SRAM)

DMU
local

 via FPI

no
n-

ca
ch

ed

D000 8000H –
D000 9FFFH

8 KB Local Data Memory for standby
operation (SBSRAM)

D000 A000H –
D000 BFFFH

8 KB SBSRAM mirrored

D000 C000H –
D000 DFFFH

8 KB SBSRAM mirrored

D000 E000H –
D000 FFFFH

8 KB SBSRAM mirrored

D000 A000H –
D7FF FEFFH

– Reserved

D7FF FF00H –
D7FF FFFFH

256 B DMU Registers

D800 0000H –
DFFF FFFFH

256 MB Reserved

14 E000 0000H –
EFFF FFFFH

256 MB External Peripheral and
Data Memory Space

via
FPI

not
possi-
ble

Table 7-1 TC1775 Block Address Map (cont’d)

Seg-
ment

Address
Range

Size Description DMU
Acc.

PMU
Acc.1)
User’s Manual 7-3 V2.0, 2001-02

TC1775
System Units

Memory Map of On-Chip Local Memories
Segments 0-7

This memory range is a reserved area in the TC1775.

Segment 8

This memory segment is reserved in the TC1775. It is assigned to cached access
purposes in future product derivatives.

Segment 9

This memory segment is reserved in the TC1775. It is assigned to cached access
purposes in future product derivatives.

15

F000 0000H –
F000 3EFFH

16 KB On-Chip Peripherals & Ports

via
FPI

not
possi-
ble

no
n-

ca
ch

ed

F000 3F00H –
F000 3FFFH

256 B PCP Registers

F000 4000H –
F000 FFFFH

– Reserved

F001 0000H –
F001 0FFFH

4 KB PCP Parameter Memory
(PRAM)

F001 1000H –
F001 FFFFH

– Reserved

F002 0000H –
F002 3FFFH

16 KB PCP Code Memory
(PCODE)

F002 4000H –
F00F FFFFH

– Reserved

F010 0000H –
F010 0BFFH

12 ×
256 B

CAN Module

F010 0C00H –
FFFE FEFFH

– Reserved

FFFE FF00H –
FFFE FFFFH

256 B CPU Slave Interface Registers
(CPS)

FFFF 0000H –
FFFF FFFFH

64 KB Core SFRs + GPRs

1) The PMU can access external memory directly (“via EBU”, only instruction accesses) or via the FPI Bus (“via
FPI”).

Table 7-1 TC1775 Block Address Map (cont’d)

Seg-
ment

Address
Range

Size Description DMU
Acc.

PMU
Acc.1)
User’s Manual 7-4 V2.0, 2001-02

TC1775
System Units

Memory Map of On-Chip Local Memories
Segment 10

This 256 MBytes memory segment is assigned for external burst mode Flash code
memories when operating in cached mode.

Segment 11

This memory segment contains a 224 MBytes reserved area for external code/data
memory or external peripherals. All burst mode instruction fetches of the PMU to a code
memory located in this area are non-cached. A code memory in Segment 11 can be
mapped into Segment 10. Segment 11 also contains a 16 MBytes external area
reserved for the emulator and the 8 KBytes Boot ROM (BROM).

External data memory and external peripherals located in the address region
B000 0000H and BEFF FFFFH are accessible via EBU and FPI Bus.

External code memory located in the address region B000 0000H and BDFF FFFFH is
only accessible via burst mode code fetch operations using chip select signal CS0.

External code memory located in the address region BE00 0000H and BEFF FFFFH is
only accessible via the EBU and FPI Bus using any chip select signal.

Segment 12

This memory segment contains the 32 KBytes Local Code Scratch-Pad RAM (SPRAM)
operating in non-cached mode. It also includes the control registers of the PMU.

Segment 13

This memory segment contains the 32 + 8 KBytes Local Data Memory (SRAM and
SBSRAM) and the DMU control registers.

Segment 14

This memory segment is a non-cached 256 MByte segment reserved for external
peripherals and external data memory.

Segment 15

This memory segment is dedicated for CPU, PCP, on-chip peripheral units, and ports
(see Table 7-2).

Note: Accesses to address regions defined as “Reserved” in Table 7-1 lead to a bus
error.
User’s Manual 7-5 V2.0, 2001-02

TC1775
System Units

Memory Map of On-Chip Local Memories
7.2 Memory Segment 15 - Peripheral Units

Table 7-2 shows the block address map of Segment 15.

Table 7-2 Block Address Map of Segment 15

Symbol Description Address Range Size

SCU System Control Unit F000 0000H - F000 00FFH 256 Bytes

RTC Real Time Clock F000 0100H - F000 01FFH 256 Bytes

BCU Bus Control Unit F000 0200H - F000 02FFH 256 Bytes

STM System Timer F000 0300H - F000 03FFH 256 Bytes

OCDS On-Chip Debug Support F000 0400H - F000 04FFH 256 Bytes

EBU External Bus Unit F000 0500H - F000 05FFH 256 Bytes

– Reserved F000 0600H - F000 06FFH –

GPTU General Purpose Timer Unit F000 0700H - F000 07FFH 256 Bytes

ASC0 Async./Sync. Serial Interface 0 F000 0800H - F000 08FFH 256 Bytes

ASC1 Async./Sync. Serial Interface 1 F000 0900H - F000 09FFH 256 Bytes

SSC0 High-Speed Synchronous Serial
Interface 0

F000 0A00H - F000-0AFFH 256 Bytes

SSC1 High-Speed Synchronous Serial
Interface 1

F000 0B00H - F000-0BFFH 256 Bytes

– Reserved F000 0C00H - F000 17FFH –

GPTA General Purpose Timer Array F000 1800H - F000 1FFFH 8 ×
256 Bytes

– Reserved F000 2000H - F000 21FFH –

ADC0 Analog-to-Digital Converter 0 F000 2200H - F000 23FFH 512 Bytes

ADC1 Analog-to-Digital Converter 1 F000 2400H - F000 25FFH 512 Bytes

SDLM Serial Data Link Module F000 2600H - F000 26FFH 256 Bytes

– Reserved F000 2700H - F000 27FFH –

P0 Port 0 F000 2800H - F000 28FFH 256 Bytes

P1 Port 1 F000 2900H - F000 29FFH 256 Bytes

P2 Port 2 F000 2A00H - F000 2AFFH 256 Bytes

P3 Port 3 F000 2B00H - F000 2BFFH 256 Bytes

P4 Port 4 F000 2C00H - F000 2CFFH 256 Bytes

P5 Port 5 F000 2D00H - F000 2DFFH 256 Bytes
User’s Manual 7-6 V2.0, 2001-02

TC1775
System Units

Memory Map of On-Chip Local Memories
Note: All reserved address regions within a peripheral unit or an address block normally
lead to a bus error. The exceptions are marked in Table 7-2.

P6 Port 6 (no registers available) F000 2E00H - F000 2EFFH 256 Bytes

P7 Port 7 (no registers available) F000 2F00H - F000 2FFFH 256 Bytes

P8 Port 8 F000 3000H - F000 30FFH 256 Bytes

P9 Port 9 F000 3100H - F000 31FFH 256 Bytes

P10 Port 10 F000 3200H - F000 32FFH 256 Bytes

P11 Port 11 F000 3300H - F000 33FFH 256 Bytes

P12 Port 12 F000 3400H - F000 34FFH 256 Bytes

P13 Port 13 F000 3500H - F000 35FFH 256 Bytes

– Reserved F000 3600H - F000 3EFFH –

PCP PCP Registers F000 3F00H - F000 3FFFH 256 Bytes

Reserved F000 4000H - F000 FFFFH –

PCP Data Memory (PRAM) F001 0000H - F001 0FFFH 4 KBytes

Reserved F001 1000H - F001 FFFFH –

PCP Code Memory (PCODE) F002 0000H - F002 3FFFH 16 KBytes

– Reserved F002 4000H - F00F FFFFH –

CAN1) Controller Area Network Module F010 0000H - F010 0BFFH 12 ×
256 Bytes

– Reserved F010 0C00H - FFFE FEFFH –

CPU Slave Interface Registers (CPS) FFFE FF00H - FFFE FFFFH 256 Bytes

Reserved FFFF 0000H - FFFF BFFFH –

Memory Protection Registers FFFF C000H - FFFF EFFFH 12 KBytes

Reserved FFFF F000H - FFFF FCFFH –

Core Debug Register (OCDS) FFFF FD00H -FFFF FDFFH 256 Bytes

Core Special Function Registers
(CSFRs)

FFFF FE00H - FFFF FEFFH 256 Bytes

General Purpose Register
(GPRs)

FFFF FF00H - FFFF FFFFH 256 Bytes

1) Access to unused address regions within this peripheral unit don’t generate a bus error

Table 7-2 Block Address Map of Segment 15 (cont’d)

Symbol Description Address Range Size
User’s Manual 7-7 V2.0, 2001-02

TC1775
System Units

Program Memory Unit
8 Program Memory Unit
The Program Memory Unit PMU controls the CPU code fetches from internal and external
code memory. The PMU consists of the functional blocks as shown in Figure 8-1:

• 8 KByte Boot ROM memory (BROM)
• 32 KByte scratch-pad code RAM (SPRAM)
• 1 KByte instruction cache (ICACHE)
• PMU control block
• Interface to the CPU Instruction Fetch Unit
• Interface to the EBU for external code fetches
• FPI Bus interface

Figure 8-1 PMU Block Diagram with Data Paths

PMU

MCB04721

CPU
Interface

64

To CPU Fetch Unit

SPRAM
32 KB

Refill Buffer
(RFB)

ICACHE
1 KB

6464

Boot ROM
8 KB

PMU
Control

32

FPI Bus Interface
Slave Master

32

To FPI Bus

EBU
Interface

32

From EBU

3232

64
User’s Manual 8-1 V2.0, 2001-02

TC1775
System Units

Program Memory Unit
The FPI Bus interface is a master/slave interface which handles all transactions between
FPI Bus and the PMU code memories. The master part of the interface is used when the
PMU needs to access resources which are located on the FPI Bus. The slave part of the
interface is used when another FPI Bus master needs to access PMU resources such
as the CSRAM.

The EBU interface is used for external instruction fetches from external burst mode Flash
memory devices.

The Instruction Cache contains the cache RAM with the tag RAM. The Refill Buffer is
mainly required for instruction code assembling and alignment as well as for external
Burst Flash access synchronization with the internal clock of the PMU. It can be
accessed while a cache refill is performed “Hit under Refill”.

8.1 Memories Controlled by PMU

Table 8-1 summarizes the sections of TC1775 internal and external code/program
memories that are controlled by the PMU.

Table 8-1 Address Map of PMU Related Memories

Segment Address Name Description

On-Chip Memory

11 BFFF E000H - BFFF FFFFH BROM Boot ROM
non-cached

12 C000 0000H - C000 7FFFH SPRAM Local Scratch-Pad Code RAM;
non-cached

External Program Memory

10 A000 0000H - AFFF FFFFH ExtMem External Program Memory,
cached

11 B000 0000H - BDFF FFFFH External Program Memory,
mappable into segment 10;
non-cached
User’s Manual 8-2 V2.0, 2001-02

TC1775
System Units

Program Memory Unit
8.2 Scratch-Pad RAM, SPRAM

The Scratch-Pad RAM (SPRAM) is a 32-KByte static RAM. As a code memory, it is
assigned especially to hold code that must be executed very fast (e.g. interrupt routines).

The SPRAM can be accessed from the FPI Bus side by another bus master, such as the
Data Memory Unit, DMU. On a read access from the FPI Bus (possible in supervisor
mode as well as in user mode), the data width can be only 32 bits (word) wide. The
natural alignment of the accessed data must be obeyed, that is, bytes can be aligned on
any byte boundary, half-words must be aligned to half-word (even byte) boundaries, and
word accesses must be aligned to word boundaries. Accesses not following this rule will
be flagged with an FPI Bus error by the PMU.

On a write access from the FPI Bus (only possible in supervisor mode!), the data width
can only be 32 bits wide and must be aligned to word boundaries. Byte and half-word
accesses are not allowed.

CPU fetch accesses to the address range of the SPRAM are never cached in the
ICACHE. They are always directly targeted to the SPRAM. A code fetch access from the
CPU to the SPRAM can be performed in one clock cycle, the data width of such an
access is 64 bits. Note that the CPU Fetch Unit can only read from the SPRAM and
never write to it.
User’s Manual 8-3 V2.0, 2001-02

TC1775
System Units

Program Memory Unit
8.3 Instruction Cache, ICACHE

The ICACHE of the PMU is a one-way set-associative cache with a size of 1 KByte. It is
organized in 32 cache lines with 32 bytes each. A 26-bit tag information field is assigned
to each cache line (see Figure 8-2).

Figure 8-2 CACHE Organization

8.3.1 Cache Organization

The organization of the ICACHE is 32 cache lines with 32 bytes per line. Each cache line
is divided into eight words (32 bits) with a valid bit in the tag line for each word. Alignment
of a cache line results to an 8-word address line border (address bits A[4:0] = 0). With
the 32/16-bit mixed instruction set formats of the TriCore, a full cache line can hold a
minimum of eight 32-bit instructions and a maximum of sixteen 16-bit instructions.

The address of a CPU instruction fetch is first decoded to determine the access target
(for example: Scratch Pad RAM, External Flash, address range accessible via FPI Bus,
cachable area). All CPU instruction fetch accesses in the address ranges of the cachable
area (segments 10) are targeted to the Refill Buffer. If the ICACHE is enabled and
ICACHE bypass disabled, the ICACHE is also targeted. If the address and its associated
instruction are found in the cache (Cache Hit), the instruction is passed to the CPU’s
Fetch Unit. If the address is not found in the cache (Cache Miss), the PMU’s cache
controller issues a cache refill sequence.

8.3.2 Cache Bypass Control

The ICACHE can be bypassed as controlled by bit PMU_CON.CBP. The default value
for bit CBP after reset is 1, thus bypassing of the ICACHE is enabled. If CBP is 0 (bypass
disabled), bit PMU_CON.CDIS must be cleared for enabling the ICACHE.

MCA04722

Tag for Cache Line 31

Tag for Cache Line 30

Tag for Cache Line 1

Tag for Cache Line 0

32
Tag
Lines

3FFH 3FEH

3DFH 3DEH

03FH 03EH

01FH 01EH

26 Bit

Tag SRAM

Cache Line 31

Cache Line 30

3E1H 3E0H

3C1H 3C0H

Cache Line 1

Cache Line 0

021H 020H

001H 000H

Cache SRAM

1 Byte

256 Bit

32
Cache
Lines
User’s Manual 8-4 V2.0, 2001-02

TC1775
System Units

Program Memory Unit
8.3.3 Refill Buffer

The Refill Buffer (RFB) can be assumed to be a small cache, 256 bits wide and divided
into eight words (32 bits) with a valid bit for each word. It is mainly required for instruction
code assembling and alignment as well as for external Burst Flash access
synchronization with the internal clock of the PMU. The Refill Buffer can be accessed
while a cache refill is performed “Hit under Refill”.

The following data sources are handled by the Refill Buffer:

– FPI Bus data (32 bits wide)
– Instruction fetch bus (external access data, 32 bits wide)

8.3.4 Refill Sequence for Cache and Refill Buffer

Cache refill is performed with a Critical Word First strategy. This means that the refill
sequence starts with the instruction actually requested (the critical word) by the CPU
Fetch Unit and continues to the end of the cache line. A refill will always be done in 32-bit
quantities. If the critical word maps onto the first 32-bit entry in the cache line, a refill of
the entire cache line, eight words, will be performed. If the critical word maps onto the
last 32-bit entry of a cache line, only this word will be refilled. In any case all valid bits of
the refilled cache line are cleared. Thus, depending on the location of the critical word,
the refill sequence will always be from one up to eight words without wrap-around (the
instructions mapping to the refilled cache line which are on addresses lower than that of
the critical word are not fetched, except for instructions located within the word
containing the critical word). A refill sequence will always only affect one cache line.
There is no prefetching of the next cache line (no crossing of lines).

8.3.5 Cache Flush Operation

The ICACHE and the Refill Buffer are flushed (cache lines are set as invalid) when bit
PMU_CON.FLACC is set. This bit remains set as long as the ICACHE and RFB flush
operation is ongoing and is reset when it is finished.

The Refill Buffer is flushed (cache lines are set as invalid) when bit PMU_CON.FLRFB
is set. This bit remains set as long as the RFB flush operation is ongoing and is reset
when it is finished.

Table 8-2 ICACHE Enable and Bypass Control

CDIS CPB Description

0 0 Refill Buffer and ICACHE accessible

0 1 Refill Buffer accessible; ICACHE not accessible but cache
lines remain valid

1 0 Refill Buffer accessible; ICACHE not accessible and cache
lines are set invalid (equal to an ICACHE flush operation)1 1
User’s Manual 8-5 V2.0, 2001-02

TC1775
System Units

Program Memory Unit
8.4 External Code Fetches via External Bus Interface Unit

The PMU interface to the EBU is especially designed to perform burst mode cycle
operations to an external burst flash code memory. Burst mode code fetch operations
requested by the PMU use the EBU with its interface signals. During these burst mode
code fetch operations, external accesses via the FPI Bus Interface of the EBU are
delayed. The following external burst Flash memory devices are supported:

• INTEL 28F800F3 and 28F160F3 Fast Boot Block Flash Memory
• AMD 29BL162 Burst Mode Flash Memory
• 32-bit data bus width
• The timings of PMU burst mode cycle operations are controlled by the PMU External

Instruction Fetch Control Register (see Section 8.6.2). The following parameters of
burst mode cycle operations can be selected:
– the number of address cycles (1 or 2), length of ADV signal
– the delay between the initial address cycle and the first data cycle (0 to 7 cycles)
– the number of data cycles (1 or 2)
– the functionality of the WAIT input, data sample delay or terminate burst function
– the Flash specific number of linear burst data cycles which are provided by the

Flash without access delay.
– the number of data cycles for one burst operation.

Figure 8-3 shows a basic timing of synchronous burst mode operation. Other examples
on burst mode timings are included in Chapter 12 of this User’s Manual.
User’s Manual 8-6 V2.0, 2001-02

TC1775
System Units

Program Memory Unit

Figure 8-3 Synchronous Burst Read Operation Example

8.5 Boot ROM

The TC1775 contains 8 KByte of Boot ROM memory, which can be used for:

– Device operating mode initialization routines
– Bootstrap loader support
– Test functions

8.5.1 Bootstrap Loader Support

An integrated bootstrap mechanism is provided to support a system start with boot
operation after reset. If the boot mode is selected during reset, program execution is
started out of the Boot ROM. The functionality of the boot routine will be similar to the
one which was implemented in other 16-Bit Infineon microcontrollers.

Note: The bootstrap loader and the functionality of the boot routines will be described in
detail in a special document.

MCT04723

CLKIN

ADV

A[25:0]

RD

BAA

Cycle 0 Cycle 1 Cycle 2 Cycle 4 Cycle 5

Address

Cycle 6
or

Cycle 0
Cycle 3 Cycle 4

1)

New
Addr

1) The dotted waveforms indicate the start of a new address cycle

D[31:0] Data of
Addr+12

Data of
Addr+8

Data of
Addr+4

Data of
Addr

CS0
CODE
User’s Manual 8-7 V2.0, 2001-02

TC1775
System Units

Program Memory Unit
8.6 PMU Registers

As shown in Figure 8-4, the following control register are implemented in the PMU.
These registers and their bits are described in this section.

Figure 8-4 PMU Registers

In the TC1775, the registers of the PMU are located in the following address range:

– Module Base Address: C7FF FF00H
Module End Address: C7FF FFFFH

– Absolute Register Address = Module Base Address + Offset Address
(offset addresses see Table 8-3)

Table 8-3 PMU Registers

Register
Short Name

Register Long Name Offset
Address

Description
see

PMU_CON PMU Control Register 0010H Page 8-9

PMU_EIFCON PMU External Instruction Fetch Control
Register

0018H Page 8-11

MCA04724

PMU_CON

Control Registers

PMU_EIFCON
User’s Manual 8-8 V2.0, 2001-02

TC1775
System Units

Program Memory Unit
8.6.1 PMU Control Register

PMU_CON
PMU Control Register Reset Value: 0400 3F06H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0
TFPI
CAC

C
1

TCA
RFB
HIT

0

rw w rw rw r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SEWC 1 0 FL
RFB

FL
ACC

TE
RF 0 1 CBP CDIS

r rw rw r rwh rwh rw rw rw rw rw

Field Bits Type Description

CDIS 0 rw Instruction Cache Disable
0 ICACHE enabled (default after reset)
1 ICACHE disabled

CBP 1 rw Cache Bypass
0 ICACHE is not bypassed
1 ICACHE is bypassed (default after reset)

1 2 rw Reserved
Bit is 1 after reset and can be read/written without any
function. A 0 is read if a 0 was written before.

0 3 rw Reserved
Bit is 0 after reset and can be read/written without any
function. A 1 is read if a 1 was written before.

TERF 4 rw Terminate External Refill on a New Miss
0 RFB refill operation is not terminated on a cache

miss which occurs on an access to an external
burst mode code memory (default after reset).

1 RFB refill operation is terminated on a cache
miss which occurs on an access to an external
burst mode code memory.
User’s Manual 8-9 V2.0, 2001-02

TC1775
System Units

Program Memory Unit
FLACC 5 rwh Flush Caches
0 No flush operation (default after reset)
1 An ICACHE and Refill Buffer flush operation is

executed
Bit is reset by hardware after the ICACHE flush
operation has been finished.

FLRFB 6 rwh Flush Refill Buffer
0 No flush operation (default after reset)
1 Refill Buffer flush operation is executed
Bit is reset by hardware after the Refill Buffer flush
operation has been finished.

1 [10:8] rw Reserved
Bit is 1 after reset and can be read/written without any
function. A 0 is read if a 0 was written before.

SEWC [13:11] rw Subsequent Access Wait Cycles for External
Flash
Controls minimum wait cycles between consecutive
burst accesses from external Flash.
0H-7H 0 to 7 wait cycles inserted

 (default after reset are 7 cycles)

TCARFBHIT 25 rw Test Cache/Refill Buffer Hit
This bit should be always written by the user with 0.

1 26 rw Reserved
Bit is 1 after reset and should be written with 1.

TFPICACC 27 w Test for FPI Cache Access
0 Normal operation.
1 Test mode with SPRAM switched off and cache

visible is enabled; Bit is always read as 0.
This bit should be always written with 0 by the user.

0 [31:28] rw Reserved
Bit is 0 after reset and should be written with 0.

0 7,
[24:14]

r Reserved; read as 0; should be written with 0.

Field Bits Type Description
User’s Manual 8-10 V2.0, 2001-02

TC1775
System Units

Program Memory Unit
8.6.2 External Instruction Fetch Control Register

PMU_EIFCON
PMU External Instruction Fetch Control Register Reset Value: 0000 005FH

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SIDC CS0
D 0 EIFBLEN FBBLEN

FBB
M

SEL
WAIT
FUNC

DAT
LEN RDWLEN ADV

LEN

r rw rw rw rw rw rw rw rw rw rw

Field Bits Type Description

ADVLEN 0 rw Number of Address Cycles
This bit defines the number of address cycles.
0 One address cycle
1 Two address cycles (default after reset)

RDWLEN [3:1] rw Number of Read Wait Cycles
This bit field defines the delay (read wait cycles)
between the initial address cycle and the first data
cycle.
0H-7H 0 to 7 read wait cycles

 (7H is default after reset)

DATLEN 4 rw Number of Data Cycles
This bit defines the number of data cycles.
0 One data cycle
1 Two data cycles (default after reset)

WAITFUNC 5 rw Operation of the WAIT Input
Defines the operation of the WAIT input.
0 WAIT input operates as a wait data bus

function on bursts. (default after reset)
1 The WAIT input operates as a terminate burst

function.
User’s Manual 8-11 V2.0, 2001-02

TC1775
System Units

Program Memory Unit
FBBMSEL 6 rw Flash Burst Buffer Mode Select
This bit defines the mode of the Flash Burst Buffer.
0 Continuous mode
1: Flash burst buffer length defined by value in

FBBLEN (default after reset)

FBBLEN [9:7] rw Flash Burst Buffer Length
This bit field defines the maximum number of linear
Flash burst data cycles which are provided by the
Flash without additional access delay.
000B unlimited (default after reset)
001B 4 linear burst data cycles
010B 8 linear burst data cycles
011B 16 linear burst data cycles
100B 32 linear burst data cycles
101B 64 linear burst data cycles
110B Reserved; don’t use this combination
111B Reserved; don’t use this combination

EIFBLEN [11:10] rw External Instruction Flash Burst Length
This bit field defines the maximum number of burst
data cycles which are initiated by the PMU. A new
burst cycle starting with address cycles is always
initiated at the 2EIFBLEN address limit.
00B 1 data access (default after reset)
01B 2 data accesses
10B 4 data accesses
11B 8 data accesses

0 12 rw Reserved
Bit is 0 after reset and can be read/written without
any function. A 1 is read back if a 1 was written
before.

CS0D 13 rw Chip Select 0 Disable
This bit defines whether CS0 is generated during
burst mode accesses or not.
0 CS0 is activated during code fetch (default

 after reset)
1 CS0 is not activated during code fetch

Field Bits Type Description
User’s Manual 8-12 V2.0, 2001-02

TC1775
System Units

Program Memory Unit
SIDC 14 rw Save Initial Data Cycle
This bit defines whether address cycle 2 (Cycle 1 in
Figure 8-3) is available during a synchronous burst
operation or not.
0 Cycle 1 is available (not saved; default after

reset)
1 Cycle 1 is not avaiable (saved)

0 [31:15] r Reserved; read as 0; should be written with 0.

Field Bits Type Description
User’s Manual 8-13 V2.0, 2001-02

TC1775
System Units

Data Memory Unit
9 Data Memory Unit
The Data Memory Unit (DMU) shown in Figure 9-1, contains:

• 32 KBytes data memory (SRAM)
• 8 KBytes data memory for standby operation (SBSRAM)
• DMU control block
• Interface to the CPU Load/Store Unit
• Interface to the FPI Bus

Figure 9-1 Block Diagram of the Data Memory Unit (DMU)

The FPI Bus interface of the DMU can operate in either master or slave mode. The
master part of the interface is used when the CPU Load/Store Unit requests a data
access to a data resource that is outside the DMU on the FPI Bus (for example, a module
connected to the FPI Bus, such as the External Bus Control Unit (EBU)). The slave part
of the interface is required when another FPI Bus master (such as the PCP) needs to
access the DMU data memory.

The data width for read and write accesses to/from the data memory within the DMU via
the FPI Bus can be 16 or 32 bits (half-word or word). The natural alignment of the
accessed data must be obeyed, that is, half-words must be aligned to half-word (even
byte) boundaries, and word accesses must be aligned to word boundaries. Accesses not
following this rule will be flagged with a bus error by the DMU.

DMU

FPI Bus Interface

MCB04725

CPU
Interface

2 × 64

To CPU Load/Store Unit

DMU
Control

Slave Master

32

SBSRAM
8 KB

SRAM
32 KB

2 × 64

Standby

Power
Supply

FPI Bus
User’s Manual 9-1 V2.0, 2001-02

TC1775
System Units

Data Memory Unit
The data memory is located at the beginning of the non-cacheable Segment 13.

The placement of the SRAM into the lower half of Segment 13 facilitates the use of the
absolute addressing mode for load and store operations, supporting fast access to data
stored in the lower 16 KBytes of the data memory (in absolute addressing mode, an
address in the lower 16 KBytes of each of the segments can be specified as an
immediate address of a load/store instruction; such an address does not have to first be
loaded into an address register).

Note: Read-modify-write instructions from FPI Bus to DMU memory are locked.

Table 9-1 DMU Address Map

Seg-
ment

Address Name Description CPU Access FPI Bus
Access

Load Store Read Write

13

D000 0000H -
D000 7FFFH

SRAM Data Memory 1)

1) CPU Load/Store accesses to this range can be performed in User or Supervisor Mode. Access width can be
8, 16, 32 or 64 bit, with 8-bit data aligned on byte boundaries and all others aligned on half-word (16 bit)
boundaries. Misaligned accesses to the data memory by the CPU’s Load/Store Unit will not occur since such
conditions will already be handled inside the CPU (Unalignment trap, ALN).

2)

2) The read/write accesses from the FPI Bus can be performed in User or Supervisor Mode. Access width can
be 16 or 32 bits, with data aligned on its natural boundary. Misaligned access will result in a bus error.

D000 8000H -
D000 9FFFH

SBSRAM Data Memory
(standby powered)

D000 A000H -
D000 BFFFH

– SBSRAM mirrored

D000 C000H -
D000 DFFFH

– SBSRAM mirrored

D000 E000H -
D000 FFFFH

– SBSRAM mirrored

D000 A000H -
D7FF FEFFH

Reserved 3)

3) This range is reserved and load/store accesses will be flagged with a Load/Store Range Error Trap.

BE BE

D7FF FF00H -
D7FF FFFFH

– DMU Registers 1) 2)

D800 0000H -
DFFF FFFFH

Reserved – BE BE
User’s Manual 9-2 V2.0, 2001-02

TC1775
System Units

Data Memory Unit
9.1 DMU Trap Generation

Several error conditions can lead to a trap being reported by the DMU back to the CPU.
These include range errors, DMU control register access errors, and FPI Bus errors.

To facilitate a detailed analysis of an error/trap, the DMU provides two read-only status
registers that hold information about the type of the error. The Synchronous Trap Flag
Register (DMU_STR) contains the flags indicating the cause of a synchronous trap,
while the Asynchronous Trap Flag Register (DMU_ATR) holds the flags for the cause of
an asynchronous trap. In the TC1775, load operations are always synchronous, while
store operations are asynchronous to the instruction stream.

In general, whether an operation in the DMU can result in a synchronous or
asynchronous error trap depends on the actual condition and sequence of operation in
the DMU. Thus, for each of the possible DMU error scenarios, an error flag is provided
in both registers DMU_STR and DMU_ATR. When an error is detected in the DMU, the
respective trap signal is generated to the CPU and the appropriate bit in the associated
trap flag registers is set.

The Trap Service Routine (TSR) invoked through the trap then needs to read the
appropriate DMU Trap Flag Register to further determine the root cause of the trap.
Reading a DMU Trap Flag Register in Supervisor Mode returns the contents of the
register, and then clears the register to 0. Reading a trap flag register in User Mode only
returns the contents of the register, but leaves it unaltered. The latter operation is
implemented to allow debuggers/emulators to examine the status of the trap flag register
without modifying it. The TSRs of user application code should always read these
registers in Supervisor Mode in order to clear their contents.

9.1.1 FPI Bus Error

Two status flags are implemented to indicate an FPI Bus error. One flag indicates errors
resulting from a FPI Bus store operation, the other one indicates errors resulting from a
FPI Bus load operation. The appropriate flags (DMU_STR.LFESTF or DMU_STR.
SFESTF) are set if a DMU operation to or from the FPI Bus is performed, and an error
occurs on the FPI Bus.

Please note that in case of FPI Bus errors, an FPI Bus error interrupt is generated by the
Bus Control Unit (BCU) separate from the DMU trap generation. The appropriate trap
service routine in the application code needs to take this into account and should also
handle the interrupt request from the BCU.
User’s Manual 9-3 V2.0, 2001-02

TC1775
System Units

Data Memory Unit
9.1.2 Range Error

Range errors are caused by accesses to reserved address ranges in the DMU.
Accesses to address ranges in Segment 13 (DMU) which are not covered by the data
memory or the DMU control register ranges will lead to a range trap.

In the TC1775, the entire Segment 9 is reserved, no memory is implemented in this
range. Accesses to Segment 9 will always cause a DMU Range Error Trap.

In each of the DMU trap flag registers, two status flags are implemented to indicate a
range error. One flag indicates errors resulting from a store operation (DMU_ATR.
SRESTF), the other one indicates errors resulting from a load operation (DMU_STR.
LRESTF). The appropriate flag is set if an access to the reserved address ranges is
performed.

9.1.3 DMU Register Access Error

DMU register access errors are caused if an improper access to a DMU register is
performed.

CPU load/store access to the DMU registers must only be made with double-word-
aligned word accesses. An access not conforming to this rule, or an access that does
not follow the specified privilege mode (supervisor mode, EndInit-protection), or a write
access to a read-only register, will lead to a DMU Control Register Error trap. An access
to reserved locations within the DMU register address area will not be flagged with an
error. A read will return all zeros, a write will have no effect.

In each of the DMU trap flag registers, two status flags are implemented to indicate a
register access error. One flag indicates errors resulting from a store operation
(DMU_ATR.SCESTF), the other one indicates errors resulting from a load operation
(DMU_STR.LCESTF).The appropriate flag is set if an improper access to the DMU
registers is performed.

9.1.4 Cache Management Error

Cache management errors are generated when one of the special cache instructions,
DFLUSH, DINV and DFLINV, specify a non-cacheable address.

Note: Because of a missing data cache, these instructions should not be used in the
TC1775.
User’s Manual 9-4 V2.0, 2001-02

TC1775
System Units

Data Memory Unit
9.2 Overlay Functionality

Overlay functionality provides the means to redirect data fetches from the code memory
to dedicated areas within the internal and external data memory range. The purpose of
this functionality is to reprogram parameters stored normally in the code memory during
run time. The instruction fetch is not affected by redirection. Additionally, read and write
accesses from addresses F000 2800H - F000 2CFFH (ports P0 to P4) can be redirected
to the External Bus Unit (EBU). Table 9-2 shows all available access types and
redirection types.

The following sections describe the initial access type (from…) and the type of
redirection (… to …).

Table 9-2 Access Types and Redirection Types

Access Type Redirection

to internal Data Memory
(Segment D)

to external Data Memory
(Segment A, B, E)

Data Access from external
Code Memory1)

1) Note that byte, half-word, and word data accesses to the Code Memory can be redirected. Double-word
accesses are always directed to the Code Memory.

Section 9.2.1 Section 9.2.2

Data Access from external
Code Memory (using
Signal CODE and CS0)

not possible Section 9.2.3

Read/Write Access from
Port Registers

not possible Section 9.2.4
User’s Manual 9-5 V2.0, 2001-02

TC1775
System Units

Data Memory Unit
9.2.1 Redirection From External Code to Internal Data Memory

Data reads from external code memory (Segment 10 or 11) can be redirected to internal
data memory (Segment 13), as shown Figure 9-2.

Figure 9-2 Redirection From External Code to Internal Data Memory

The total size of the internal Overlay RAM area is 8 KBytes divided into four blocks of
2 KBytes each. The Overlay RAM area is located on 8-KByte page boundaries within the
internal data memory (Segment 13). The start address of the Overlay RAM area is
specified in the Internal Overlay RAM Base Address Page Register (DMU_IORBAP).
Each of the four 2-KByte blocks within the Overlay RAM can be individually enabled for
overlay functionality by bit OEN in the corresponding Internal Overlay Control Register
DMU_IOCRn (n = 3-0).

There are four overlay RAM control registers (DMU_IOCRn, n = 3-0) assigned to control
the internal overlay functionality. Each register specifies the start address of an
overlayed 2-KByte block within the lower 128 MBytes of Segment 10 and 11. This start
address can be placed on any 2-KByte boundary within the external code memory, using
bit field OVPTR.

Code
Fetch
(unaffected) MCA04726

Data
Read

Data
Read

Redirect

DMU_IOCRn

DMU_IORBAP

SRAM

0 MB

128 MB

A
dd

re
ss

 S
eg

m
en

t 1
0

an
d

11

External Code Memory 40 K Local Data Memory

SRAM

40 K

32 K

0 K

A
dd

re
ss

 S
eg

m
en

t 1
3

SBSRAM

Overlay RAM
(8 Kbyte)
User’s Manual 9-6 V2.0, 2001-02

TC1775
System Units

Data Memory Unit
The resulting address on a data read to the external code memory is compared with the
addresses stored in the Internal Overlay Control Register. If the overlay function is
enabled and an address match occurs, an read access to the corresponding address in
the Overlay RAM area is performed. The access to the external code memory is
performed in parallel and determines the timing of the redirected data access.

9.2.2 Redirection From External Code to External Data Memory

Data reads from external code memory (Segment 10 or 11) can be redirected to external
data memory, as shown in Figure 9-3.

Figure 9-3 Redirection From External Code to External Data Memory

Two external overlay control registers (DMU_EOCRn, n = 0, 1) control the redirection
from external code memory to external data memory. Each register specifies the start
address of an overlayable code memory area (DMU_EOCRn.OVPTR) and the size of
the overlayable area (DMU_EOCRn.OVSIZE). The start address of each overlayable
area must be located on addresses that are a multiple of the overlayable area’s size. The
external overlay memory is enabled by bit DMU_EOCRn.OEN. Bit field

Code
Fetch
(unaffected) MCA04727

Data
Read

Data
Read

Redirect

OVPTRn

OVSIZEn

OVPTRn

OVSIZEn

0 MB

128 MB

A
dd

re
ss

 S
eg

m
en

t 1
0

an
d

11

External Code Memory External Data Memory
User’s Manual 9-7 V2.0, 2001-02

TC1775
System Units

Data Memory Unit
DMU_EOCRn.SEG defines the segment of the external overlay area (valid segments:
10, 11 and 14).

The outgoing address on a data read from Segment 10 and 11 is checked against the
addresses stored in the overlay address register. If the external overlay memory is
enabled and an address match occurs, an access to the corresponding address in the
external overlay memory is performed. Any of the external chip select signals can be
programmed to be active on the overlayed access.

Note: If external and internal overlay functionality is enabled and the address on a data
fetch to the code memory matches an internal overlay area as well as an external
overlay area, two redirected accesses are performed. The redirected access to
the external overlay memory determines the access timing, while the data
returned by the redirected access to the internal overlay memory is used.

9.2.3 Redirection From External Code via CODE to External Data
Memory

Data reads from external code memory can be redirected to external data memory, using
the circuitry as shown in Figure 9-4.

Figure 9-4 Redirection From External Code to External Data Memory

A data read from the code memory drives signal CS0 active low (CS0 = 0) and drives
signal CODE inactive high (CODE = 1). The inverted CODE signal and the CS0 signal
are logically or’ed and the data read from the code memory is redirected to the data

Code Fetch
via signal
CODE
(unaffected)

MCA04728

Code
Memory

Data
Read

Data
Memory

Data
Read

Code Fetch
via FPI Bus
(redirected)

CS0CODE

Redirect

>
1

OEOE
User’s Manual 9-8 V2.0, 2001-02

TC1775
System Units

Data Memory Unit
memory. Note that for redirection from code to data memory, bit CS0D must be set in
Register PMU_EIFCON

The PMU burst mode instruction fetch is not affected by this redirection and will be
performed from the code memory as normal. An instruction fetch via the FPI Bus is
redirected to the data memory.

9.2.4 Redirection From Ports to External Data Memory

Data accesses via the FPI Bus to address region F000 2800H - F000 2CFFH (Port P0 to
P4) can be redirected to the EBU), as shown in Figure 9-5. In the TC1775, redirection
is restricted to segments 10, 11 or 14.

Figure 9-5 Redirection of Data Access from Ports to External Data Memory

Register DMU_POCR controls the port overlay functionality. The port redirection
functionality is enabled by bit DMU_POCR.OEN. Bit field DMU_POCR.SEG defines the
segment of the port overlay area (valid segments: 10, 11 and 14).

MCA04729
Data
Access

Redirect

EBU

Port P0

S
eg

m
en

t 1
5

2800H

Port P1

Port P2

Port P3

Port P4

2900H

2A00H

2B00H

2C00H

2CFFH

External
Address
Space

Offset
Address
User’s Manual 9-9 V2.0, 2001-02

TC1775
System Units

Data Memory Unit
9.3 DMU Registers

As shown in Figure 9-6 and Table 9-3, one control register, two trap status registers,
and several overlay register are implemented in the DMU. The registers and their bits
are described in the following sections.

Figure 9-6 DMU Registers

Table 9-3 DMU Registers

Register
Short Name

Register Long Name Offset
Address

Description
see

DMU_CON DMU Control Register 0010H Page 9-11

DMU_STR DMU Synchronous Trap Flag Register 0018H Page 9-12

DMU_ATR DMU Asynchronous Trap Flag Register 0020H Page 9-13

DMU_IOCR0 DMU Internal Overlay Control Register 0 0080H Page 9-14

DMU_IOCR1 DMU Internal Overlay Control Register 1 0088H

DMU_IOCR2 DMU Internal Overlay Control Register 2 0090H

DMU_IOCR3 DMU Internal Overlay Control Register 3 0098H

DMU_EOCR0 DMU External Overlay Control Register 0 00A0H Page 9-15

DMU_EOCR1 DMU External Overlay Control Register 1 00A8H

DMU_POCR DMU Port Overlay Control Register 00B0H Page 9-17

DMU_IORBAP DMU Internal Overlay RAM Base Address
Page Register

00B8H Page 9-18

MCA04730

DMU_CON DMU_IOCR0DMU_STR

Control Registers Overlay RegistersStatus Registers

DMU_ATR DMU_IOCR1

DMU_IOCR2

DMU_IOCR3

DMU_EOCR0

DMU_EOCR1

DMU_POCR

DMU_IORBAP
User’s Manual 9-10 V2.0, 2001-02

TC1775
System Units

Data Memory Unit
Note: Accesses to DMU registers must be made with double-word-aligned word
accesses. An access not conforming to this rule will cause a bus error if the access
was from the FPI Bus, or a trap in case of a CPU load/store access.

In the TC1775, the registers of the DMU are located in the following address range:

– Module Base Address. D7FF FF00H
Module End Address. D7FF FFFFH

– Absolute Register Address = Module Base Address + Offset Address
(offset addresses see Table 9-3)

9.3.1 Control Register

The 8-KByte data memory for standby operation (SBSRAM) of the TC1775 located in
the address range D000 8000H - D000 9FFFH must be locked before it is put into the
standby mode (standby power supplied via pin VDDSB). Otherwise data of the standby
RAM can be corrupted during this operation.

DMU_CON
DMU Control Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0
STB
LOC

K
r rw

Field Bits Type Description

STBLOCK 0 rw Lock Standby Data Memory
Bit can be set by software (in supervisor mode only).
Bit can only be reset by hardware reset operation.
0 Normal operation of standby data memory
1 Standby data memory is locked. No read or

write access of/to standby SRAM is possible.

0 [31:1] r Reserved; read as 0; should be written with 0;
User’s Manual 9-11 V2.0, 2001-02

TC1775
System Units

Data Memory Unit
9.3.2 Synchronous Trap Flag Register

The Synchronous Trap Flag Register, DMU_STR, holds the flags that inform about the
root cause of a DMU Synchronous Trap (DSE) event.

Note: When reading DMU_STR in Supervisor Mode, the contents of the register are
returned and the bits of the register are then automatically cleared. Reading
DMU_STR in User Mode returns the contents only, the register is not cleared.

DMU_STR
DMU Synchronous Trap Flag Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 LCE
STF 0 LFE

STF 0 LRE
STF

r rh r rh r rh

Field Bits Type Description

LRESTF 0 rh Load Range Synchronous Error Flag
0 No error
1 Synchronous load range error has occurred

LFESTF 2 rh FPI Bus Load Synchronous Error Flag
0 No error
1 Synchronous FPI Bus load error has occurred

LCESTF 4 rh DMU Register Load Synchronous Error Flag
0 No error
1 Synchronous DMU register load error has

occurred

0 1, 3,
[31:5]

r Reserved; read as 0.
User’s Manual 9-12 V2.0, 2001-02

TC1775
System Units

Data Memory Unit
9.3.3 Asynchronous Trap Flag Register

The Asynchronous Trap Flag Register, DMU_ATR, holds the flags that inform about the
root cause of a DMU Asynchronous Trap (DAE) event.

Note: When reading DMU_ATR in Supervisor Mode, the contents of the register are
returned and the bits of the register are automatically cleared. Reading DMU_ATR
in User Mode returns the contents only, the register is not cleared.

DMU_ATR
DMU Asynchronous Trap Flag Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 CME
ATF 0 SCE

ATF 0 SFE
ATF 0 SRE

ATF 0

r rh r rh r rh r rh r

Field Bits Type Description

SREATF 1 rh Store Range Asynchronous Error Flag
0 No error
1 Asynchronous error has occurred

SFEATF 3 rh FPI Bus Store Asynchronous Error Flag
0 No error
1 Asynchronous error has occurred

SCEATF 5 rh DMU Register Store Asynchronous Error Flag
0 No error
1 Asynchronous error has occurred

CMEATF 11 rh Cache Management Asynchronous Error Flag
0 No error
1 Asynchronous error has occurred

Note: see also Section 9.1.4

0 0, 2, 4,
[10:6],
[31:12]

r Reserved; read as 0.
User’s Manual 9-13 V2.0, 2001-02

TC1775
System Units

Data Memory Unit
9.3.4 Overlay Functionality Registers

In the TC1775, there are four internal overlay control registers. Each DMU_IOCR
register specifies the start address of an overlayed address space within Segment 10
and Segment 11. If bit OEN is 0, the appropriate overlay area is disabled. The address
range of the external code memory that can be overlaid is 128 MBytes. A data read
access to an overlaid external code memory area is redirected to the specified address
within the internal data memory (Segment 13).

The start address within the overlay control register layout is specified in such a way that
the real address inside Segment 13 may be generated without any shifting.

Note: The DMU_IOCRn registers can be only read/written using 32-bit accesses.

DMU_IOCRn (n = 0-3)
DMU Internal Overlay Control Register n Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

OEN 0 OVPTR

rw r rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OVPTR 0

rw r

Field Bits Type Description

OVPTR [26:11] rw Code Memory Overlay Area n Start Address
Pointer
This address pointer specifies the 2K start address
of the overlayable area n located in the external
code memory.

OEN [31:28] rw Enable Code Memory Overlay RAM Area n
This bit field enables the internal overlay function for
the external code memory overlayable area n.
0000B Overlay function is disabled
1010B Overlay function is enabled
others Reserved; do not use these combinations;

0 [10:0],
27

r Reserved; read as 0; should be written with 0.
User’s Manual 9-14 V2.0, 2001-02

TC1775
System Units

Data Memory Unit
There are two external overlay control registers. Each DMU_EOCR register specifies the
start address and size of an overlaid memory block within Segment 10 and Segment 11.
A data read access to such an overlaid memory block can be redirected to external data
memory located either in Segment 10, 11 or 14.

A data fetch to an externally overlaid region results in a FPI Bus access with an altered
segment number and bit 27 forced to 0.

DMU_EOCRn (n = 0, 1)
DMU External Overlay Control Register n Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

OEN SEG 0 OVPTR

rw rw r rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OVPTR 0 OVSIZE

rw r rw

Field Bits Type Description

OVSIZE [3:0] rw Overlayable Memory Size
This value defines the size of the overlayed
external code memory block n.
OVSIZE Block Size
0000B 8 KBytes
0001B 16 KBytes
0010B 32 KBytes
0011B 64 KBytes
0100B 128 KBytes
0101B 256 KBytes
0110B 512 KBytes
0111B 1 MByte
1000B 2 MBytes
1001B 4 MBytes
1010B 8 MBytes
1011B 16 MBytes
1100B 32 MBytes
1101B 64 MBytes
1110B 128 MBytes
1111B 128 MBytes
User’s Manual 9-15 V2.0, 2001-02

TC1775
System Units

Data Memory Unit
Note: The DMU_EOCRn registers allow 32-bit access only.

OVPTR [26:13] rw Overlay Area n Start Address Pointer
This address pointer specifies the start address of
the overlayable area n within the external code
memory which is redirected.
The start address of an overlayable area must be a
multiple of OVSIZE.

SEG [30:28] rw External Memory Segment Selection
Defines the external memory segment which is
used for external overlay.
010B Redirection to Segment 10
011B Redirection to Segment 11
110B Redirection to Segment 14
others Reserved; leads to unpredictable results.

OEN 31 rw Enable External Overlay for Code Memory
Area n
Enables the external overlay function for the Code
Memory overlayable area n.
0 Overlay function is disabled
1 Overlay function is enabled

0 [12:4],
27

r Reserved; read as 0; should be written with 0.

Field Bits Type Description
User’s Manual 9-16 V2.0, 2001-02

TC1775
System Units

Data Memory Unit
A DMU data access via the FPI Bus to the port addresses F000 2800H - F000 2CFFH
(Port 0 to Port 4) can be redirected to the same address within any of the Segments 8 to
15. In the TC1775, redirection is restricted to Segments 10, 11 or 14.

Note: The DMU_POCRn registers allow 32-bit access only.

DMU_POCR
DMU Port Overlay Control Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

OEN SEG 0

rw rw r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

r

Field Bits Type Description

SEG [30:28] rw External Memory Segment Selection
defines the external memory segment which is
used for port overlay.
010B Redirection to Segment 10
011B Redirection to Segment 11
110B Redirection to Segment 14
others Reserved; leads to unpredictable results.

OEN 31 rw Enable Port Overlay Function
Enables the port overlay function for port 0 to 4.
0 Overlay function is disabled
1 Overlay function is enabled

0 [27:0] r Reserved; read as 0; should be written with 0.
User’s Manual 9-17 V2.0, 2001-02

TC1775
System Units

Data Memory Unit
The DMU_IORBAP register is used to define the start address of the 8-KByte overlay
RAM block, located in the internal data RAM.

Note: The DMU_IORBAP register allows 32-bit access only.

DMU_IORBAP
DMU Internal Overlay RAM Base Address Page Register

Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BADDR 0

rw r

Field Bits Type Description

BADDR [15:13] rw Internal Overlay RAM Page Base Address
This address pointer specifies the base address of
the 8-KByte overlay RAM block located in the
internal data RAM.

0 [12:0],
[31:20]

r Reserved; read as 0; should be written with 0.
User’s Manual 9-18 V2.0, 2001-02

TC1775
System Units

Memory Protection System
10 Memory Protection System
This chapter describes memory protection for the TC1775. Topics covered include the
architecture of the memory protection system and the memory protection registers.

10.1 Memory Protection Overview

The TC1775 memory protection system specifies the addressable range and read/write
permissions of memory segments available to the currently executing task. The memory
protection system controls the position and range of addressable segments in memory.
It also controls the kinds of read and write operations allowed within addressable
memory segments. Any illegal memory access is detected by the memory protection
hardware, which then invokes the appropriate Trap Service Routine (TSR) to handle the
error. Thus, the memory protection system protects critical system functions against both
software and hardware errors. The memory protection hardware can also generate
signals to the Debug Unit to facilitate tracing illegal memory accesses.

As shown in Figure 10-1, there are two Memory Protection Register Sets in the TC1775,
numbered 0 and 1, which specify memory protection ranges and permissions for code
and data. The PSW.PRS bit field determines which of these is the set currently in use by
the CPU. Because the TC1775 uses a Harvard-style memory architecture, each Memory
Protection Register Set is broken down into a Data Protection Register Set and a Code
Protection Register Set. Each Data Protection Register Set can specify up to four
address ranges to receive particular protection modes. Each Code Protection Register
Set can specify up to two address ranges to receive particular protection modes.

Each of the Data Protection Register Sets and Code Protection Register Sets
determines the range and protection modes for a separate memory area. Each contains
register pairs which determine the address range (the Data Segment Protection
Registers and Code Segment Protection Registers) and one register (Data Protection
Mode Register) which determines the memory access modes which apply to the
specified range.

The pairs of memory range registers determine the lower address boundary and the
upper address boundary of each memory range. The Data Protection Mode Registers
and Code Protection Mode Registers determine the access permissions for the ranges
specified in their corresponding address range registers.

The memory protection system can also be used to generate signals to the Debug Unit
when the processor attempts to access certain memory addresses. When used this way,
values in the memory range registers are regarded as individual addresses, instead of
defining an address range. An equality comparison with the contents of the address
register pairs is performed instead of the normal address range calculation. If enabled
for this function, signals are generated to the Debug Unit if the address of a memory
access equals any of the address range registers.
User’s Manual 10-1 V2.0, 2001-02

TC1775
System Units

Memory Protection System
Note that while the TriCore architecture allows as many as four Memory Protection
Register Sets, the TC1775 implements two; and while the TriCore architecture allows as
many as four Code Segment Protection Register Sets, the TC1775 implements two.

Figure 10-1 Memory Protection Register Sets

Data Memory Protection Set 0

MCA04731

DPM0[31:24]DPR0_3UDPR0_3L

Range 3

DPM0[23:16]DPR0_2UDPR0_2L

Range 2

DPM0[15:8]DPR0_1UDPR0_1L

Range 1

DPM0[7:0]DPR0_0UDPR0_0L

Range 0

Code Memory Protection Set 0

CPM0[15:8]CPR0_1UCPR0_1L

Range 1

CPM0[7:0]CPR0_0UCPR0_0L

Range 0

Data Memory Protection Set 1

DPM1[31:24]DPR1_3UDPR1_3L

Range 3

DPM1[23:16]DPR1_2UDPR1_2L

Range 2

DPM1[15:8]DPR1_1UDPR1_1L

Range 1

DPM1[7:0]DPR1_0UDPR1_0L

Range 0

Code Memory Protection Set 1

CPM1[15:8]CPR1_1UCPR1_1L

Range 1

CPM1[7:0]CPR1_0UCPR1_0L

Range 0

Data and Code Memory
Protection Sets 0
are selected with
PSW.PRS = 00B

Data and Code Memory
Protection Sets 1
are selected with
PSW.PRS = 01B
User’s Manual 10-2 V2.0, 2001-02

TC1775
System Units

Memory Protection System
10.2 Memory Protection Registers

The TC1775 memory protection architecture is based on memory segments which are
specified by address ranges and their associated access permissions or modes. Specific
access permissions are associated with each addressable range. Ranges and their
associated permissions are specified in two Memory Protection Register Sets (PRS)
residing in the Core Special Function Registers (CSFR). A PRS consists of Data
Segment Protection Registers, Data Protection Mode Registers, Code Segment
Protection Registers, and Code Protection Mode Registers. The organization of these
registers is shown in Figure 10-1. The PSW_PRS bit field indexes the current PRS. The
current PRS determines what accesses can be performed by the processor for each
memory segment.

Because of the Harvard-style architecture of the TC1775, each PRS contains separate
registers for checking data accesses and code accesses. Memory ranges are specified
by pairs of registers which give lower and upper boundary for the associated ranges.

Data and code memory range registers are collectively named DPRx_n{L,U} and
CPRx_n{L,U}, respectively. In all cases, x refers to the specific Memory Protection
Register Set that the register is in, n refers to the range within the set, and L and U refer
to the lower and upper boundary, respectively. For some lower boundary L, upper
boundary U, and address a, the range defined by each address-range register pair is the
interval: L ≤ a < U.

The memory protection system can also be used to generate signals to the Debug Unit
when the processor attempts to access particular memory addresses. When used this
way, values in the DPRx_n{L,U} and CPRx_n{L,U} registers are regarded as individual
addresses, instead of defining an address range. An equality comparison with the
contents of the address register pairs is performed instead of the normal address range
calculation. If enabled for this function, signals are generated to the Debug Unit if the
address of a memory access equals any of the DPRx_n{L,U} and CPRx_n{L,U}
registers.

When used for normal memory protection (not for debugging), the memory protection
system performs as outlined in the following paragraphs. When the CPU performs load
and store operations, data addresses are checked against the memory ranges given by
the current data protection registers. Likewise, when the CPU fetches instructions, the
address of the instruction is checked against the memory ranges given by the current
code protection registers.

Range checking is disabled if the lower address is greater than the upper address. If the
lower address is equal to the upper address, the segment is regarded as empty. If the
address does not correspond to an allowable address range in any segment of the
current PRS, a trap signal is generated by the memory protection hardware. Note that
range checking is also disabled if the mode of a segment indicates that it is to signal the
Debug Unit.)
User’s Manual 10-3 V2.0, 2001-02

TC1775
System Units

Memory Protection System
If the address being examined is found to fall within an enabled, non-empty, and
allowable range, the associated mode register is checked for access permissions. If the
access mode is not allowed, a trap signal is generated by the memory protection
hardware.

Table 10-1 shows all registers of the TC1775 Memory Protection Unit.

Table 10-1 Memory Protection Registers

Register
Short Name

Register Long Name Offset
Address

Description
see

DPR0_0L Data Segment Protection Register Set 0,
Range 0, Lower

0000H Page 10-11

DPR0_0U Data Segment Protection Register Set 0,
Range 0, Upper

0004H

DPR0_1L Data Segment Protection Register Set 0,
Range 1, Lower

0008H

DPR0_1U Data Segment Protection Register Set 0,
Range 1, Upper

000CH

DPR0_2L Data Segment Protection Register Set 0,
Range 2, Lower

0010H

DPR0_2U Data Segment Protection Register Set 0,
Range 2, Upper

0014H

DPR0_3L Data Segment Protection Register Set 0,
Range 3, Lower

0018H

DPR0_3U Data Segment Protection Register Set 0,
Range 3, Upper

001CH
User’s Manual 10-4 V2.0, 2001-02

TC1775
System Units

Memory Protection System
DPR1_0L Data Segment Protection Register Set 1,
Range 0, Lower

0400H Page 10-11

DPR1_0U Data Segment Protection Register Set 1,
Range 0, Upper

0404H

DPR1_1L Data Segment Protection Register Set 1,
Range 1, Lower

0408H

DPR1_1U Data Segment Protection Register Set 1,
Range 1, Upper

040CH

DPR1_2L Data Segment Protection Register Set 1,
Range 2, Lower

0410H

DPR1_2U Data Segment Protection Register Set 1,
Range 2, Upper

0414H

DPR1_3L Data Segment Protection Register Set 1,
Range 3, Lower

0418H

DPR1_3U Data Segment Protection Register Set 1,
Range 3, Upper

041CH Page 10-11

CPR0_0L Code Segment Protection Register Set 0,
Range 0, Lower

1000H Page 10-14

CPR0_0U Code Segment Protection Register Set 0,
Range 0, Upper

1004H

CPR0_1L Code Segment Protection Register Set 0,
Range 1, Lower

1008H

CPR0_1U Code Segment Protection Register Set 0,
Range 1, Upper

100CH

CPR1_0L Code Segment Protection Register Set 1,
Range 0, Lower

1400H Page 10-14

CPR1_0U Code Segment Protection Register Set 1,
Range 0, Upper

1404H

CPR1_1L Code Segment Protection Register Set 1,
Range 1, Lower

1408H

CPR1_1U Code Segment Protection Register Set 1,
Range 1, Upper

140CH

DPM0 Set 0 Data Protection Mode Register, Set 0 2000H Page 10-12

Table 10-1 Memory Protection Registers (cont’d)

Register
Short Name

Register Long Name Offset
Address

Description
see
User’s Manual 10-5 V2.0, 2001-02

TC1775
System Units

Memory Protection System
In the TC1775, the memory protection registers are located in the following address
range:

– Module Base Address. FFFF C000H
Module End Address. FFFF EFFFH

– Absolute Register Address = Module Base Address + Offset Address
(offset addresses see Table 10-1)

There are two major components within the memory protection system:

– The control bits and bit fields in the PSW.
– The memory protection registers which control program execution and memory

access.

DPM1 Data Protection Mode Register, Set 1 2080H Page 10-12

CPM0 Code Protection Mode Register, Set 0 2200H Page 10-15

CPM1 Code Protection Mode Register, Set 1 2280H Page 10-15

Table 10-1 Memory Protection Registers (cont’d)

Register
Short Name

Register Long Name Offset
Address

Description
see
User’s Manual 10-6 V2.0, 2001-02

TC1775
System Units

Memory Protection System
10.2.1 PSW Protection Fields

The control fields in the PSW that do not deal with the protection system are shaded in
the PSW register table below.

PSW
Program Status Word Reset Value: 0000 0B80H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

C V SV AV SAV 0

rwh rwh rwh rwh rwh r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 PRS IO IS GW CDE CDC

r rwh rwh rwh rwh rwh rwh

Field Bits Type Description

CDC [6:0] rwh Call Depth Counter
The CDC field consists of two variable-width fields. The
first is a mask field, consisting of a string of zero or more
initial 1 bits, terminated by the first 0 bit. The remaining
bits of the field are the call depth counter.
0ccccccB 6-bit counter; trap on overflow
10cccccB 5-bit counter; trap on overflow
110ccccB 4-bit counter; trap on overflow
1110cccB 3-bit counter; trap on overflow
11110ccB 2-bit counter; trap on overflow
111110cB 1-bit counter; trap on overflow
1111110B Trap every call (call trace mode)
1111111B Disable call depth counting
When the call depth counter overflows, a trap is
generated. Depending on the width of the mask field, the
call depth counter can be set to overflow at any power of
two boundary, from 1 to 64. Setting the mask field to
1111110B allows no bits for the counter, and causes
every call to be trapped. This is used for call tracing.
Setting the field to mask field to 1111111B disables call
depth counting altogether.
User’s Manual 10-7 V2.0, 2001-02

TC1775
System Units

Memory Protection System
CDE 7 rwh Call Depth Count Enable
The CDE bit enables call-depth counting, provided that
the CDC mask field is not all 1’s. CDE is set to 1 by
default, but should be cleared by the SYSCALL
instruction Trap Service Routine to allow a trapped
SYSCALL instruction to execute without producing
another trap upon return from the trap handler. It is then
set again when the next SYSCALL instruction is
executed.
0 Call depth counter disabled
1 Call depth counter enabled

GW 8 rwh Global Register Write Permission
GW controls whether the current execution thread has
permission to modify the global address registers. Most
tasks and ISRs will use the global address registers as
“read only” registers, pointing to the global literal pool and
key data structures. However, a task or ISR can be
designated as the “owner” of a particular global address
register, and is allowed to modify it.
The system designer must determine which global
address variables are used with sufficient frequency and/
or in sufficiently time-critical code to justify allocation to a
global address register. By compiler convention, global
address register A0 is reserved as the base register for
short form loads and stores. Register A1 is also reserved
for compiler use. Registers A8 and A9 are not used by the
compiler, and are available for holding critical system
address variables.
0 Write permission to global registers A0, A1, A8, and

A9 is disabled
1 Write permission to global registers A0, A1, A8, and

A9 is enabled

Field Bits Type Description
User’s Manual 10-8 V2.0, 2001-02

TC1775
System Units

Memory Protection System
IS 9 rwh Interrupt Stack Control
Determines whether the current execution thread is using
the shared global (interrupt) stack or a user stack.
0 User Stack. If an interrupt is taken when the IS bit

is 0, then the stack pointer register is loaded from
the ISP register before execution starts at the first
instruction of the Interrupt Service Routine.

1 Shared Global Stack. If an interrupt is taken when
the IS bit is 1, then the current value of the stack
pointer register is used by the Interrupt Service
Routine.

IO [11:10] rwh Access Privilege Level Control
This 2-bit field selects determines the access level to
special function registers and peripheral devices.
00B User-0 Mode: No peripheral access. Access to

segments 14 and 15 is prohibited and will result in
a trap. This access level is given to tasks that need
not directly access peripheral devices. Tasks at this
level do not have permission to enable or disable
interrupts.

01B User-1 Mode: regular peripheral access. This
access level enables access to common peripheral
devices that are not specially protected, including
read/write access to serial
I/O ports, read access to timers, and access to most
I/O status registers. Tasks at this level may disable
interrupts.

10B Supervisor Mode. This access level enables
access to all peripheral devices. It enables read/
write access to core registers and protected
peripheral devices. Tasks at this level may disable
interrupts.

11B Reserved; this encoding is reserved and is not
defined.

Field Bits Type Description
User’s Manual 10-9 V2.0, 2001-02

TC1775
System Units

Memory Protection System
PRS [13:12] rwh Protection Register Set Selection
The PRS field selects one of two possible sets of memory
protection register values controlling load and store
operations and instruction fetches within the current
process. This field indicates the current protection
register set.
00 Protection register set 0 selected
01 Protection register set 1 selected
10 Reserved; don’t use this combination
11 Reserved; don’t use this combination

0 [26:14] r Reserved; read as 0; should be written with 0.

– [31:27] rwh Not used for memory protection purposes.

Field Bits Type Description
User’s Manual 10-10 V2.0, 2001-02

TC1775
System Units

Memory Protection System
10.2.2 Data Memory Protection Register

The lower and upper boundaries of a data memory segment are specified by word-length
register pairs DPRx_nL and DPRx_nU respectively, where x is the Memory Protection
Register Set number (0..1) and n is the range number (0..3).

DPR0_0L DPR0_1L DPR0_2L DPR0_3L
DPR1_0L DPR1_1L DPR1_2L DPR1_3L
Data Segment Protection Register n, Set x, Lower Bound DPRx_nL (x = 0, 1, n = 0-3)

Reset Value: 0000 0000H

31 0

LOWBND

rw

Field Bits Type Description

LOWBND [31:0] rw Lower Boundary Address

DPR0_0U DPR0_1U DPR0_2U DPR0_3U
DPR1_0U DPR1_1U DPR1_2U DPR1_3U
Data Segment Protection Register n, Set x, Upper Bound DPRx_nU (x = 0, 1, n = 0-3)

Reset Value: 0000 0000H

31 0

UPPBND

rw

Field Bits Type Description

UPPBND [31:0] rw Upper Boundary Address
User’s Manual 10-11 V2.0, 2001-02

TC1775
System Units

Memory Protection System
The access permissions of the two data memory ranges are specified by the registers
DPMx, where x is the Memory Protection Register Set number (x = 0, 1). Four byte fields
within each DPMx register are assigned to the range number (0..3). Note that in one set
the mode register with the four ranges is located in a single word register. Byte field
DPMx[7:0] is assigned to Range 0, byte field DPMx[15:8] is assigned to Range 1, byte
field DPM[23:16] is assigned to Range 2, and byte field DPMx[31:24] is assigned to
Range 3.

DPM0 DPM1
Data Protection Mode Registers DPMx (x = 0, 1) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

WE
3

RE
3

WS
3

RS
3

WBL
3

RBL
3

WBU
3

RBU
3

WE
2

RE
2

WS
2

RS
2

WBL
2

RBL
2

WBU
2

RBU
2

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WE
1

RE
1

WS
1

RS
1

WBL
1

RBL
1

WBU
1

RBU
1

WE
0

RE
0

WS
0

RS
0

WBL
0

RBL
0

WBU
0

RBU
0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Field Bits Type Description

RBUn
(n = 0-3)

0,
8,
16,
24

rw Data Read Signal on Upper Bound Access Range n
0 Data read signal is disabled
1 A signal is asserted to the debug unit on a data

read access to an address that matches the
upper boundary address of the associated
address range.

WBUn
(n = 0-3)

1,
9,
17,
25

rw Write Signal on Upper Bound Access Range n
0 Write signal is disabled
1 A signal is asserted to the debug unit on a data

write access to an address that matches the
upper boundary address of the associated
address range.

RBLn
(n = 0-3)

2,
10,
18,
26

rw Data Read Signal on Lower Bound Access Range n
0 Data read signal is disabled
1 A signal is asserted to the debug unit on a data

read access to an address that matches the
lower boundary address of the associated
address range.
User’s Manual 10-12 V2.0, 2001-02

TC1775
System Units

Memory Protection System
WBLn
(n = 0-3)

3,
11,
19,
27

rw Data Write Signal on Lower Bound Access Range n
0 Data write signal is disabled
1 A signal is asserted to the debug unit on a data

write access to an address that matches the
lower boundary address of the associated
address range

RSn
(n = 0-3)

4,
12,
20,
28

rw Address Range Data Read Signal Range n
0 Data read signal is disabled
1 A signal is asserted to the debug unit on data

read accesses to the associated address range

WSn
(n = 0-3)

5,
13,
21,
29

rw Address Range Data Write Signal Range n
0 Data write signal is disabled
1 A signal is asserted to the debug unit on data

write accesses to the associated address range

REn
(n = 0-3)

6,
14,
22,
30

rw Address Range Data Read Enable Range n
RE controls reads to the addresses in the associated
range.
0 Data read accesses to the associated address

range are not permitted
1 Data read accesses to the associated address

range are permitted

WEn
(n = 0-3)

7,
15,
23,
31

rw Address Range Data Write Enable Range n
WE controls writes to the addresses in the associated
range.
0 Data write accesses to the associated address

range are not permitted
1 Data write accesses to the associated address

range are permitted

Field Bits Type Description
User’s Manual 10-13 V2.0, 2001-02

TC1775
System Units

Memory Protection System
10.2.3 Code Memory Protection Register

The lower and upper boundaries of a code memory segment are specified by word
length register pairs CPRx_nL and CPRx_nU respectively, where x is the Memory
Protection Register Set number (0..1) and n is the range number (0..1).

CPR0_0L CPR0_1L
CPR1_0L CPR1_1L
Code Segment Protection Register n, Set x, Lower Bound CPRx_nL (x = 0, 1, n = 0, 1)

Reset Value: 0000 0000H

31 0

LOWBND

rw

Field Bits Type Description

LOWBND [31:0] rw Lower Boundary Address

CPR0_0U CPR0_1U
CPR1_0U CPR1_1U
Code Segment Protection Register n, Set x, Upper Bound CPRx_nU (x = 0, 1, n = 0, 1)

Reset Value: 0000 0000H

31 0

UPPBND

rw

Field Bits Type Description

UPPBND [31:0] rw Upper Boundary Address
User’s Manual 10-14 V2.0, 2001-02

TC1775
System Units

Memory Protection System
The access permissions of the two code memory ranges are specified by the registers
CPMx, where x is the Memory Protection Register Set number (x = 0, 1). Two byte fields
within each CPMx register are assigned to the range number (0, 1). Note that in one set,
the mode register with the two ranges is located in a single word register. Byte field
CPMx[7:0] is assigned to Range 0, and byte field CPMx[15:8] is assigned to Range 1.

CPM0 CPM1
Code Protection Mode Registers CPMx (x = 0, 1) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XE
1 0 XS

1 0 BL
1 0 0 BU

1
XE
0 0 XS

0 0 BL
0 0 0 BU

0

rw r rw r rw r r rw rw r rw r rw r r rw

Field Bits Type Description

BUn
(n = 0, 1)

0,
8

rw Execute Signal on Upper Bound Access Range n
0 Upper bound execute signal is disabled
1 A signal is asserted to the debug unit on an

instruction fetch to an address that matches the
upper bound address of the associated address
range

BLn
(n = 0, 1)

3,
11

rw Execute Signal on Lower Bound Access Range n
0 Lower bound execute signal is disabled
1 A signal is asserted to the debug unit on an

instruction fetch to an address that matches the lower
bound address of the associated address range

XSn
(n = 0, 1)

5,
13

rw Address Range Execute Signal Range n
0 Execute signal is disabled
1 A signal is asserted to the debug unit on instruction

fetches to the associated address range

XEn
(n = 0, 1)

7,
15

rw Address Range Execute Enable Range n
0 Instruction fetches to the associated address range

are not permitted
1 Instruction fetches to the associated address range

are permitted

0 [31:16] r Reserved; read as 0; should be written with 0.
User’s Manual 10-15 V2.0, 2001-02

TC1775
System Units

Memory Protection System
At any given time, one of the sets is the current protection register set that determines
the legality of memory accesses by the current task or ISR. The PRS field in the PSW
indicates the current protection register set number. Each protection register set
contains separate address range tables for checking data accesses and code accesses.
The range table entry is a pair of words specifying a lower and an upper boundary for the
associated range. The range defined by one range table entry is the address interval:

• lower bound ≤ address < upper bound

Each range table entry has an associated mode table entry in which access permissions
and debug signal conditions for that range are specified. For load and store operations,
data address values are checked against the entries in the data range table. For
instruction fetches, the PC value for the fetch is checked against the entries in the code
range table. When an address is found to fall within a range defined in the appropriate
range table, the associated mode table entry is checked for access permissions and
debug signal generation.

Modes of Use for Range Table Entries

An individual range table entry can be used for memory protection or for debugging; it is
rarely used for both purposes. If the upper and lower bound values have been set for
debug breakpoints, they probably are not meaningful for defining protection ranges, and
vice versa.However, it is possible — and reasonable — to have some entries in the table
for memory protection and others for debugging.

To disable an entry for memory protection, clear both the RE and WE bits in a data range
table entry or clear the XE bit in a code range table entry. The entry can be disabled for
use in debugging by clearing any debug signal bits. If a range entry is being used for
debugging, the debug signal bits that are set determine whether it is used as a single
range comparator (giving an in-range/not in-range signal) or as a pair of equal
comparators. The two uses are not mutually exclusive.

Using Protection Register Sets

If there were only one protection register set, then either the mappings would need to be
general enough to apply to all tasks and ISRs — thus, not terribly useful for isolating
software errors in individual tasks — or there would need to be substantial overhead paid
on interrupts and task context switches for updating the tables to match the currently
executing task or ISR. Those drawbacks are avoided by providing for multiple sets of
tables, with two bits in the PSW to select the currently active set.

Note that supervisor mode does not automatically disable memory protection. The
protection register set selected for supervisor tasks will normally be set up to allow write
access to regions of memory protected from user mode access. In addition, of course,
supervisor tasks can execute instructions to change the protection maps, or to disable
the protection system entirely. But supervisor mode does not implicitly override memory
protection, and it is possible for a supervisor task to take a memory protection trap.
User’s Manual 10-16 V2.0, 2001-02

TC1775
System Units

Memory Protection System
10.3 Sample Protection Register Set

Figure 10-2 illustrates Data Protection Register Set n, where n is one of the two sets
selected by the PSW.PRS field. Each register set in this example consists of four range
table entries. The defined ranges can potentially overlap or be nested. Nesting of ranges
can be used, for example, to allow write access to a subrange of a larger range in which
the current task is allowed read access. The four Data Segment Protection Registers
and four Data Protection Mode Registers are set up as follows:

• Data Segment Protection Register 3 (DPRn_3) defines the upper and lower
boundaries for Data Range 4. Data Protection Mode Register 3 (DPMn_3) defines the
permissions and debug conditions for Data Range 4.

• Data Segment Protection Register 2 (DPRn_2) defines the upper and lower
boundaries for Data Range 3. Data Protection Mode Register 2 (DPMn_2) defines the
permissions and debug conditions for Data Range 3. Note that Data Range 3 is
nested within Data Range 4.

• Data Segment Protection Register 1 (DPRn_1) defines the upper and lower
boundaries for Data Range 2. Data Protection Mode Register 1 (DPMn_1) defines the
permissions and debug conditions for Data Range 2.

• Data Segment Protection Register 0 (DPRn_0) defines the upper and lower
boundaries for Data Range 1. Data Protection Mode Register 0 (DPMn_0) defines the
permissions and debug conditions for Data Range 1.

This same configuration can be used to illustrate Code Protection Register Set n.

Figure 10-2 Example Configuration of a Data Protection Register Set (Set n)

MCA04732

DMNn_3 DMNn_2 DMNn_1 DMNn_0

Lower Bound

Upper Bound

DPM0

DPRn_0L

DPRn_0U

DMNn_3 DMNn_2 DMNn_1 DMNn_0

Lower Bound

Upper Bound

DPMn

DPRn_1L

DPRn_1U

DMNn_3 DMNn_2 DMNn_1 DMNn_0

Lower Bound

Upper Bound

DPMn

DPRn_2L

DPRn_2U

DMNn_3 DMNn_2 DMNn_1 DMNn_0

Lower Bound

Upper Bound

DPMn

DPRn_3L

DPRn_3U

Data Range 0

Data Range 1

Data Range 2

Memory

Data
Range 3
User’s Manual 10-17 V2.0, 2001-02

TC1775
System Units

Memory Protection System
10.4 Memory Access Checking

If the protection system is enabled, before any memory access (read, write, execute) is
performed, it is checked for legality as determined by all of the following:

• The protection enable bits in the SYSCON Register,
• The current I/O privilege level (0 = User-0 Mode; 1 = User-1 Mode; 2 = Supervisor

Mode), and
• The ranges defined in the currently selected protection register set.

Data addresses (read and write accesses) are checked against the currently selected
data address range table, while instruction fetch addresses are checked against the
code address range tables. The mode entries for the data range table entries enable only
read and write accesses, while the mode entries for the code range table entries enable
only execute access. In order for data to be read from program space, there must be an
entry in the data address range table that covers the address being read. Conversely,
there must be an entry in the code address range table for the instruction being read.

Access to the internal and external peripherals is through the two upper segments of the
TC1775 address space (high-order address bits equal to 1110B and 1111B). Access
checking for addresses in the peripheral segments is independent of access checking in
the remainder of the address space. Access to peripheral segments is not allowed for
tasks at I/O privilege Level 0 (User-0 tasks). Tasks at I/O privilege Level 1 and higher
have access rights to the peripheral segment space. However, the validity of any access
attempt depends on the presence of a peripheral at the accessed address, and any
restrictions it may impose on its own access. Protected peripherals, for example, require
I/O privilege Level 2, as reflected by the supervisor line value on the system bus.

If the memory protection system is disabled, any access to any memory address outside
of the peripheral segments is permitted, regardless of the I/O privilege level. There are
no memory regions reserved for supervisor access only, when the memory protection
system is disabled.

When the memory protection system is enabled, for an access to be permitted, the
address for the access must fall within one or more of the ranges specified in the
currently selected protection register set. Furthermore, the mode entry for at least one of
the matching ranges must enable the requested type of access.

10.4.1 Permitted versus Valid Accesses

A memory access can be permitted within the ranges specified in the data and code
range tables without necessarily being valid. A range specified in a range table entry
could cover one or more address regions where no physical memory was implemented.
Although that would normally reflect an error in the system code that set up the address
range, the memory protection system only uses the range table entries when
determining whether an access is permitted. In addition, if the memory protection system
User’s Manual 10-18 V2.0, 2001-02

TC1775
System Units

Memory Protection System
is disabled, all accesses must be taken as permitted, although individual accesses may
or may not be valid.

An access that is not permitted under the memory protection system results in a memory
protection trap. When permitted, an access to an unimplemented memory address
results in a bus error trap, provided that the memory address is in one of the segments
reserved for local memory. If the address is an external memory address, the result
depends on the memory implementation, and is not architecturally defined. An access
can also be permitted but invalid due to a misaligned address. Misaligned accesses
result in an alignment trap, rather than a protection trap.

10.4.2 Crossing Protection Boundaries

An access can straddle two regions. For example, Figure 10-3 illustrates the condition
where Instruction A lies in an execute region of memory, Instruction C lies in a no-
execute region of memory, and Instruction B straddles the execute/no execute
boundary.

Figure 10-3 Protection Boundaries

Because the PC is used in the comparison with the range registers, the program error
exception is not signaled until Instruction C is fetched. The same is true for all
comparisons — the address of the first accessed byte is compared against the memory
protection range registers. Hence, an access assumes the memory protection properties
of the first byte in the access regardless of the number of bytes involved in the access.

For normal accesses, this assumption is not a problem because the regions are set up
according to the natural access boundaries for the code or data that the region contains.
For wild accesses due to software or hardware errors, stores are the main concern. In
the worst case, a double-word store that is aligned on a half-word boundary can extend
three half-words beyond the end of the region in which its address lies.

One way to prevent boundary crossings is to leave at least three half-words of buffer
space between regions. This configuration prevents wild stores from destroying data in
adjacent read-only regions, for example.

MCA04733

A B C

Execute No Execute
User’s Manual 10-19 V2.0, 2001-02

TC1775
System Units

Parallel Ports
11 Parallel Ports
The TC1775 has 192 digital input/output port lines organized into twelve parallel 16-bit
ports, Port P0 to Port P5, and Port P8 to Port P13. Additionally, 32 analog input port lines
are available and organized into two parallel 16-bit ports (Port P6 and Port P7).

The digital parallel ports can be all used as general purpose I/O lines or they can perform
input/output functions for the on-chip peripheral units. Port P0 to Port P5 are especially
dedicated for the on-chip External Bus Interface Unit to communicate with external
memories, external peripherals, or external debugging devices via an External Bus
Interface. Port P8 to Port P13 can be assigned to the on-chip peripheral units for their
specific I/O operations. An overview on the port-to-peripheral unit assignment is shown
in Figure 11-2.

Figure 11-1 Parallel Ports of the TC1775

MCA04734

TC 1775

Parallel
Ports

Port 8

Port 9

Port 10

Port 11

Port 12

Port 13

GPIO Alternate Functions

GPTA

GPTA

GPTA

GPTA

ADC0/1 / ASC0/1 / SDLM

SSC0/1 / ASC0/1 /
GPTU / CAN

Port 1

Port 0

Port 2

Port 3

Port 4

Port 5

GPIOAlternate Functions

OCDS Trace Lines

Bus Control Lines

Address Bus
Bus Control Lines

Address Bus

Address/Data Bus

Address/Data Bus

ADC0 ADC1

Port 6 Port 7
User’s Manual 11-1 V2.0, 2001-02

TC1775
System Units

Parallel Ports
11.1 General Port Operation

Figure 11-2 shows a general block diagram of an TC1775 port line. Each port line is
equipped with a number of control and data bits, enabling very flexible usage of the line.

Each port pin can be configured for input or output operation. In input mode (default after
reset), the output driver is switched off (high-impedance). The actual voltage level
present at the port pin is translated into a logic 0 or 1 via a Schmitt-Trigger device and
can be read via the read only register Px_IN. In output mode, the output driver is
activated and drives the value supplied through the multiplexer to the port pin. Switching
between input and output mode is accomplished through the Px_DIR register, which
enables or disables the output driver. Alternatively, a peripheral unit can define the port
direction (via AltDir) if it uses bidirectional I/O lines.

The output multiplexer in front of the output driver enables the port output function to be
used for different purposes. If the pin is used as general purpose output, the multiplexer
is switched by software to the Output Data Register Px_OUT. Software can set or clear
the bit in Px_OUT, and therefore it can directly influence the state of the port pin. If the
on-chip peripheral units use the pin for output signals (line AltEnable active), alternate
output lines can be switched via the multiplexer to the output driver circuitry.

Latch Px_IN is provided for input functions of the on-chip peripheral units. Its input is
connected to the output of the input Schmitt-Trigger. Further, an input signal can be
connected directly to the various inputs of the peripheral units (AltDataIn). The function
of the input line from the pin to the input latch Px_IN and to AltDataIn is independent of
the port pin operates as input or output. This means that when the port is in output mode,
the level of the pin can be read by software via latch Px_IN or a peripheral can use the
pin level as an input. This offers additional advantages in an application.

– Each port line can also be programmed to activate an internal weak pull-up or pull-
down device. Register Px_PUDSEL selects whether a pull-up or the pull-down
device is activated while register Px_PUDEN enables or disables the pull devices.

– The data written to the output register Px_OUT by software can be used as input
data to an on-chip peripheral. This enables, for example, peripheral tests via
software without external circuitry. Examples for this can be the triggering of a timer
count input, generating an external interrupt, or simulating the incoming serial data
stream to a serial port receive input via software.

– When the pin is used as an output, the actual logic level at the pin can be examined
through reading latch Px_IN and compared against the applied output level (either
applied through software via the output register Px_OUT, or via an alternate output
function of a peripheral). This can be used to detect some electrical failures at the
pin caused through external circuitry. In addition, software supported arbitration
schemes can be implemented in this way using the open-drain configuration and
an external wired-And circuitry. Collisions on the external communication lines can
be detected when a logic 1 is output, but a logic 0 is seen when reading the pin
value via the input latch Px_IN.
User’s Manual 11-2 V2.0, 2001-02

TC1775
System Units

Parallel Ports
– The output data from a peripheral applied to the pin via an alternate output function
can be read through software or can be used by the same or another peripheral as
input data. This enables testing of peripheral functions or provides additional
connections between on-chip peripherals via the same pin without external wires.
User’s Manual 11-3 V2.0, 2001-02

TC1775
System Units

Parallel Ports
Figure 11-2 General Port Structure

MCA04735

POCON0/1/2/3
Output Charact.
Control Register

PICON
Input Config.

Register

PUDSEL
Pull-up/Pull-down
Select Register

PUDEN
Pull-up/Pull-down
Enable Register

DIR
Direction
Register

Pull-up
Pull-down

Control Logic

Direction
SelectionAltDir

AltEnable

AltDataOut 0

AltDataOut 1

OUT
Data Output

Register
Select

ALTSEL1
Alternate Select

Register 1

ALTSEL0
Alternate Select

Register 0

OD
Open Drain

Control Register

IN
Data Input
Register

Output
Driver

Pin
Pad

Schmitt
Trigger

AltDataIn

Internal
Bus

MUX
User’s Manual 11-4 V2.0, 2001-02

TC1775
System Units

Parallel Ports
11.2 Port Kernel Registers

The individual control and data bits of each digital parallel port are implemented in a
number of registers. Bits with the same meaning and function are assembled together in
the same register. Each parallel port, except the analog ports P6 and P7, consists of a
set of registers. The registers are used to configure and use the port as general purpose
I/O or alternate function input/output. For most ports not all registers are implemented.
The availability of the kernel registers in the specific ports is defined in Section 11.3 to
Section 11.16.

Figure 11-3 Port Kernel Registers

Table 11-1 Port Kernel Registers

Register
Short Name

Register Long Name Offset
Address

Description
see

Px_OUT Port x Data Output Register 0010H Page 11-7

Px_IN Port x Data Input Register 0014H Page 11-8

Px_DIR Port x Direction Register 0018H Page 11-9

Px_OD Port x Open Drain Control Register 001CH Page 11-10

Px_PUDSEL Port x Pull-Up/Pull-Down Select Register 0028H Page 11-12

Px_PUDEN Port x Pull-Up/Pull-Down Enable Register 002CH Page 11-13

Px_POCON0 Port x Output Characteristic Control Register 0 0030H Page 11-14

Px_POCON1 Port x Output Characteristic Control Register 1 0034H Page 11-15

Px_POCON2 Port x Output Characteristic Control Register 2 0038H Page 11-15

Px_POCON3 Port x Output Characteristic Control Register 3 003CH Page 11-15

MCA04817

Px_DIR

Px_OD

Px_OUT

Control Registers Data Registers

Px_PUDSEL

Px_IN

Px_PUDEN

Px_POCONy

Px_PICON

Px_ALTSEL0

Px_ALTSEL1
User’s Manual 11-5 V2.0, 2001-02

TC1775
System Units

Parallel Ports
In the TC1775, the registers of the digital ports are located in the address ranges as
shown in Table 11-2.

– Absolute Register Address = Module Base Address (Table 11-2) + Offset Address
(Table 11-1)

Px_PICON Port x Input Configuration Register 0040H Page 11-11

Px_ALTSEL0 Port x Alternate Select Register 0 0044H Page 11-17

Px_ALTSEL1 Port x Alternate Select Register 1 0048H Page 11-17

Table 11-2 Port Registers Address Ranges

Port No. Address Range Port No. Address Range

Port 0 F000 2800H - F000 28FFH Port 8 F000 3000H - F000 30FFH

Port 1 F000 2900H - F000 29FFH Port 9 F000 3100H - F000 31FFH

Port 2 F000 2A00H - F000 2AFFH Port 19 F000 3200H - F000 32FFH

Port 3 F000 2B00H - F000 2BFFH Port 11 F000 3300H - F000 33FFH

Port 4 F000 2C00H - F000 2CFFH Port 12 F000 3400H - F000 34FFH

Port 5 F000 2D00H - F000 2DFFH Port 13 F000 3500H - F000 35FFH

Table 11-1 Port Kernel Registers (cont’d)

Register
Short Name

Register Long Name Offset
Address

Description
see
User’s Manual 11-6 V2.0, 2001-02

TC1775
System Units

Parallel Ports
11.2.1 Data Output Register

If a port pin is used as general purpose output (GPIO), output data is written into register
Px_OUT of port x.

The contents of Px_OUT.n are output on the assigned pin if the pin is assigned as GPIO
pin and the direction is switched/set to output (Px_DIR.n = 1). A read operation of
Px_OUT returns the register value and not the state of the Px pins.

Px_OUT
Port x Data Output Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Field Bits Type Description

Pn
(n = 15-0)

n rw Port x Pin n Output Value
0 Port x pin n output value = 0

(default after reset)
1 Port x pin n output value = 1

0 [31:16] r Reserved; read as 0; should be written with 0.
User’s Manual 11-7 V2.0, 2001-02

TC1775
System Units

Parallel Ports
11.2.2 Data Input Register

The value at a port pin can be read through the read-only register Px_IN. The data input
register Px_IN always contains a latched value of the assigned port pin.

Px_IN
Port x Data Input Register Reset Value: 0000 XXXXH

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

r r r r r r r r r r r r r r r r

Field Bits Type Description

Pn
(n = 15-0)

n rw Port x Pin n Latched Input Value
0 Port x input pin n latched value = 0
1 Port x input pin n latched value = 1

0 [31:16] r Reserved; read as 0; should be written with 0.
User’s Manual 11-8 V2.0, 2001-02

TC1775
System Units

Parallel Ports
11.2.3 Direction Register

The direction of port pins can be controlled in the following ways:

– Always controlled by Px_DIR register
– Controlled by Px_DIR register if used for GPIO and controlled by the peripheral if

used for alternate function
– Controlled by Px_DIR register if used as GPIO and fixed direction if used for

alternate function
– Always fixed if used for GPIO and alternate function

If the port direction is controlled by the respective direction register Px_DIR, the following
encoding is defined:

Px_DIR
Port x Direction Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Field Bits Type Description

Pn
(n = 15-0)

n rw Port x Pin n Direction Control
0 Direction is set to input (default after reset)
1 Direction is set to output

0 [31:16] r Reserved; read as 0; should be written with 0.
User’s Manual 11-9 V2.0, 2001-02

TC1775
System Units

Parallel Ports
11.2.4 Open Drain Control Register

For ports P8 to P13, each pin in output mode can be switched to Open Drain Mode. If
driven with 1, no driver will be activated; if driven with 0, the pull-down transistor will be
activated.

The open drain mode is controlled by the register Px_OD.

Px_OD
Port x Open Drain Control Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Field Bits Type Description

Pn
(n = 15-0)

n rw Port x Pin n Open Drain Mode
0 Normal Mode, output is actively driven for 0 and

1 state
1 Open Drain Mode, output is actively driven only

for 0 state

0 [31:16] r Reserved; read as 0; should be written with 0.
User’s Manual 11-10 V2.0, 2001-02

TC1775
System Units

Parallel Ports
11.2.5 Input Configuration Register

The input threshold of ports P8 to P13 can be selected pinwise to be TTL or CMOS-like
via the related Px_PICON registers.

Px_PICON
Port x Input Configuration Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Field Bits Type Description

Pn
(n = 15-0)

n rw Port x Pin n Input Threshold Type
0 Pin n of port x has TTL input threshold
1 Pin n of port x has CMOS-like input threshold

0 [31:16] r Reserved; read as 0; should be written with 0.
User’s Manual 11-11 V2.0, 2001-02

TC1775
System Units

Parallel Ports
11.2.6 Pull-Up/Pull-Down Device Control

Internal pull-up/pull-down devices can be optionally applied to a port pin. This offers the
possibility to configure the following input characteristics:

– tri-state
– high-impedance with a weak pull-up device
– high-impedance with a weak pull-down device

and the following output characteristics:

– push/pull (optional pull-up/pull-down)
– open drain with internal pull-up
– open drain with external pull-up

The pull-up/pull-down device can be fixed or controlled via the registers Px_PUDSEL
and Px_PUDEN. Register Px_PUDSEL selects the type of pull-up/pull-down device,
while register Px_PUDEN enables or disables it. The pull-up/pull-down device can be
selected pinwise. Note that the pull-up/pull-down devices are predefined for some pins
after reset (see port P3 and P4).

Note: The selected pull-up/pull-down device is enabled by setting the respective bit in
the Px_PUDEN register.

Px_PUDSEL
Port x Pull-Up/Pull-Down Select Register Reset Value: (dependant on port)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Field Bits Type Description

Pn
(n = 15-0)

n rw Pull-Up/-Down Device Select Port x Bit n
0 Pull-down device is selected
1 Pull-up device is selected

0 [31:16] r Reserved; read as 0; should be written with 0.
User’s Manual 11-12 V2.0, 2001-02

TC1775
System Units

Parallel Ports
Note: Pull-ups/pull-downs can also be activated during power-down by setting bit
SCU_CON.DISPRDPD to 0 (default after reset).

Px_PUDEN
Port x Pull-Up/Pull-Down Enable Register Reset Value: (dependant on port)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Field Bits Type Description

Pn
(n = 15-0)

n rw Pull-Up/Pull-Down Device Enable at Port x Bit n
0 Pull-up or pull-down device is disabled
1 Pull-up or pull-down device is enabled

0 [31:16] r Reserved; read as 0; should be written with 0.
User’s Manual 11-13 V2.0, 2001-02

TC1775
System Units

Parallel Ports
11.2.7 Output Characteristics Control Register

For a significantly improvement of the overall EMC (Electromagnetic Compatibility)
behavior of the TC1775, the output driver characteristics of digital ports can be
configured by software.

Two type of characteristics can be selected:

– Edge Characteristic defines the rise/fall time for the respective port, that is, the
transition time. Slow edges reduce the peak currents that are drawn when changing
the voltage level of an external capacitive load. For a bus interface, however, fast
edges are almost required.

– Driver Characteristic defines either the general driving capability of the respective
driver (high or low), or if the driver strength is reduced after the target output level
has been reached (Dynamic Current Mode). Reducing the driver strength increases
the output’s internal resistance which attenuates noise that is imported via the
output line.

The TC1775 uses a fully digital solution to switch between the two drive modes.

In Dynamic Current Mode the output is delayed by one clock cycle and logic compares
the current state of the output to the next (requested) state. If they differ, the strong
drivers are turned on and the output is switched to the new state with the next clock edge.
The strong drivers are kept active for two clock cycles, then they are turned off and the
weak drivers maintain the state of the output.

The one clock delay of the output signal is only active in dynamic driver mode. In High
Current Mode or Low Current Mode, only normal output delay of the pads will be seen.

The output characteristics are pinwise controlled for ports P8 to P13 using four registers
Px_PCON0/1/2/3.

Px_POCON0
Port x Output Characteristic Control Register 0 Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PEC3 PDC3 PEC2 PDC2 PEC1 PDC1 PEC0 PDC0

rw rw rw rw rw rw rw rw
User’s Manual 11-14 V2.0, 2001-02

TC1775
System Units

Parallel Ports
Px_POCON1
Port x Output Characteristic Control Register 1 Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PEC7 PDC7 PEC6 PDC6 PEC5 PDC5 PEC4 PDC4

rw rw rw rw rw rw rw rw

Px_POCON2
Port x Output Characteristic Control Register 2 Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PEC11 PDC11 PEC10 PDC10 PEC9 PDC9 PEC8 PDC8

rw rw rw rw rw rw rw rw

Px_POCON3
Port x Output Characteristic Control Register 3 Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PEC15 PDC15 PEC14 PDC14 PEC13 PDC13 PEC12 PDC12

rw rw rw rw rw rw rw rw
User’s Manual 11-15 V2.0, 2001-02

TC1775
System Units

Parallel Ports
Field Bits Type Description

PDCn
(n = 15-0)

see
register
diagrams

rw Driver Characteristic Control of Port x Pin n
00 High Current Mode; driver operates with

maximum strength.
01 Dynamic Current Mode; driver strength is

reduced when reaching target level.
10 Low Current Mode; driver always operates

with reduced strength.
11 Reserved

PECn
(n = 15-0)

see
register
diagrams

rw Edge Characteristic Control of Port x Pin n
00 Normal timing
01 Slow timing
10 Reserved
11 Reserved

0 [31:16] r Reserved; read as 0; should be written with 0.
User’s Manual 11-16 V2.0, 2001-02

TC1775
System Units

Parallel Ports
11.2.8 Alternate Port Functions

Most of the port lines are assigned to certain programmable alternate input or output
functions. Alternate functions can be:

• Address and data lines when accessing external memory
• Optional chip select outputs and the external bus arbitration lines
• Input/output functions of timers
• Input/output functions of serial interfaces
• A/D Converter control lines

11.2.8.1 Alternate Input Functions

The number of alternate functions that uses a pin for input is not limited. Each port control
logic of an I/O pin provides several input paths:

• Digital input value via register
• Direct digital input value
• Direct analog input value (low resolution)

11.2.8.2 Alternate Output Functions

Alternate functions are selected via an output muliplexer which can select up to four
output lines. This muliplexer can be controlled by the following three signals:

• Register Px_ALTSEL0
• Register Px_ALTSEL1
• Signal AltEnable

Selection of alternate functions are defined in registers Px_ALTSEL0 and Px_ALTSEL1.
The tables in the port chapters Section 11.3 to Section 11.16 define which type of
select signal is used for the alternate function selection for each port pin.

Px_ALTSELn (n = 1, 0)
Port x Alternate Select Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw
User’s Manual 11-17 V2.0, 2001-02

TC1775
System Units

Parallel Ports
11.3 Port 0

Port 0 is a 16-bit bidirectional I/O port. It serves as GPIO lines or as lower external
address/data bus lines in Multiplexed Bus Mode (AD[15:0]), or as lower external data
bus lines in Demultiplexed Bus Mode (D[15:0]).

11.3.1 Features

• Push/pull output drivers
• 2.5 Volt operation for GPIO (3.3 Volt input tolerance)
• 2.5 Volt operation for external bus interface (3.3 Volt input tolerance)
• Programmable pull-up/pull-down devices

11.3.2 Registers

The following port kernel registers are available at Port 0:

Table 11-3 Port 0 Kernel Registers

Register Short Name Register Long Name

P0_OUT Port 0 Data Output Register

P0_IN Port 0 Data Input Register

P0_DIR Port 0 Direction Register

P0_PUDSEL Port 0 Pull-Up/Pull-Down Select Register

P0_PUDEN Port 0 Pull-Up/Pull-Down Enable Register
User’s Manual 11-18 V2.0, 2001-02

TC1775
System Units

Parallel Ports
11.3.3 Port Configuration and Function

Figure 11-4 Port 0 Configuration

Note: Alternate functions of Ports P0 and P1 are jointly controlled by EBU as well as the
direction control of the bidirectional address/data buses.

Table 11-4 Port 0 Functions

Port Pin Pin Functionality Associated
Register/Modul

Alternate
Function

Direction
Control

P0.x
(x = 15-0)

General purpose input P0_IN.x EBU inactive
(AltEnable = 0)

P0_DIR.x = 0

General purpose output P0_OUT.x P0_DIR.x = 1

Address/data line ADx EBU EBU active
(AltEnable = 1)

controlled by
EBU (AltDir)Data line Dx

Pad Cell

MCA04737

P0_PUDSEL P0_PUDENP0_DIRP0_OUTP0_IN

Internal Bus

Pull-Up
Pull-Down

Control

Output
Driver

Pin
Pad

Schmitt
Trigger

AltDataOut

AltEnable1)

AltDir

AltDataIn

1) AltEnable = 0 : Alternate EBU function disabled
 AltEnable = 1 : Alternate EBU function enabled

MUX
1

0

MUX
0

1

User’s Manual 11-19 V2.0, 2001-02

TC1775
System Units

Parallel Ports
11.4 Port 1

Port 1 is a 16-bit bidirectional I/O port. It serves as GPIO lines or as upper external
address/data bus lines in Multiplexed Bus Mode (AD[31:16]), or as upper external data
bus lines in Demultiplexed Bus Mode (D[31:16]).

11.4.1 Features

• Push/pull output drivers
• 2.5 Volt operation for GPIO (3.3 Volt input tolerance)
• 2.5 Volt operation for external bus interface (3.3 Volt input tolerance)
• Programmable pull-up/pull-down devices

11.4.2 Registers

The following port kernel registers are available at Port 1:

Table 11-5 Port 1 Kernel Registers

Register Short Name Register Long Name

P1_OUT Port 1 Data Output Register

P1_IN Port 1 Data Input Register

P1_DIR Port 1 Direction Register

P1_PUDSEL Port 1 Pull-Up/Pull-Down Select Register

P1_PUDEN Port 1 Pull-Up/Pull-Down Enable Register
User’s Manual 11-20 V2.0, 2001-02

TC1775
System Units

Parallel Ports
11.4.3 Port Configuration and Function

Figure 11-5 Port 1 Configuration

Note: Alternate functions of Ports P0 and P1 are jointly controlled by EBU as well as the
direction control of the bidirectional address/data buses.

Table 11-6 Port 1 Functions

Port Pin Pin Functionality Associated
Register/Modul

Alternate
Function

Direction
Control

P1.x
(x = 15-0)

General purpose input P1_IN.x EBU inactive
(AltEnable = 0)

P1_DIR.x = 0

General purpose output P1_OUT.x P1_DIR.x = 1

Address/data line ADx EBU EBU active
(AltEnable = 1)

controlled by
EBU (AltDir)Data line Dx

Pad Cell

MCA04738

P1_PUDSEL P1_PUDENP1_DIRP1_OUTP1_IN

Internal Bus

Pull-Up
Pull-Down

Control

Output
Driver

Pin
Pad

Schmitt
Trigger

AltDataOut

AltEnable1)

AltDir

AltDataIn

1) AltEnable = 0 : Alternate EBU function disabled
 AltEnable = 1 : Alternate EBU function enabled

MUX
1

0

MUX
0

1

User’s Manual 11-21 V2.0, 2001-02

TC1775
System Units

Parallel Ports
11.5 Port 2

Port 2 is a 16-bit bidirectional I/O port. It serves as GPIO lines or as lower external
address bus lines in Demultiplexed Bus Mode. The port lines can be used as standard
GPIO pins if its EBU functionality is not required.

11.5.1 Features

• Push/pull output drivers
• 2.5 Volt operation for GPIO (3.3 Volt input tolerance)
• 2.5 Volt operation for external bus interface (3.3 Volt input tolerance)
• Programmable pull-up/pull-down devices

11.5.2 Registers

The following port kernel registers are available at Port 2:

Table 11-7 Port 2 Kernel Registers

Register Short Name Register Long Name

P2_OUT Port 2 Data Output Register

P2_IN Port 2 Data Input Register

P2_DIR Port 2 Direction Register

P2_PUDSEL Port 2 Pull-Up/Pull-Down Select Register

P2_PUDEN Port 2 Pull-Up/Pull-Down Enable Register
User’s Manual 11-22 V2.0, 2001-02

TC1775
System Units

Parallel Ports
11.5.3 Port Configuration and Function

Figure 11-6 Port 2 Configuration

Note: Alternate functions of Port P2 are controlled by EBU as well as the direction control
of the bidirectional address buses.

Table 11-8 Port 2 Functions

Port Pin Pin Functionality Associated
Register/Modul

Alternate
Function

Direction
Control

P2.x
(x = 15-0)

General purpose input P2_IN.x EBU inactive
(AltEnable = 0)

P2_DIR.x = 0

General purpose output P2_OUT.x P2_DIR.x = 1

Address line Ax EBU EBU active
(AltEnable = 1)

controlled by
EBU (AltDir)

Pad Cell

MCA04739

P2_PUDSEL P2_PUDENP2_DIRP2_OUTP2_IN

Internal Bus

Pull-Up
Pull-Down

Control

Output
Driver

Pin
Pad

Schmitt
Trigger

AltDataOut

AltEnable1)

AltDir

AltDataIn

1) AltEnable = 0 : Alternate EBU function disabled
 AltEnable = 1 : Alternate EBU function enabled

MUX
1

0

MUX
0

1

User’s Manual 11-23 V2.0, 2001-02

TC1775
System Units

Parallel Ports
11.6 Port 3

Port 3 is a 16-bit bidirectional I/O port. It serves as GPIO lines, as upper external address
bus lines A16 to A25, or as chip select output lines. The lines A21-A25, CS3-CS0,
CSEMU, and CSOVL can be used as standard GPIO pins if its alternate function is not
required.

11.6.1 Features

• Push/pull output drivers
• 2.5 Volt operation for GPIO (3.3 Volt input tolerance)
• 2.5 Volt operation for external bus interface (3.3 Volt input tolerance)
• Programmable pull-up/pull-down devices

11.6.2 Registers

The following port kernel registers are available at Port 3:

Table 11-9 Port 3 Kernel Registers

Register Short Name Register Long Name

P3_OUT Port 3 Data Output Register

P3_IN Port 3 Data Input Register

P3_DIR Port 3 Direction Register

P3_PUDSEL Port 3 Pull-Up/Pull-Down Select Register

P3_PUDEN Port 3 Pull-Up/Pull-Down Enable Register

P3_ALTSEL0 Port 3 Alternate Select Register 0
User’s Manual 11-24 V2.0, 2001-02

TC1775
System Units

Parallel Ports
11.6.3 Port Configuration and Function

Figure 11-7 Port 3 Configuration for P3.[4:0] and P3.[15:13]

Pad Cell

MCA04740

P3_PUDSEL P3_PUDENP3_DIRP3_OUTP3_IN

Internal Bus

Pull-Up
Pull-Down

Control

Output
Driver

Pin
Pad

Schmitt
Trigger

AltDataOut

AltEnable1)

AltDir

AltDataIn

1) AltEnable = 0 : Alternate EBU function disabled
 AltEnable = 1 : Alternate EBU function enabled

MUX
1

0

MUX
0

1

User’s Manual 11-25 V2.0, 2001-02

TC1775
System Units

Parallel Ports
Figure 11-8 Port 3 Configuration for P3.[12:5]

Pad Cell

MCA04741

P3_PUDSEL P3_PUDENP3_DIRP3_OUTP3_IN

Internal Bus

Pull-Up
Pull-Down

Control

Output
Driver

Pin
Pad

Schmitt
Trigger

AltDataOut

AltEnable1)

AltDir

AltDataIn

1) AltEnable = 0 : Alternate EBU function disabled
 AltEnable = 1 : Alternate EBU function enabled

P3_ALTSEL0

21

11
10
0X

20

11
10
0X

21
20

MUX

MUX
User’s Manual 11-26 V2.0, 2001-02

TC1775
System Units

Parallel Ports
Table 11-10 Port 3 Functions

Port
Pin

Pin Functionality Associated
Register/Modul

Alternate
Function

Direction
Control

P3.0 General purpose input P3_IN.0 EBU inactive
(AltEnable = 0)

P3_DIR.0 = 0

General purpose output P3_OUT.0 P3_DIR.0 = 1

Address line A16 EBU EBU active
(AltEnable = 1)

controlled by
EBU (AltDir)

P3.1 General purpose input P3_IN.1 EBU inactive
(AltEnable = 0)

P3_DIR.1 = 0

General purpose output P3_OUT.1 P3_DIR.1 = 1

Address line A17 EBU EBU active
(AltEnable = 1)

controlled by
EBU (AltDir)

P3.2 General purpose input P3_IN.2 EBU inactive
(AltEnable = 0)

P3_DIR.2 = 0

General purpose output P3_OUT.2 P3_DIR.2 = 1

Address line A18 EBU EBU active
(AltEnable = 1)

controlled by
EBU (AltDir)

P3.3 General purpose input P3_IN.3 EBU inactive
(AltEnable = 0)

P3_DIR.3 = 0

General purpose output P3_OUT.3 P3_DIR.3 = 1

Address line A19 EBU EBU active
(AltEnable = 1)

controlled by
EBU (AltDir)

P3.4 General purpose input P3_IN.4 EBU inactive
(AltEnable = 0)

P3_DIR.4 = 0

General purpose output P3_OUT.4 P3_DIR.4 = 1

Address line A20 EBU EBU active
(AltEnable = 1)

controlled by
EBU (AltDir)

P3.5 General purpose input P3_IN.5 EBU inactive
(AltEnable = 0)

P3_DIR.5 = 0

General purpose output P3_OUT.5 P3_DIR.5 = 1

Address line A21 EBU EBU active
(AltEnable = 1)
and P3_
ALTSEL0.5 = 0

controlled by
EBU (AltDir)

General purpose input P3_IN.5 EBU active
(AltEnable = 1)
and P3_
ALTSEL0.5 = 1

P3_DIR.5 = 0

General purpose output P3_OUT.5 P3_DIR.5 = 1
User’s Manual 11-27 V2.0, 2001-02

TC1775
System Units

Parallel Ports
P3.6 General purpose input P3_IN.6 EBU inactive
(AltEnable = 0)

P3_DIR.6 = 0

General purpose output P3_OUT.6 P3_DIR.6 = 1

Address line A22 EBU EBU active
(AltEnable = 1)
and P3_
ALTSEL0.6 = 0

controlled by
EBU (AltDir)

General purpose input P3_IN.6 EBU active
(AltEnable = 1)
and P3_
ALTSEL0.6 = 1

P3_DIR.6 = 0

General purpose output P3_OUT.6 P3_DIR.6 = 1

P3.7 General purpose input P3_IN.7 EBU inactive
(AltEnable = 0)

P3_DIR.7 = 0

General purpose output P3_OUT.7 P3_DIR.7 = 1

Address line A23 EBU EBU active
(AltEnable = 1)
and P3_
ALTSEL0.7 = 0

controlled by
EBU (AltDir)

General purpose input P3_IN.7 EBU active
(AltEnable = 1)
and P3_
ALTSEL0.7 = 1

P3_DIR.7 = 0

General purpose output P3.7 P3_DIR.7 = 1

P3.8 General purpose input P3_IN.8 EBU inactive
(AltEnable = 0)

P3_DIR.8 = 0

General purpose output P3_OUT.8 P3_DIR.8 = 1

Address line A24 EBU EBU active
(AltEnable = 1)
and P3_
ALTSEL0.8 = 0

controlled by
EBU (AltDir)

General purpose input P3_IN.8 EBU active
(AltEnable = 1)
and P3_
ALTSEL0.8 = 1

P3_DIR.8 = 0

General purpose output P3_OUT.8 P3_DIR.8 = 1

Table 11-10 Port 3 Functions (cont’d)

Port
Pin

Pin Functionality Associated
Register/Modul

Alternate
Function

Direction
Control
User’s Manual 11-28 V2.0, 2001-02

TC1775
System Units

Parallel Ports
P3.9 General purpose input P3_IN.9 EBU inactive
(AltEnable = 0)

P3_DIR.9 = 0

General purpose output P3_OUT.9 P3_DIR.9 = 1

Address line A25 EBU EBU active
(AltEnable = 1)
and P3_
ALTSEL0.9 = 0

controlled by
EBU (AltDir)

General purpose input P3_IN.9 EBU active
(AltEnable = 1)
and P3_
ALTSEL0.9 = 1

P3_DIR.9 = 0

General purpose output P3_OUT.9 P3_DIR.9 = 1

P3.101) General purpose input P3_IN.10 EBU inactive
(AltEnable = 0)

P3_DIR.10 = 0

General purpose output P3_OUT.10 P3_DIR.10 = 1

Chip select output line 3
CS3

EBU EBU active
(AltEnable = 1)
and P3_
ALTSEL0.10 = 0

output
(AltDir = 1)

General purpose input P3_IN.10 EBU active
(AltEnable = 1)
and P3_
ALTSEL0.10 = 1

P3_DIR.10 = 0

General purpose output P3_OUT.10 P3_DIR.10 = 1

P3.111) General purpose input P3_IN.11 EBU inactive
(AltEnable = 0)

P3_DIR.11 = 0

General purpose output P3_OUT.11 P3_DIR.11 = 1

Chip select output line 2
CS2

EBU EBU active
(AltEnable = 1)
and P3_
ALTSEL0.11 = 0

output
(AltDir = 1)

General purpose input P3_IN.11 EBU active
(AltEnable = 1)
and P3_
ALTSEL0.11 = 1

P3_DIR.11 = 0

General purpose output P3_OUT.11 P3_DIR.11 = 1

Table 11-10 Port 3 Functions (cont’d)

Port
Pin

Pin Functionality Associated
Register/Modul

Alternate
Function

Direction
Control
User’s Manual 11-29 V2.0, 2001-02

TC1775
System Units

Parallel Ports
Note: Alternate functions of Port P3.13 to P3.0 are controlled by EBU and for Port P3.15
to P3.14 by OCDSE as well as the direction control.

P3.121) General purpose input P3_IN.12 EBU inactive
(AltEnable = 0)

P3_DIR.12 = 0

General purpose output P3_OUT.12 P3_DIR.12 = 1

Chip select output line 1
CS1

EBU EBU active
(AltEnable = 1)
and P3_
ALTSEL0.12 = 0

output
(AltDir = 1)

General purpose input P3_IN.12 EBU active
(AltEnable = 1)
and P3_
ALTSEL0.12 = 1

P3_DIR.12 = 0

General purpose output P3_OUT.12 P3_DIR.12 = 1

P3.131) General purpose input P3_IN.13 EBU inactive
(AltEnable = 0)

P3_DIR.13 = 0

General purpose output P3_OUT.13 P3_DIR.13 = 1

Chip select output line 0
CS0

EBU EBU active
(AltEnable = 1)

output
(AltDir = 1)

P3.141) General purpose input P3_IN.14 OCDS inactive
(AltEnable = 0)

P3_DIR.14 = 0

General purpose output P3_OUT.14 P3_DIR.14 = 1

Emulator chip select
CSEMU

OCDS OCDS active
(AltEnable = 1)

output
(AltDir = 1)

P3.151) General purpose input P3_IN.15 OCDS inactive
(AltEnable = 0)

P3_DIR.15 = 0

General purpose output P3_OUT.15 P3_DIR.15 = 1

Emulator overlay
memory chip select
CSEMU

OCDS OCDS active
(AltEnable = 1)

output
(AltDir = 1)

1) After reset, the pull-up device is enabled for this pin.

Table 11-10 Port 3 Functions (cont’d)

Port
Pin

Pin Functionality Associated
Register/Modul

Alternate
Function

Direction
Control
User’s Manual 11-30 V2.0, 2001-02

TC1775
System Units

Parallel Ports
11.7 Port 4

Port 4 is a 16-bit bidirectional I/O port. It serves as GPIO lines or as input and output
control lines of the EBU. The port lines can be used as standard GPIO pins if its alternate
function is not required.

11.7.1 Features

• Push/pull output drivers
• 2.5 Volt operation for GPIO (3.3 Volt input tolerance)
• 2.5 Volt operation for external bus interface (3.3 Volt input tolerance)
• Programmable pull-up/pull-down devices

11.7.2 Registers

The following port kernel registers are available at Port 4:

Table 11-11 Port 4 Kernel Registers

Register Short Name Register Long Name

P4_OUT Port 4 Data Output Register

P4_IN Port 4 Data Input Register

P4_DIR Port 4 Direction Register

P4_PUDSEL Port 4 Pull-Up/Pull-Down Select Register

P4_PUDEN Port 4 Pull-Up/Pull-Down Enable Register
User’s Manual 11-31 V2.0, 2001-02

TC1775
System Units

Parallel Ports
11.7.3 Port Configuration and Function

Figure 11-9 Port 4 Configuration

Table 11-12 Port 4 Functions

Port
Pin

Pin Functionality Associated
Register/Modul

Alternate
Function

Direction
Control

P4.01) General purpose input P4_IN.0 EBU inactive
(AltEnable = 0)

P4_DIR.0 = 0

General purpose output P4_OUT.0 P4_DIR.0 = 1

Read control line RD EBU EBU active
(AltEnable = 1)

controlled by
EBU (AltDir)

P4.11) General purpose input P4_IN.1 EBU inactive
(AltEnable = 0)

P4_DIR.1 = 0

General purpose output P4_OUT.1 P4_DIR.1 = 1

Write control line
RD/WR

EBU EBU active
(AltEnable = 1)

controlled by
EBU (AltDir)

Pad Cell

MCA04742

P4_PUDSEL P4_PUDENP4_DIRP4_OUTP4_IN

Internal Bus

Pull-Up
Pull-Down

Control

Output
Driver

Pin
Pad

Schmitt
Trigger

AltDataOut

AltEnable1)

AltDir

AltDataIn

1) AltEnable = 0 : Alternate EBU function disabled
 AltEnable = 1 : Alternate EBU function enabled

MUX
1

0

MUX
0

1

User’s Manual 11-32 V2.0, 2001-02

TC1775
System Units

Parallel Ports
P4.22) General purpose input P4_IN.2 EBU inactive
(AltEnable = 0)

P4_DIR.2 = 0

General purpose output P4_OUT.2 P4_DIR.2 = 1

Address latch enable
ALE

EBU EBU active
(AltEnable = 1)

controlled by
EBU (AltDir)

P4.31) General purpose input P4_IN.3 EBU inactive
(AltEnable = 0)

P4_DIR.3 = 0

General purpose output P4_OUT.3 P4_DIR.3 = 1

Address valid output
ADV

EBU EBU active
(AltEnable = 1)

controlled by
EBU (AltDir)

P4.41) General purpose input P4_IN.4 EBU inactive
(AltEnable = 0)

P4_DIR.4 = 0

General purpose output P4_OUT.4 P4_DIR.4 = 1

Byte control line 0
BC0

EBU EBU active
(AltEnable = 1)

controlled by
EBU (AltDir)

P4.51) General purpose input P4_IN.5 EBU inactive
(AltEnable = 0)

P4_DIR.5 = 0

General purpose output P4_OUT.5 P4_DIR.5 = 1

Byte control line 1
BC1

EBU EBU active
(AltEnable = 1)

controlled by
EBU (AltDir)

P4.61) General purpose input P4_IN.6 EBU inactive
(AltEnable = 0)

P4_DIR.6 = 0

General purpose output P4_OUT.6 P4_DIR.6 = 1

Byte control line 2
BC2

EBU EBU active
(AltEnable = 1)

controlled by
EBU (AltDir)

P4.71) General purpose input P4_IN.7 EBU inactive
(AltEnable = 0)

P4_DIR.7 = 0

General purpose output P4_OUT.7 P4_DIR.7 = 1

Byte control line 3
BC3

EBU EBU active
(AltEnable = 1)

controlled by
EBU (AltDir)

P4.81) General purpose input P4_IN.8 EBU inactive
(AltEnable = 0)

P4_DIR.8 = 0

General purpose output P4_OUT.8 P4_DIR.8 = 1

Wait input / End of burst
input WAIT/IND

EBU EBU active
(AltEnable = 1)

input
(AltDir = 0)

Table 11-12 Port 4 Functions (cont’d)

Port
Pin

Pin Functionality Associated
Register/Modul

Alternate
Function

Direction
Control
User’s Manual 11-33 V2.0, 2001-02

TC1775
System Units

Parallel Ports
Note: Alternate functions of Port P4 are bitwise controlled by hardware.

P4.91) General purpose input P4_IN.9 EBU inactive
(AltEnable = 0)

P4_DIR.9 = 0

General purpose output P4_OUT.9 P4_DIR.9 = 1

Burst address advance
output BAA

EBU EBU active
(AltEnable = 1)

output
(AltDir = 1)

P4.101) General purpose input P4_IN.10 EBU inactive
(AltEnable = 0)

P4_DIR.10 = 0

General purpose output P4_OUT.10 P4_DIR.10 = 1

Chip select FPI input
CSFPI

EBU EBU active
(AltEnable = 1)

input
(AltDir = 0)

P4.111) General purpose input P4_IN.11 EBU inactive
(AltEnable = 0)

P4_DIR.11 = 0

General purpose output P4_OUT.11 P4_DIR.11 = 1

Hold request input
HOLD

EBU EBU active
(AltEnable = 1)

input
(AltDir = 0)

P4.121) General purpose input P4_IN.12 EBU inactive
(AltEnable = 0)

P4_DIR.12 = 0

General purpose output P4_OUT.12 P4_DIR.12 = 1

Hold acknowledge
input/output HLDA

EBU EBU active
(AltEnable = 1)

controlled by
EBU (AltDir)

P4.131) General purpose input P4_IN.13 EBU inactive
(AltEnable = 0)

P4_DIR.13 = 0

General purpose output P4_OUT.13 P4_DIR.13 = 1

Bus request output
BREQ

EBU EBU active
(AltEnable = 1)

output
(AltDir = 1)

P4.141) General purpose input P4_IN.14 EBU inactive
(AltEnable = 0)

P4_DIR.14 = 0

General purpose output P4_OUT.14 P4_DIR.14 = 1

Code fetch status output
CODE

EBU EBU active
(AltEnable = 1)

output
(AltDir = 1)

P4.151) General purpose input P4_IN.15 EBU inactive
(AltEnable = 0)

P4_DIR.15 = 0

General purpose output P4_OUT.15 P4_DIR.15 = 1

Supervisor mode SVM EBU EBU active
(AltEnable = 1)

controlled by
EBU (AltDir)

1) After reset, the pull-up device is enabled at this pin.
2) After reset, the pull-down device is enabled at this pin.

Table 11-12 Port 4 Functions (cont’d)

Port
Pin

Pin Functionality Associated
Register/Modul

Alternate
Function

Direction
Control
User’s Manual 11-34 V2.0, 2001-02

TC1775
System Units

Parallel Ports
11.8 Port 5

Port 5 is a 16-bit bidirectional I/O port. It serves as GPIO lines or as trace output of the
CPU or PCP. The port lines can be used as standard GPIO pins if its alternate function
is not required.

11.8.1 Features

• Push/pull output drivers
• 2.5 Volt operation for GPIO and OCDS trace output (3.3 V input tolerance)
• Programmable pull-up/pull-down devices

11.8.2 Registers

The following port kernel registers are available at Port 5:

Table 11-13 Port 5 Kernel Registers

Register Short Name Register Long Name

P5_OUT Port 5 Data Output Register

P5_IN Port 5 Data Input Register

P5_DIR Port 5 Direction Register

P5_PUDSEL Port 5 Pull-Up/Pull-Down Select Register

P5_PUDEN Port 5 Pull-Up/Pull-Down Enable Register
User’s Manual 11-35 V2.0, 2001-02

TC1775
System Units

Parallel Ports
11.8.3 Port Configuration and Function

Figure 11-10 Port 5 Configuration

Note: Alternate functions of Port P5 are controlled by hardware.

Table 11-14 Port 5 Functions

Port Pin Pin Functionality Associated
Register/Modul

Alternate
Function

Direction
Control

P5.x
(x = 15-0)

General purpose input P5_IN.x EBU inactive
(AltEnable = 0)

P5_DIR.x = 0

General purpose output P5_OUT.x P5_DIR.x = 1

CPU or PCP trace
output lines x TRACEx

OCDS Trace enabled
(AltEnable = 1)

output

Pad Cell

MCA04743

P5_PUDSEL P5_PUDENP5_DIRP5_OUTP5_IN

Internal Bus

Pull-Up
Pull-Down

Control

Output
Driver

Pin
Pad

Schmitt
Trigger

TraceOut

TraceEnable1)

AltDataIn

1) TraceEnable = 0 : Trace output function disabled
 TraceEnable = 1 : Trace output function enabled

"1"

MUX
1

0

MUX
0

1

User’s Manual 11-36 V2.0, 2001-02

TC1775
System Units

Parallel Ports
11.9 Port 6

Port 6 is a 16-bit analog input port providing the input lines for the Analog/Digital
Converter ADC0. No registers are available at Port 6.

11.9.1 Features

• Sixteen analog inputs
• 0 Volt - 5 Volt input
• Low input leakage
• Series termination resistor

11.9.2 Port 6 Functions

Table 11-15 defines the pin assignment to pin numbers of Port 6.

Table 11-15 Port 6 Functions

Pin Short Name Pin Functionality

P6.0 AN0 Analog input 0 / VAREF[1] input for ADC0

P6.1 AN1 Analog input 1 / VAREF[2] input for ADC0

P6.2 AN2 Analog input 2 / VAREF[3] input for ADC0

P6.3 AN3 Analog input 3

P6.4 AN4 Analog input 4

P6.5 AN5 Analog input 5

P6.6 AN6 Analog input 6

P6.7 AN7 Analog input 7

P6.8 AN8 Analog input 8

P6.9 AN9 Analog input 9

P6.10 AN10 Analog input 10

P6.11 AN11 Analog input 11

P6.12 AN12 Analog input 12

P6.13 AN13 Analog input 13

P6.14 AN14 Analog input 14

P6.15 AN15 Analog input 15
User’s Manual 11-37 V2.0, 2001-02

TC1775
System Units

Parallel Ports
11.10 Port 7

Port 7 is a 16-bit analog input port providing the input lines for the Analog/Digital
Converter ADC1. No registers are available at Port 7.

11.10.1 Features

• Sixteen analog inputs
• 0 Volt - 5 Volt input
• Low input leakage
• Series termination resistor

11.10.2 Port 7 Functions

Table 11-15 defines the pin assignment to pin numbers of Port 7.

Table 11-16 Port 7 Functions

Pin Short Name Pin Functionality

P7.0 AN16 Analog input 16 / VAREF[1] input for ADC1

P7.1 AN17 Analog input 17 / VAREF[2] input for ADC1

P7.2 AN18 Analog input 18 / VAREF[3] input for ADC1

P7.3 AN19 Analog input 19

P7.4 AN20 Analog input 20

P7.5 AN21 Analog input 21

P7.6 AN22 Analog input 22

P7.7 AN23 Analog input 23

P7.8 AN24 Analog input 24

P7.9 AN25 Analog input 25

P7.10 AN26 Analog input 26

P7.11 AN27 Analog input 27

P7.12 AN28 Analog input 28

P7.13 AN29 Analog input 29

P7.14 AN30 Analog input 30

P7.15 AN31 Analog input 31
User’s Manual 11-38 V2.0, 2001-02

TC1775
System Units

Parallel Ports
11.11 Port 8

Port 8 is a 16-bit bidirectional I/O port. It serves as GPIO lines or as input or output
lines 0-15 of the General Purpose Timer Array GPTA. The port lines can be used as
standard GPIO pins if they are not used for the GPTA.

11.11.1 Features

• Push/pull output drivers
• Optional Open Drain Output Mode
• 5.0 Volt operation for GPIO
• Pinwise programmable input threshold (TTL or CMOS-like) via register P8_PICON
• Programmable slew-rate and output driver strength via register P8_POCONn
• Programmable pull-up/pull-down devices

11.11.2 Registers

The following port kernel registers are available at port 8:

Table 11-17 Port 8 Kernel Registers

Register Short Name Register Long Name

P8_OUT Port 8 Data Output Register

P8_IN Port 8 Data Input Register

P8_DIR Port 8 Direction Register

P8_OD Port 8 Open Drain Mode Register

P8_PUDSEL Port 8 Pull-Up/Pull-Down Select Register

P8_PUDEN Port 8 Pull-Up/Pull-Down Enable Register

P8_POCON0 Port 8 Output Characteristic Control Register 0

P8_POCON1 Port 8 Output Characteristic Control Register 1

P8_POCON2 Port 8 Output Characteristic Control Register 2

P8_POCON3 Port 8 Output Characteristic Control Register 3

P8_PICON Port 8 Input Configuration Register
User’s Manual 11-39 V2.0, 2001-02

TC1775
System Units

Parallel Ports
11.11.3 Port Configuration and Function

Figure 11-11 Port 8 Configuration

Note: Alternate functions of Port P8 are controlled by the GPTA module.

Table 11-18 Port 8 Functions

Port Pin Pin Functionality Associated
Register/Modul

Alternate
Function

Direction
Control

P8.x
(x = 15-0)

General purpose input P8_IN.x inactive
(AltEnable = 0)

P8_DIR.x = 0

General purpose output P8_OUT.x P8_DIR.x = 1

GPTA I/O line
INx / OUTx

GPTA active
(AltEnable = 1)

via
P8_DIR.x

Pad Cell

MCA04744

P8_PUDEN P8_PICONP8_DIRP8_OUTP8_IN

Internal Bus

Pull-Up
Pull-Down

Control

Output
Driver

Pin
Pad

Schmitt
Trigger

AltDataOut

AltEnable1)

AltDataIn

1) AltEnable = 0 : Port pin available for GPIO
 AltEnable = 1 : Port pin controlled by GPTA module

P8_OD P8_PUDSEL P8_POCON0/1/2/3

MUX
1

0

User’s Manual 11-40 V2.0, 2001-02

TC1775
System Units

Parallel Ports
11.12 Port 9

Port 9 is a 16-bit bidirectional I/O port. It serves as GPIO lines or as input or output
lines 16-31 of the General Purpose Timer Array (GPTA). The port lines can be used as
standard GPIO pins if they are not used for the GPTA.

11.12.1 Features

• Push/pull output drivers
• Optional Open Drain Output Mode
• 5.0 Volt operation for GPIO
• Pinwise programmable input threshold (TTL or CMOS-like) via register P9_PICON
• Pinwise programmable slew-rate and output driver strength via register

P9_POCON0/1/2/3
• Programmable pull-up/pull-down devices

11.12.2 Registers

The following port kernel registers are available at Port 9:

Table 11-19 Port 9 Kernel Registers

Register Short Name Register Long Name

P9_OUT Port 9 Data Output Register

P9_IN Port 9 Data Input Register

P9_DIR Port 9 Direction Register

P9_OD Port 9 Open Drain Mode Register

P9_PUDSEL Port 9 Pull-Up/Pull-Down Select Register

P9_PUDEN Port 9 Pull-Up/Pull-Down Enable Register

P9_POCON0 Port 9 Output Characteristic Control Register 0

P9_POCON1 Port 9 Output Characteristic Control Register 1

P9_POCON2 Port 9 Output Characteristic Control Register 2

P9_POCON3 Port 9 Output Characteristic Control Register 3

P9_PICON Port 9 Input Configuration Register
User’s Manual 11-41 V2.0, 2001-02

TC1775
System Units

Parallel Ports
11.12.3 Port Configuration and Function

Figure 11-12 Port 9 Configuration

Note: Alternate functions of Port P9 are controlled by the GPTA module.

Table 11-20 Port 9 Functions

Port Pin Pin Functionality Associated
Register/Modul

Alternate
Function

Direction
Control

P9.x
(x = 15-0)
(y = x + 16)

General purpose input P9_IN.x inactive
(AltEnable = 0)

P9_DIR.x = 0

General purpose output P9_OUT.x P9_DIR.x = 1

GPTA I/O line
INy / OUTy

GPTA active
(AltEnable = 1)

via
P9_DIR.x

Pad Cell

MCA04745

P9_PUDEN P9_PICONP9_DIRP9_OUTP9_IN

Internal Bus

Pull-Up
Pull-Down

Control

Output
Driver

Pin
Pad

Schmitt
Trigger

AltDataOut

AltEnable1)

AltDataIn

1) AltEnable = 0 : Port pin available for GPIO
 AltEnable = 1 : Port pin controlled by GPTA module

P9_OD P9_PUDSEL P9_POCON0/1/2/3

MUX
1

0

User’s Manual 11-42 V2.0, 2001-02

TC1775
System Units

Parallel Ports
11.13 Port 10

Port 10 is a 16-bit bidirectional I/O port. It serves as GPIO lines or as input or output lines
32-47 of the General Purpose Timer Array (GPTA). The port lines can be used as
standard GPIO pins if they are not used for the GPTA.

11.13.1 Features

• Push/pull output drivers
• Optional Open Drain Output Mode
• 5.0 Volt operation for GPIO
• Pinwise programmable input threshold (TTL or CMOS-like) via register P10_PICON
• Pinwise programmable slew-rate and output driver strength via register

P10_POCON0/1/2/3
• Programmable pull-up/pull-down devices

11.13.2 Registers

The following port kernel registers are available at Port 10:

Table 11-21 Port 10 Kernel Registers

Register Short Name Register Long Name

P10_OUT Port 10 Data Output Register

P10_IN Port 10 Data Input Register

P10_DIR Port 10 Direction Register

P10_OD Port 10 Open Drain Mode Register

P10_PUDSEL Port 10 Pull-Up/Pull-Down Select Register

P10_PUDEN Port 10 Pull-Up/Pull-Down Enable Register

P10_POCON0 Port 10 Output Characteristic Control Register 0

P10_POCON1 Port 10 Output Characteristic Control Register 1

P10_POCON2 Port 10 Output Characteristic Control Register 2

P10_POCON3 Port 10 Output Characteristic Control Register 3

P10_PICON Port 10 Input Configuration Register
User’s Manual 11-43 V2.0, 2001-02

TC1775
System Units

Parallel Ports
11.13.3 Port Configuration and Function

Figure 11-13 Port 10 Configuration

Note: Alternate functions of Port P10 are controlled by the GPTA module.

Table 11-22 Port 10 Functions

Port Pin Pin Functionality Associated
Register/Modul

Alternate
Function

Direction
Control

P10.x
(x = 15-0)
(y = x + 32)

General purpose input P10_IN.x inactive
(AltEnable = 0)

P10_DIR.x = 0

General purpose output P10_OUT.x P10_DIR.x = 1

GPTA I/O line
INy / OUTy

GPTA active
(AltEnable = 1)

via
P10_DIR.x

Pad Cell

MCA04746

P10_PUDEN P10_PICONP10_DIRP10_OUTP10_IN

Internal Bus

Pull-Up
Pull-Down

Control

Output
Driver

Pin
Pad

Schmitt
Trigger

AltDataOut

AltEnable1)

AltDataIn

1) AltEnable = 0 : Port pin available for GPIO
 AltEnable = 1 : Port pin controlled by GPTA module

P10_OD P10_PUDSEL P10_POCON0/1/2/3

MUX
1

0

User’s Manual 11-44 V2.0, 2001-02

TC1775
System Units

Parallel Ports
11.14 Port 11

Port 11 is a 16-bit bidirectional I/O port. It serves as GPIO lines or as input or output lines
38-63 of the General Purpose Timer Array (GPTA). The port lines can be used as
standard GPIO pins if they are not used for the GPTA.

11.14.1 Features

• Push/pull output drivers
• Optional Open Drain Output Mode
• 5.0 Volt operation for GPIO
• Pinwise programmable input threshold (TTL or CMOS-like) via register P11_PICON
• Pinwise programmable slew-rate and output driver strength via register

P11_POCON0/1/2/3
• Programmable pull-up/pull-down devices

11.14.2 Registers

The following port kernel registers are available at Port 11:

Table 11-23 Port 11 Kernel Registers

Register Short Name Register Long Name

P11_OUT Port 11 Data Output Register

P11_IN Port 11 Data Input Register

P11_DIR Port 11 Direction Register

P11_OD Port 11 Open Drain Mode Register

P11_PUDSEL Port 11 Pull-Up/Pull-Down Select Register

P11_PUDEN Port 11 Pull-Up/Pull-Down Enable Register

P11_POCON0 Port 11 Output Characteristic Control Register 0

P11_POCON1 Port 11 Output Characteristic Control Register 1

P11_POCON2 Port 11 Output Characteristic Control Register 2

P11_POCON3 Port 11 Output Characteristic Control Register 3

P11_PICON Port 11 Input Configuration Register
User’s Manual 11-45 V2.0, 2001-02

TC1775
System Units

Parallel Ports
11.14.3 Port Configuration and Function

Figure 11-14 Port 11 Configuration

Note: Alternate functions of Port P11 are controlled by the GPTA module.

Table 11-24 Port 11 Functions

Port Pin Pin Functionality Associated
Register/Modul

Alternate
Function

Direction
Control

P11.x
(x = 15-0)
(y = x + 48)

General purpose input P11_IN.x inactive
(AltEnable = 0)

P11_DIR.x = 0

General purpose output P11_OUT.x P11_DIR.x = 1

GPTA I/O line
INy / OUTy

GPTA active
(AltEnable = 1)

via
P11_DIR.x

Pad Cell

MCA04747

P11_PUDEN P11_PICONP11_DIRP11_OUTP11_IN

Internal Bus

Pull-Up
Pull-Down

Control

Output
Driver

Pin
Pad

Schmitt
Trigger

AltDataOut

AltEnable1)

AltDataIn

1) AltEnable = 0 : Port pin available for GPIO
 AltEnable = 1 : Port pin controlled by GPTA module

P11_OD P11_PUDSEL P11_POCON0/1/2/3

MUX
1

0

User’s Manual 11-46 V2.0, 2001-02

TC1775
System Units

Parallel Ports
11.15 Port 12

Port 12 is a 16-bit bidirectional I/O port. It serves as GPIO lines or as input or output lines
of the Analog/Digital Converters and as input and output lines of the Serial Data Link
Module (SDLM). The port lines can be used as standard GPIO pins if its alternate
function is not required.

11.15.1 Features

• Push/pull output drivers
• Optional Open Drain Output Mode
• 5.0 Volt operation for GPIO
• Pinwise programmable input threshold (TTL or CMOS-like) via register P12_PICON
• Pinwise programmable slew-rate and output driver strength via register

P12_POCON0/1/2/3
• Programmable pull-up/pull-down devices

11.15.2 Registers

The following port kernel registers are available at Port 12:

Table 11-25 Port 12 Kernel Registers

Register Short Name Register Long Name

P12_OUT Port 12 Data Output Register

P12_IN Port 12 Data Input Register

P12_DIR Port 12 Direction Register

P12_OD Port 12 Open Drain Mode Register

P12_PUDSEL Port 12 Pull-Up/Pull-Down Select Register

P12_PUDEN Port 12 Pull-Up/Pull-Down Enable Register

P12_POCON0 Port 12 Output Characteristic Control Register 0

P12_POCON1 Port 12 Output Characteristic Control Register 1

P12_POCON2 Port 12 Output Characteristic Control Register 2

P12_POCON3 Port 12 Output Characteristic Control Register 3

P12_PICON Port 12 Input Configuration Register

P12_ALTSEL0 Port 12 Alternate Select Register 0
User’s Manual 11-47 V2.0, 2001-02

TC1775
System Units

Parallel Ports
11.15.3 Port Configuration and Function

Figure 11-15 Port 12 Configuration for P12.[9:0]

Pad Cell

MCA04748

P12_PUDEN P12_PICONP12_ODP12_OUTP12_IN

Internal Bus

Pull-Up
Pull-Down

Control

Output
Driver

Pin
Pad

Schmitt
Trigger

AltDataOut

AltDataIn

P12_DIR P12_PUDSEL P12_POCONx

"0" for Inputs
"1" for Outputs

P12_ALTSEL0

MUX

1

1

0

MUX
0

1

1)

P12.[3:0]
P12.[7:4]
P12.[9:8]

x = 0
x = 1
x = 2

1)
User’s Manual 11-48 V2.0, 2001-02

TC1775
System Units

Parallel Ports

Figure 11-16 Port 12 Configuration for P12.12 and P12.14

Table 11-26 Port 12 Functions

Port
Pin

Pin Functionality Associated
Register/Modul

Alternate
Function

Direction
Control

P12.0 General purpose input P12_IN.0 P12_
ALTSEL0.0 = 0

P12_DIR.0 = 0

General purpose output P12_OUT.0 P12_DIR.0 = 1

ADC0 ext. multiplexer
control line 0
AD0EMUX0

ADC0 P12_
ALTSEL0.0 = 1

output

P12.1 General purpose input P12_IN.1 P12_
ALTSEL0.1 = 0

P12_DIR.1 = 0

General purpose output P12_OUT.1 P12_DIR.1 = 1

ADC0 ext. multiplexer
control line 1
AD0EMUX1

ADC0 P12_
ALTSEL0.1 = 1

output

Pad Cell

MCA04749

P12_PUDEN P12_PICONP12_ODP12_OUTP12_IN

Internal Bus

Pull-Up
Pull-Down

Control

Output
Driver

Pin
Pad

Schmitt
Trigger

AltDataOut

AltDataIn

P12_DIR P12_PUDSEL P12_POCONxP12_ALTSEL0

MUX
1

0

P12.[11:10]
P12.[15:12]

x = 2
x = 3

1)

1)
User’s Manual 11-49 V2.0, 2001-02

TC1775
System Units

Parallel Ports
P12.2 General purpose input P12_IN.2 P12_
ALTSEL0.2 = 0

P12_DIR.2 = 0

General purpose output P12_OUT.2 P12_DIR.2 = 1

ADC0 ext. multiplexer
control line 2
AD0EMUX2

ADC0 P12_
ALTSEL0.2 = 1

output

P12.3 General purpose input P12_IN.3 P12_
ALTSEL0.3 = 0

P12_DIR.3 = 0

General purpose output P12_OUT.3 P12_DIR.3 = 1

ADC1 ext. multiplexer
control line 0
AD1EMUX0

ADC1 P12_
ALTSEL0.3 = 1

output

P12.4 General purpose input P12_IN.4 P12_
ALTSEL0.4 = 0

P12_DIR.4 = 0

General purpose output P12_OUT.4 P12_DIR.4 = 1

ADC1 ext. multiplexer
control line 1
AD1EMUX1

ADC1 P12_
ALTSEL0.4 = 1

output

P12.5 General purpose input P12_IN.5 P12_
ALTSEL0.5 = 0

P12_DIR.5 = 0

General purpose output P12_OUT.5 P12_DIR.5 = 1

ADC1 ext. multiplexer
control line 2
AD1EMUX2

ADC1 P12_
ALTSEL0.5 = 1

output

P12.6 General purpose input P12_IN.6 P12_
ALTSEL0.6 = 0

P12_DIR.6 = 0

General purpose output P12_OUT.6 P12_DIR.6 = 1

ADC1 external trigger
input 0 AD1EXTIN0

ADC1 P12_
ALTSEL0.6 = 1

input

P12.7 General purpose input P12_IN.7 P12_
ALTSEL0.7 = 0

P12_DIR.7 = 0

General purpose output P12_OUT.7 P12_DIR.7 = 1

ADC1 external trigger
input 1 AD1EXTIN1

ADC1 P12_
ALTSEL0.7 = 1

input

P12.8 General purpose input P12_IN.8 P12_
ALTSEL0.8 = 0

P12_DIR.8 = 0

General purpose output P12_OUT.8 P12_DIR.8 = 1

ADC0 external trigger
input 0 AD0EXTIN0

ADC0 P12_
ALTSEL0.8 = 1

input

Table 11-26 Port 12 Functions (cont’d)

Port
Pin

Pin Functionality Associated
Register/Modul

Alternate
Function

Direction
Control
User’s Manual 11-50 V2.0, 2001-02

TC1775
System Units

Parallel Ports
P12.9 General purpose input P12_IN.9 P12_
ALTSEL0.9 = 0

P12_DIR.9 = 0

General purpose output P12_OUT.9 P12_DIR.9 = 1

ADC0 external trigger
input 1 AD0EXTIN1

ADC0 P12_
ALTSEL0.9 = 1

input

P12.10 General purpose input P12_IN.10 P12_
ALTSEL0.10 = 0

P12_DIR.10 = 0

General purpose output P12_OUT.10 P12_DIR.10 = 1

SDLM receiver input
RXJ1850

SDLM P12_
ALTSEL0.10 = 1

input

P12.11 General purpose input P12_IN.11 P12_
ALTSEL0.11 = 0

P12_DIR.11 = 0

General purpose output P12_OUT.11 P12_DIR.11 = 1

SDLM transmitter output
TXJ1850

SDLM P12_
ALTSEL0.11 = 1

output

P12.12 General purpose input P12_IN.12 P12_
ALTSEL0.12 = 0

P12_DIR.12 = 0

General purpose output P12_OUT.12 P12_DIR.12 = 1

ASC0 receiver input A
RXD0A used as input

ASC0 P12_
ALTSEL0.11 = 1

P12_DIR.12 = 0

ASC0 receiver input A
RXD0A used as output

P12_DIR.12 = 1

P12.13 General purpose input P12_IN.13 P12_
ALTSEL0.13 = 0

P12_DIR.13 = 0

General purpose output P12_OUT.13 P12_DIR.13 = 1

ASC0 transmitter
output A TXD0A

ASC0 P12_
ALTSEL0.13 = 1

output

P12.14 General purpose input P12_IN.14 P12_
ALTSEL0.14 = 0

P12_DIR.14 = 0

General purpose output P12_OUT.14 P12_DIR.14 = 1

ASC1 receiver input A
RXD1A used as input

ASC1 P12_
ALTSEL0.14 = 1

P12_DIR.14 = 0

ASC1 receiver input A
RXD1A used as output

P12_DIR.14 = 1

P12.15 General purpose input P12_IN.15 P12_
ALTSEL0.15 = 0

P12_DIR.15 = 0

General purpose output P12_OUT.15 P12_DIR.15 = 1

ASC1 transmitter
output A TXD1A

ASC1 P12_
ALTSEL0.15 = 1

output

Table 11-26 Port 12 Functions (cont’d)

Port
Pin

Pin Functionality Associated
Register/Modul

Alternate
Function

Direction
Control
User’s Manual 11-51 V2.0, 2001-02

TC1775
System Units

Parallel Ports
11.16 Port 13

Port 13 is a 16-bit bidirectional I/O port. It serves as GPIO lines or as input or output lines
of the serial modules ASC0, ASC1, SSC0, SSC1, CAN, and the timer module GPTU.
The port lines can be used as standard GPIO pins if its alternate function is not required.

11.16.1 Features

• Push/pull output drivers
• 5.0 Volt operation for GPIO
• Pinwise programmable input threshold (TTL or CMOS-like) via register P13_PICON
• Pinwise programmable slew-rate and output driver strength via register

P13_POCON0/1/2/3
• Programmable pull-up/pull-down devices

11.16.2 Registers

The following port kernel registers are available at Port 13:

Table 11-27 Port 13 Kernel Registers

Register Short Name Register Long Name

P13_OUT Port 13 Data Output Register

P13_IN Port 13 Data Input Register

P13_DIR Port 13 Direction Register

P13_OD Port 13 Open Drain Mode Register

P13_PUDSEL Port 13 Pull-Up/Pull-Down Select Register

P13_PUDEN Port 13 Pull-Up/Pull-Down Enable Register

P13_POCON0 Port 13 Output Characteristic Control Register 0

P13_POCON1 Port 13 Output Characteristic Control Register 1

P13_POCON2 Port 13 Output Characteristic Control Register 2

P13_POCON3 Port 13 Output Characteristic Control Register 3

P13_PICON Port 13 Input Configuration Register

P13_ALTSEL0 Port 13 Alternate Select Register 0

P13_ALTSEL1 Port 13 Alternate Select Register 1
User’s Manual 11-52 V2.0, 2001-02

TC1775
System Units

Parallel Ports
11.16.3 Port Configuration and Function

Figure 11-17 Port 13 Configuration for P13.[1:0] and P13.[15:8]

Pad Cell

MCA04750

P13_PUDEN P13_PICONP13_DIRP13_OUTP13_IN

Internal Bus

Pull-Up
Pull-Down

Control

Output
Driver

Pin
Pad

Schmitt
Trigger

AltDataOut

AltDataIn

P13_OD P13_PUDSEL P13_POCONxP13_ALTSEL0

MUX
1

0

P13.[1:0]
P13.[11:8]
P13.[15:12]

x = 0
x = 2
x = 3

1)

1)
User’s Manual 11-53 V2.0, 2001-02

TC1775
System Units

Parallel Ports
Figure 11-18 Port 13 Configuration for P13.[7:2]

Table 11-28 Port 13 Functions

Port
Pin

Pin Functionality Associated
Register/Modul

Alternate
Function

Direction
Control

P13.0 General purpose input P13_IN.0 P13_
ALTSEL0.0 = 0

P13_DIR.0 = 0

General purpose output P13_OUT.0 P13_DIR.0 = 1

GPTU I/O line 0 GPT0
used as input

GPTU P13_
ALTSEL0.0 = 1

P13_DIR.0 = 0

GPTU I/O line 0 GPT0
used as output

P13_DIR.0 = 1

Pad Cell

MCA04751

P13_PUDEN P13_PICONP13_DIRP13_ALTSEL1P13_IN

Internal Bus

Pull-Up
Pull-Down

Control

Output
Driver

Pin
Pad

Schmitt
Trigger

AltDataOut1

AltDataIn

P13_OD P13_PUDSEL P8_POCONxP13_ALTSEL0P13_OUT

AltDataOut2
(GPTU)
(SSC,ASC)

21

1X
01
00

20

MUX

P13.[3:2]
P13.[7:4]

x = 1
x = 2

1)

1)
User’s Manual 11-54 V2.0, 2001-02

TC1775
System Units

Parallel Ports
P13.1 General purpose input P13_IN.1 P13_
ALTSEL0.1 = 0

P13_DIR.1 = 0

General purpose output P13_OUT.1 P13_DIR.1 = 1

GPTU I/O line 1 GPT1
used as input

GPTU P13_
ALTSEL0.1 = 1

P13_DIR.1 = 0

GPTU I/O line 1 GPT1
used as output

P13_DIR.1 = 1

P13.2 General purpose input P13_IN.2 P13_
ALTSEL0.2 = 0
P13_
ALTSEL1.2 = 0

P13_DIR.2 = 0

General purpose output P13_OUT.2 P13_DIR.2 = 1

GPTU I/O line 2 GPT2
used as input

GPTU P13_
ALTSEL0.2 = 1
P13_
ALTSEL1.2 = 0

P13_DIR.2 = 0

GPTU I/O line 2 GPT2
used as output

P13_DIR.2 = 1

ASC0 receiver input B
RXD0B used as input

ASC0 P13_
ALTSEL1.2 = 1

P13_DIR.2 = 0

ASC0 receiver input B
RXD0B used as output

P13_DIR.2 = 1

P13.3 General purpose input P13_IN.3 P13_
ALTSEL0.3 = 0
P13_
ALTSEL1.3 = 0

P13_DIR.3 = 0

General purpose output P13_OUT.3 P13_DIR.3 = 1

GPTU I/O line 3 GPT3
used as input

GPTU P13_
ALTSEL0.3 = 1
P13_
ALTSEL1.3 = 0

P13_DIR.3 = 0

GPTU I/O line 3 GPT3
used as output

P13_DIR.3 = 1

ASC0 transmitter output
B TXD0B

ASC0 P13_
ALTSEL1.3 = 1

–

Table 11-28 Port 13 Functions (cont’d)

Port
Pin

Pin Functionality Associated
Register/Modul

Alternate
Function

Direction
Control
User’s Manual 11-55 V2.0, 2001-02

TC1775
System Units

Parallel Ports
P13.4 General purpose input P13_IN.4 P13_
ALTSEL0.4 = 0
P13_
ALTSEL1.4 = 0

P13_DIR.4 = 0

General purpose output P13_OUT.4 P13_DIR.4 = 1

GPTU I/O line 4 GPT4
used as input

GPTU P13_
ALTSEL0.4 = 1
P13_
ALTSEL1.4 = 0

P13_DIR.4 = 0

GPTU I/O line 4 GPT4
used as output

P13_DIR.4 = 1

ASC1 receiver input B
RXD1B used as input

ASC1 P13_
ALTSEL1.4 = 1

P13_DIR.4 = 0

ASC1 receiver input B
RXD1B used as output

P13_DIR.4 = 1

P13.5 General purpose input P13_IN.5 P13_
ALTSEL0.5 = 0
P13_
ALTSEL1.5 = 0

P13_DIR.5 = 0

General purpose output P13_OUT.5 P13_DIR.5 = 1

GPTU I/O line 5 GPT5
used as input

GPTU P13_
ALTSEL0.5 = 1
P13_
ALTSEL1.5 = 0

P13_DIR.5 = 0

GPTU I/O line 5 GPT5
used as output

P13_DIR.5 = 1

ASC1 transmitter output
B TXD1B

ASC1 P13_
ALTSEL1.5 = 1

–

P13.6 General purpose input P13_IN.6 P13_
ALTSEL0.6 = 0
P13_
ALTSEL1.6 = 0

P13_DIR.6 = 0

General purpose output P13_OUT.6 P13_DIR.6 = 1

GPTU I/O line 6 GPT6
used as input

GPTU P13_
ALTSEL0.6 = 1
P13_
ALTSEL1.6 = 0

P13_DIR.6 = 0

GPTU I/O line 6 GPT6
used as output

P13_DIR.6 = 1

SSC0 clock input
SCLK0

SSC0 P13_
ALTSEL1.6 = 1

P13_DIR.6 = 0

SSC0 clock output
SCLK0

P13_DIR.6 = 1

Table 11-28 Port 13 Functions (cont’d)

Port
Pin

Pin Functionality Associated
Register/Modul

Alternate
Function

Direction
Control
User’s Manual 11-56 V2.0, 2001-02

TC1775
System Units

Parallel Ports
P13.7 General purpose input P13_IN.7 P13_
ALTSEL0.7 = 0
P13_
ALTSEL1.7 = 0

P13_DIR.7 = 0

General purpose output P13_OUT.7 P13_DIR.7 = 1

GPTU I/O line 7 GPT7
used as input

GPTU P13_
ALTSEL0.7 = 1
P13_
ALTSEL1.7 = 0

P13_DIR.7 = 0

GPTU I/O line 7 GPT7
used as output

P13_DIR.7 = 1

SSC0 master receive
input MRST0

SSC0 P13_
ALTSEL1.7 = 1

P13_DIR.7 = 0

SSC0 slave transmit
output MRST0

P13_DIR.7 = 1

P13.8 General purpose input P13_IN.8 P13_
ALTSEL0.8 = 0

P13_DIR.8 = 0

General purpose output P13_OUT.8 P13_DIR.8 = 1

SSC0 slave receive
input MTSR0

SSC0 P13_
ALTSEL0.8 = 1

P13_DIR.8 = 0

SSC0 master transmit
output MTSR0

P13_DIR.8 = 1

P13.9 General purpose input P13_IN.9 P13_
ALTSEL0.9 = 0

P13_DIR.9 = 0

General purpose output P13_OUT.9 P13_DIR.9 = 1

SSC1 clock input
SCLK1

SSC1 P13_
ALTSEL0.9 = 1

P13_DIR.9 = 0

SSC1 clock output
SCLK1

P13_DIR.9 = 1

P13.10 General purpose input P13_IN.10 P13_
ALTSEL0.10 = 0

P13_DIR.10 = 0

General purpose output P13_OUT.10 P13_DIR.10 = 1

SSC1 master receive
input MRST1

SSC1 P13_
ALTSEL0.10 = 1

P13_DIR.10 = 0

SSC1 slave transmit
output MRST1

P13_DIR.10 = 1

Table 11-28 Port 13 Functions (cont’d)

Port
Pin

Pin Functionality Associated
Register/Modul

Alternate
Function

Direction
Control
User’s Manual 11-57 V2.0, 2001-02

TC1775
System Units

Parallel Ports
P13.11 General purpose input P13_IN.11 P13_
ALTSEL0.11 = 0

P13_DIR.11 = 0

General purpose output P13_OUT.11 P13_DIR.11 = 1

SSC1 slave receive
input MTSR1

SSC1 P13_
ALTSEL0.11 = 1

P13_DIR.11 = 0

SSC1 master transmit
output MTSR1

P13_DIR.11 = 1

P13.12 General purpose input P13_IN.12 P13_
ALTSEL0.12 = 0

P13_DIR.12 = 0

General purpose output P13_OUT.12 P13_DIR.12 = 1

CAN receiver input 0
RXDCAN0

CAN P13_
ALTSEL0.12 = 1

–

P13.13 General purpose input P13_IN.13 P13_
ALTSEL0.13 = 0

P13_DIR.13 = 0

General purpose output P13_OUT.13 P13_DIR.13 = 1

CAN transmitter output
0 TXDCAN0

CAN P13_
ALTSEL0.13 = 1

–

P13.14 General purpose input P13_IN.14 P13_
ALTSEL0.14 = 0

P13_DIR.14 = 0

General purpose output P13_OUT.14 P13_DIR.14 = 1

CAN receiver input 1
RXDCAN1

CAN P13_
ALTSEL0.14 = 1

–

P13.15 General purpose input P13_IN.15 P13_
ALTSEL0.15 = 0

P13_DIR.15 = 0

General purpose output P13_OUT.15 P13_DIR.15 = 1

CAN transmitter output
1 TXDCAN1

CAN P13_
ALTSEL0.15 = 1

–

Table 11-28 Port 13 Functions (cont’d)

Port
Pin

Pin Functionality Associated
Register/Modul

Alternate
Function

Direction
Control
User’s Manual 11-58 V2.0, 2001-02

TC1775
System Units

External Bus Unit
12 External Bus Unit
The External Bus Control Unit (EBU) of the TC1775 is the interface between external
memories and peripheral units and the internal memories and peripheral units. The basic
structure of the EBU is shown in Figure 12-1.

Figure 12-1 EBU Structure and Interfaces

The EBU is primarily used for the following two operations:

• Communication with external memories or peripheral units via the FPI Bus
• Instruction fetches from the PMU to external Burst Flash program memories

The EBU controls all transactions required for these two operations and in particular
handles the arbitration between these two tasks.

The types of external devices/Bus modes controlled by the EBU are:

– INTEL style peripherals (separate RD and WR signals)
– ROMs, EPROMs
– Static RAMs
– demultiplexed A/D bus
– multiplexed A/D bus

The PMU controls accesses to external code memories. It especially supports:

– Burst Mode Flash Memories (ROM)

MCA04753

TriCore
CPU

PMU
with on-chip

Progam Memory

DMU
with on-chip

Data Memory

EBU

Port 4

Port 3

Port 2

Port 1

Port 0

Control
Lines

A[25:16] and
Chip Select

A[15:0]

AD[31:16]

AD[15:0]

FPI Bus

Burst Mode

Instruction
Fetches

To Peripheral
Units and PCP
User’s Manual 12-1 V2.0, 2001-02

TC1775
System Units

External Bus Unit
12.1 Overview

The External Bus Controller (EBU) establishes and controls the external interface of the
TC1775 to allow the following types of memories and/or peripherals to interface with the
TC1775 without any additional external logic.

• Intel-style peripherals which have separate read (RD) and (WR) signals
• ROMs and EPROMs
• Static RAMs
• Burst Mode Flash Memories (ROMs)
• Peripherals with multiplexed or demultiplexed address/data bus

The EBU also provides all necessary features to build an external system including other
external bus masters. External bus masters cannot only get ownership of the external
bus, but are also able to access internal on-chip devices connected to the FPI Bus. In
addition, the EBU provides special support for external emulator hardware and
debugging support.

The external bus established by the EBU consists of a 32-bit wide data bus, a 26-bit wide
address bus, and a number of control signals. With four user chip select lines, four
external address ranges can be accessed, each with a size of up to 64 MBytes (besides
the special emulator range). Each of these ranges can be programmed individually in
terms of location, size and access parameters (such as data size, address mode, wait
states, etc.), making it possible to connect and access different device types in one
system. The EBU dynamically adjusts the access sequence according to the
programmed parameters for each selectable device.
User’s Manual 12-2 V2.0, 2001-02

TC1775
System Units

External Bus Unit
12.2 EBU Features

• 32-bit wide data bus (D[31:0])
– Data width of external device can be 8, 16 or 32 bits
– Automatic data assembly/disassembly operation
– Non-multiplexed or multiplexed (address and data on the same bus) operation

• 26-bit wide address bus (A[25:0])
• Bus control signals

– Clock output (CLKOUT)
– EBU clock input (CLKIN)
– Address latch enable (ALE)
– Read (RD) and read/write (RD/WR)
– Four byte control signals (BC[3:0])
– Four user chip selects (CS[3:0])
– External synchronous/asynchronous wait state control (WAIT)
– Code/data fetch indication (CODE)

• 4 user address ranges
– Programmable location and size
– Individual chip select for each range
– Programmable mirror function: the same physical device can be accessed in two

different address ranges
– Enable/disable control

• Programmable access parameters for each address range
– Address mode (multiplexed/non-multiplexed)
– Data width
– Byte control signal operation
– Address setup and hold timing
– Data hold wait states
– Read/write wait states
– Recovery cycle wait states
– External WAIT input enable and active level control, asynchronous or synchronous

operation
– Write protection for region

• Programmable wait state insertion to meet recovery/tristate time needs of external
devices between
– Read and write accesses
– Accesses to different address ranges

• External bus arbitration
– Simple three-line interface: bus hold (HOLD), hold acknowledge (HLDA) and bus

request (BREQ) signals
– External bus master/slave arbitration operation
– External master can access EBU with special chip select (CSFPI) to access on-chip

devices connected to the FPI Bus
User’s Manual 12-3 V2.0, 2001-02

TC1775
System Units

External Bus Unit
• Automatic self-configuration on boot from external memory
– Reads configuration data from external memory

• Dedicated emulation support
– Emulator address range
– Emulator memory chip select (CSEMU)
– Overlay chip select for emulator memory (CSOVL)
– Special boot from emulation memory

12.3 Basic EBU Operation

The EBU is the interface or gateway from the internal on-chip system onto the external
on-board system. But it can operate in both directions, it is also a gateway from the
external world onto the internal on-chip system. Figure 12-2 shows an example for the
connection of an external system, including an external bus master, to the EBU. (Note:
not all signals are shown in this diagram. For example, the connections from the external
master to the chip-select (CSn) lines are not shown.
User’s Manual 12-4 V2.0, 2001-02

TC1775
System Units

External Bus Unit
Figure 12-2 Example Configuration for Connection of External Devices

Note: The example given in Figure 12-2 is valid for small systems with a low capacity
(ca. 30 pF max.). For larger systems and high frequency applications, the external
bus must be separated by additional buffers into a fast section (that is, low
capacity, maximum capacitance of 30 pF, and 0 wait-states) and a slow section
(that is, high capacity, with wait states).

The basic operation of the EBU in these two fundamental modes is described in the
following sections. It is assumed for these descriptions that there are no blocking
conditions for the operations (such as EBU is busy, arbitration conflict, etc.), and that no
bus arbitration is required. In later sections of this chapter, operation of the EBU is
described in more detail, and all special conditions and prerequisites as well as bus
arbitration procedures are considered.

MCA04754

W
A

IT
C

S
A

[1
:0

]
W

R
O

E
D

[7
:0

]

U
B

C
S

A
[1

8:
1]

W
R

O
E

D
[1

5:
0]

LBC
S

A
[1

5:
0]

O
E

D
[3

1:
0]

Burst Flash
Memories

64K x 32

SRAM

256K × 16

Peripheral

4 × 8

W
A

IT
A

[2
3:

0]
W

R

External
Master

D
[3

1:
0]

R
D

BREQ
HLDA
HOLD

B
R

E
Q

H
LD

A
H

O
LD

EBU

AD[31:0]
A[25:0]

RD
RD/WR

BC0
BC1
BC2
BC3

WAIT/IND

CS0

C
S

A
D

[1
5:

0]

R
D

R
D

/W
R

EPROM
64K × 8

A
LE

CS1
CS2
CS3

ALE

CLKOUT
CLKIN

CSEMU
CSOVL
CSFPI
User’s Manual 12-5 V2.0, 2001-02

TC1775
System Units

External Bus Unit
12.3.1 Internal to External Operation

When an internal FPI Bus master wants to perform a read or write transaction from/to a
device connected to the external bus, it sends out the address onto the FPI Bus. The
address needs to be in the address ranges defined as external, as shown in Table 12-1.

The EBU reacts to addresses in these ranges only. It compares the address sent from
the FPI Bus master against the address ranges pre-programmed in its address select
registers, EBU_ADDSELx. If it finds a match in one (or more) of the address regions, it
selects the associated bus control register, EBU_BUSCONx, for that region, and starts
to perform the external access according to the parameters programmed in the
EBU_BUSCONx register.

On a write operation, the write data from the FPI Bus master is stored inside the EBU,
and the master can continue with its other tasks. The EBU will take care of properly
storing the data to the external device.

On a read operation, the FPI Bus master has to wait until the EBU has retrieved the data
from the external device and has sent it to the master via the FPI Bus. The internal FPI
Bus is blocked for that time, no other transaction can take place.

12.3.2 External to Internal Operation

If an external bus master wants to access a device connected to the external bus or to
an internal module on the FPI Bus, it first needs to receive ownership of the external bus
from the EBU via the bus arbitration procedure. The EBU releases all signals of the
external bus to the other bus master. Internal pull-up or pull-down devices connected to
the EBU signals guarantee stable signal conditions during the transition phase, until the
other bus master has taken over and drives the bus signals.

The external master then performs its transaction over the external bus. If the access is
to the internal FPI Bus, the EBU is activated as a slave via a special chip select signal.
It then acts as an bus master on the internal FPI Bus, performing the required access on
behalf of the external bus master.

Three reprogrammable address extension registers are provided to extend the external
26-bit address to the full 32-bit FPI Bus address.

Table 12-1 EBU External Address Ranges

Segment Address Range Description

10 A000 0000H - AFFF FFFFH External memory space (cached area)

11 B000 0000H - BDFF FFFFH External memory space (non-cached area)

BE00 0000H - BEFF FFFFH External emulator memory (non-cached area)

14 E000 0000H - EFFF FFFFH External peripheral and data memory space
(non-cached area)
User’s Manual 12-6 V2.0, 2001-02

TC1775
System Units

External Bus Unit
12.4 EBU Signal Description

The external signals of the EBU are listed in Table 12-2 and described in the following
sections.

Table 12-2 EBU Signals available on the TC1775 Ports

Signal Port Type Pull Function

AD[15:0] Port 0 I/O – Address/data bus lines 15-0

AD[31:16] Port 1 I/O – Address/data bus lines 31-16

A[15:0] Port 2 I/O – Address bus lines 15-0

A[25:16] P3[9:0] I/O – Address bus lines 25-16

CS[3:0] P3[13:10] O Up Chip select n (n = 3-0)

CSEMU P3.14 O Up Chip select for emulation region
selects external emulator memory region

CSOVL P3.15 O Up Chip select for overlay memory
selects external overlay memory region

CLKOUT dedicated O – Clock output

CLKIN dedicated I – EBU clock input

RD P4.0 I/O up Read control line; active during read operation

RD/WR P4.1 I/O up Write control line; active during write operation

ALE P4.2 O down Address latch enable

ADV P4.3 O up Address valid strobe

BC0 P4.4 I/O up Byte control line n (n = 3-0)
controls the byte access to corresponding byte
location

BC1 P4.5 I/O up

BC2 P4.6 I/O up

BC3 P4.7 I/O up

WAIT/IND P4.8 I up Wait input/End of burst input

BAA P4.9 O up Burst address advance output

CSFPI P4.10 I up Chip select FPI input

HOLD P4.11 I up Hold request input

HLDA P4.12 I/O up Hold acknowledge input/output

BREQ P4.13 O up Bus request output

CODE P4.14 O up Code fetch status output

SVM P4.15 I/O up Supervisor mode input/output
User’s Manual 12-7 V2.0, 2001-02

TC1775
System Units

External Bus Unit
12.4.1 Output Clock, CLKOUT

The internal system clock of the TC1775 is provided at pin CLKOUT for timing purposes
(timing reference). CLKOUT can be enabled/disabled by clearing/setting bit
CLKOUTDIS in register SCU_CON (see Chapter 4).

12.4.2 Address Bus, A[25:0]

The address bus of the EBU consists of 26 address lines, giving a directly addressable
range of 64 MBytes. Directly addressable means, that these address lines can be used
to access any location within one external device, such as a memory. This external
device is selected via one of the chip select lines. While there are four chip selects, four
such devices with up to 64 MBytes of address range can be used in the external system.

Note: The address bus outputs the address in multiplexed mode.

If an external bus master is used in the system, and this master performs an access to
the internal bus via the EBU, the address bus is switched to input. A special mechanism,
described in Section 12.6.2, is provided to extend the external 26 address lines to the
full 32-bit internal address.

12.4.3 Address/Data Bus, AD[31:0]

The Address/Data bus transfers data information in demultiplexed mode, and transfers
address and data information in multiplexed mode. The width of this bus is 32 bits.
External devices with 8, 16 or 32 bits of data width can be connected to the data bus.
The EBU adjusts the data on the data bus to the width of the external device, according
to the programmed parameters in its control registers. See Section 12.5.3 for more
information. The byte control signals, BCx, specify which part of the data bus carries
valid data. See also Section 12.4.6.

In multiplexed mode, the 32-bit address is first output on the bus. The bus is then set to
input on a read access, or the data is output on a write access. Signal ALE captures the
address from the bus either by the external device itself or into an external address latch.

Note: In multiplexed mode, only the lower 26 lines of this 32-bit bus are used to transfer
the address. The upper 6 lines are valid but irrelevant.

12.4.4 Read/Write Strobes, RD and RD/WR

Two lines are provided to trigger the read (RD) and write (RD/WR) operations of external
devices. While some read/write devices require both signals, there are devices with only
one control input. The RD/WR line is then used for these devices. This line will go to an
active low level on a write, and will stay inactive high on a read. The external device
should only evaluate this signal in conjunction with an active chip select. Thus, an active
chip select in combination with a high level on the RD/WR line indicates a read access
to this device.
User’s Manual 12-8 V2.0, 2001-02

TC1775
System Units

External Bus Unit
12.4.5 Address Latch Enable, ALE

This signal is used in the multiplexed mode to indicate a valid address on the address/
data bus AD[31:0]. The high-to-low transition of this signal is used to capture the address
in an external address latch (transparent latch) or the external multiplexed device. The
length of ALE is programmable to accommodate timing requirements of the external
device. In demultiplexed mode ALE is inactive (low).

12.4.6 Byte Control Signals, BCx

The byte control signals BC[3:0] select the appropriate byte lanes of the data bus for both
read and write accesses. Table 12-3 shows the activation on access to a 32-bit, 16-bit
or 8-bit external device. Please note that this scheme supports little-endian devices.

Signals BCx can be programmed for different timing. The available modes cover a wide
range of external devices, such as RAM with separate byte write-enable signals, and
RAM with separate byte chip-select signals. This allows external devices to connect
without any external “glue” logic. Refer to Table 12-4 for byte-control timing.

Table 12-3 Byte Control Pin Usage

Width of External Device BC3 BC2 BC1 BC0

32-bit device
with byte write capability

AD[31:24] AD[23:16] AD[15:8] AD[7:0]

16-bit device
with byte write capability

inactive
(high)

inactive
(high)

AD[15:8] AD[7:0]

8-bit device inactive
(high)

inactive
(high)

inactive
(high)

AD[7:0]

Table 12-4 Byte Control Signal Timing Options

Programmed Mode BCx Signal Timing

Chip Select Mode BCx signals have the same timing as the generated chip select
CS.

Control Mode BCx signals have the same timing as the generated control
signals RD or RD/WR.

Write Enable Mode BCx signals have the same timing as the generated control
signal RD/WR.
User’s Manual 12-9 V2.0, 2001-02

TC1775
System Units

External Bus Unit
12.4.7 Variable Wait State Control, WAIT

This is an input signal to the EBU allowing the external device to force the EBU to insert
additional wait states into the access. WAIT can be enabled/disabled by software and
programmed to be active low or active high (the active level forces additional wait
states). Its sampling by the EBU can be selected to be synchronous or asynchronous to
the CLKOUT.

A fixed number of initial wait states should be programmed for the access because the
external device usually requires time to react to an access and properly set WAIT to the
appropriate level, and because the EBU requires time to sample and react to the WAIT
signal. The EBU inserts the programmed number of wait states before evaluating the
level of WAIT.

If synchronous mode is selected, WAIT is sampled on the falling edge of CLKOUT so
that it can be evaluated at the next rising edge of the clock. In asynchronous mode, the
WAIT signal needs to go through another register for synchronization, so that it is
evaluated at the second rising clock edge. Thus, asynchronous operation of WAIT may
results in one additional wait state compared to synchronous operation, if the signal was
deactivated at the same time.

Figure 12-3 Sampling of the WAIT Signal

Note: Synchronous mode can be used if two TC1775 chips are connected and running
with the same frequency. They must be using the same external clock source with
their PLLs bypassed. Due to the time needed for the WAIT signal generation and
synchronization, at least one fixed wait-state must be configured in register
EBU_BUSCONx for the access to the second TC1775.

MCT04755

CLKOUT

Synchronous
WAIT

Asynchronous
WAIT

Wait State
n

0

Wait State
n + 1

1

Wait State
n + 2

Next State

Change
State

0 0 1
Change

State

Wait State
n

Wait State
n + 1

Wait State
n + 2

Wait State
n + 3

Next State
User’s Manual 12-10 V2.0, 2001-02

TC1775
System Units

External Bus Unit
12.4.8 Chip Select Lines, CSx

The EBU provides four user chip selects, CS0, CS1, CS2 and CS3. The address ranges
for which these chip selects are generated are programmed via the address select
registers, EBU_ADDSELx, in a very flexible way (see Section 12.5.1).

Chip Select line CS0 is the default chip select, used automatically by the EBU for
external boot after reset. See Section 12.8 for details.

If overlapping address regions are programmed in the EBU_ADDSELx registers, only
one chip select — the one with the lower number (higher priority) — will be activated on
an access within the overlapping address range.

If the number of chip select lines is not sufficient, additional chip-select signals can be
generated by combining one chip select output with some address bits. In this case, all
generated chip selects must share the same EBU timing and data width parameters.
Figure 12-4 shows how CS3 can be divided into four smaller regions. Using this
solution, the regions must be of equal size.

Figure 12-4 Simple Chip Select Expansion

12.4.9 EBU Arbitration Signals, HOLD, HLDA and BREQ

These signals are used by the EBU to negotiate ownership of the external bus with
another external bus master. The HOLD signal (Hold Request) is used to request
release of the bus from the EBU. If done so, the EBU acknowledges it with signal HLDA
(Hold Acknowledge). Signal BREQ (Bus Request) is used by the EBU to signal its desire
to get bus ownership to the external bus master.

More detailed descriptions of these signals and the bus arbitration modes of the EBU can
be found in Section 12.7.1.

MCS04756

DecoderA[23:22]

CS3

SCS0

SCS1

SCS2

SCS3
>1

>1

>1

>1
User’s Manual 12-11 V2.0, 2001-02

TC1775
System Units

External Bus Unit
12.4.10 EBU Chip Select, CSFPI

An external bus master has the option to access modules connected to the internal FPI
Bus of the TC1775. To do so, it first has to arbitrate for ownership of the external bus.
Then, it accesses the external bus with an appropriate address and activates CSFPI to
inform the EBU that the access is to be performed from the external bus onto the internal
FPI Bus. In this case, the EBU acts as a slave on the external bus, but as a master on
the internal FPI Bus. It performs the FPI Bus transaction on behalf of the external bus
master. Refer to Section 12.7.1 and its subsections for more information on this signal.

Note: When Port 4 is used as a general purpose I/O port, the function of CSFPI (P4.10)
is not disabled. Therefore, CSFPI should be set to high level if its function is not
required. If CSFPI = low any falling edge of RD or RD/WR will initiate a slave mode
access to the FPI Bus.

12.4.11 Instruction Fetch Indication Signal, CODE

To be able to distinguish instruction fetch accesses from data load/store accesses on the
external bus, the EBU provides the signal CODE. A low level on this line indicates an
instruction fetch of the CPU, performed via the Program Memory Unit, PMU. Accesses
to the external bus by any other internal FPI Bus master (such as the DMU or the PCP),
are indicated through a high level of signal CODE.

12.4.12 Emulation Support Signals, CSEMU and CSOVL

To support emulation and debugging, the EBU provides a special emulator memory chip
select, CSEMU, and an overlay memory chip select, CSOVL. A detailed description of
these signals can be found in Section 12.9.

Note: These signals are intended solely for the purpose of emulation and debugging.
Using these signals for normal application purposes may result in conflicts when
using emulators/debuggers, and may severely hinder proper debugging. It is
strongly recommended to exclude these signals from normal application usage.
User’s Manual 12-12 V2.0, 2001-02

TC1775
System Units

External Bus Unit
12.5 Detailed Internal to External EBU Operation

The following subsections provide more insight into the operation of the EBU for internal
to external transactions.

12.5.1 EBU Address Regions

The EBU provides five programmable address regions (including the emulator range),
each with its own chip select. The access parameters for each of the region can be
programmed individually to accommodate different types of external devices. Four of
these regions are provided for normal user application purposes, while the fifth one is
reserved for emulator usage.

Two EBU registers and a chip select line are dedicated to each of the regions. The
address range of the region is programmed through the address select register,
EBU_ADDSELx (x = 0..3). The access parameters for the external device in that region
are programmed through the respective bus control register, EBU_BUSCONx. The
access to the external device is performed using the associated chip select line, CSx.
Table 12-5 summarizes the registers and chip selects associated with the five regions.

12.5.1.1 Address Region Selection

Any FPI Bus address belonging to one of the external ranges shown in Table 12-1
activates the EBU (provided the EBU is idle). It picks up the address and compares it to
the five address regions programmed through its address select registers (including the
emulator range). Each address select register (EBU_ADDSELx, EBU_EMUAS) contains
four bit fields (see also Section 12.11.3 and Section 12.11.7):

• Bit REGEN is the enable control of that region. If the region is disabled (REGEN = 0),
any address in that region presented to the EBU will result in a bus error reported back
to the master requesting the access and to the FPI Bus Control Unit, BCU (which in
turn will generate an interrupt request, if the BCU is configured for). Also the chip
select associated with that range is disabled.

Table 12-5 EBU Address Regions, Registers and Chip Selects

Address Region Address Select
Register

Bus Control
Register

Chip Select

User region 0 EBU_ADDSEL0 EBU_BUSCON0 CS0

User region 1 EBU_ADDSEL1 EBU_BUSCON1 CS1

User region 2 EBU_ADDSEL2 EBU_BUSCON2 CS2

User region 3 EBU_ADDSEL3 EBU_BUSCON3 CS3

Emulator region EBU_EMUAS EBU_EMUBC CSEMU
User’s Manual 12-13 V2.0, 2001-02

TC1775
System Units

External Bus Unit
• Bit field BASE specifies address bits A[31:12] of region x, where A[31:28] must only
point to segments 10, 11 and 14 which are covered by the EBU (see Table 12-1).

• Bit field MASK specifies how many bits of an FPI Bus address must match the
contents of the BASE(x) bit field (to a maximum of 15, starting with A[26]). (Note that
address bits A[31:27] must always match.) This parameter defines the length of a
region.

• The MIRRORE bit allows access of the same physical external device in two different
segments. One of these segments is programmable through the BASE bit field, while
the other is fixed to be Segment 11 (1011B). Setting bit MIRRORE defines a second
address region in Segment 11 with the same size and intra-segment start address as
the main region. An address in Segment 11 with the same intra-segment offset
address (A[27:0]) as defined for the main region will activate that region.

Figure 12-5 illustrates how the comparison of the FPI Bus address to the address region
setup in register EBU_ADDSELx/EBU_EMUAS is performed to determine whether or
not a region is selected.

Figure 12-5 Address Region Selection

This address region scheme described above implies the following:

• The smallest possible address region is 212 bytes (4 KBytes)
• The largest possible address region is 227 bytes (128 MBytes)

MCA04757

31
FPI Bus
Address

28 27 26 12 11 0

Equal ?

Equal or
1011B ?

&

15 15

Expansion

&

&

Equal ? 4

31
EBU_ADDSELx
Register

28 27 26 12 1 047

BASE

MASK

MIRRORE

REGEN

Region ×
Selected
User’s Manual 12-14 V2.0, 2001-02

TC1775
System Units

External Bus Unit
• The start address of a region depends on the size of the region. It must be at an
address which is a multiple of the size of a region; for example, the smallest region
can be placed on any 4-KByte boundary, while the largest region can be placed on
128-MByte boundaries only.

Table 12-6 shows the possible region sizes and start granularity, as determined by the
programming of the MASK bit field. The range of the offset address within such a region
is also given. Please note that in demultiplexed mode, only addresses A[26:0] are
actually output to the external system. In multiplexed mode, a 32-bit address is output
on AD[31:0].

Table 12-6 EBU Address Regions Size and Start Address Relations

MASK No. of Address
Bits compared
to BASE[26:12]

Range of Address
Bits compared to
BASE[26:12]

Region Size and
Start Address
Granularity

Range of Offset
Address Bits
within Region

1111B 15 A[26:12] 4 KBytes A[11:0]

1110B 14 A[26:13] 8 KBytes A[12:0]

1101B 13 A[26:14] 16 KBytes A[13:0]

1100B 12 A[26:15] 32 KBytes A[14:0]

1011B 11 A[26:16] 64 KBytes A[15:0]

1010B 10 A[26:17] 128 KBytes A[16:0]

1001B 9 A[26:18] 256 KBytes A[17:0]

1000B 8 A[26:19] 512 KBytes A[18:0]

0111B 7 A[26:20] 1 MByte A[19:0]

0110B 6 A[26:21] 2 MBytes A[20:0]

0101B 5 A[26:22] 4 MBytes A[21:0]

0100B 4 A[26:23] 8 MBytes A[22:0]

0011B 3 A[26:24] 16 MBytes A[23:0]

0010B 2 A[26:25] 32 MBytes A[24:0]

0001B 1 A[26] 64 MBytes A[25:0]

0000B 0 – 128 MBytes A[26:0]
User’s Manual 12-15 V2.0, 2001-02

TC1775
System Units

External Bus Unit
Due to the scheme shown in Table 12-6, memory regions can overlap and there can be
gaps between regions. EBU actions in these cases are as follows.

1. An address lies in exactly one defined region:
The EBU will perform the requested access to external memory.

2. An address lies in more than one region (overlapping regions):
The access is performed to the region with higher priority where region 0 has the
highest priority, region 3 has the lowest.

3. The address does not lie in any region, or lies in a disabled region:
In case of an unknown external address or disabled region, the EBU will return an
error-acknowledge code on the FPI Bus.

The mirror function of the EBU, selected through the MIRRORE bit is especially useful
if, for instance, cached and uncached data or code accesses to the same external
memory need to be performed. The distinction between cached and uncached accesses
is made via the address: Segment 10 addresses are always cached, while Segment 11
addresses are never cached. By mirroring an external device into both Segments 10
and 11, the same location in the device can be accessed via an address in Segment 10,
resulting in a cached access, or via the same offset address in Segment 11, resulting in
an uncached access. The respective address select register for the external device is
programmed such that a Segment 10 address region is defined, and the MIRRORE bit
is set. Setting the MIRRORE bit results in that a second address region in Segment 11
is defined, with the same intra-segment start address and size as the one in Segment 10.
An access to one of these two regions results in the activation of the EBU_BUSCONx
register and CSx signal associated with that EBU_ADDSELx register, thus accessing the
same physical external device regardless whether the effective address is in
Segment 10 or Segment 11.

12.5.1.2 Address Region Parameters

When a FPI Bus address presented to the EBU is found to belong to one of its
programmed active (enabled) address regions, the EBU performs the external bus
access according to the global EBU parameters stored in register EBU_CON and
according to the individual parameters stored in the bus control register,
EBU_BUSCONx, associated with that address region.
User’s Manual 12-16 V2.0, 2001-02

TC1775
System Units

External Bus Unit
The bit fields in EBU_BUSCONx (see Section 12.11.4) control the following parameters
of the access as shown in Table 12-7.

The EBU reads these parameters from the EBU_BUSCONx register associated with the
selected address range and performs the access accordingly. The chip select line CSx
associated with that range is activated during the access.

12.5.2 Driver Turn-Around Wait States

Besides the wait states that can be inserted into an external access, the EBU supports
the insertion of wait states in between consecutive accesses. This may be necessary if
the current access is to a different address region than the previous one, or if a read
access is followed by a write access, or vice versa. The insertion of wait states between
the accesses allows the timing of accesses to external devices to be fine-tuned to gain
higher performance.

When, for instance, a number of read accesses to an external memory are performed
with a demultiplexed bus configuration, the memory is the only driver on the data bus,
providing its data onto the bus. The memory is constantly selected via its chip select. If
an access to a different device is performed (different address region, different chip
select), the memory is deselected, and the next device is selected. However, many
memory devices need a specific time to fully release the bus, to tristate their output

Table 12-7 Programmable Characteristics of an Address Region

Bit Field Description

WRITE Write protection enable/disable

AGEN Address generation mode

SETUP Address setup time

WAIT WAIT input enable/disable

WAITINV WAIT input active level control

PORTW Data width of external device

ALEC ALE length control

BCGEN Byte control signal timing characteristics

WAITWRC Number of wait states for write access

WAITRDC Number of wait states for read access

HOLDC Number of wait states for write data hold

RECOVC Number of wait states for recovery cycle

CMULT Multiplier for number of wait states

CMULTR Multiplier for number of read cycles
User’s Manual 12-17 V2.0, 2001-02

TC1775
System Units

External Bus Unit
drivers. Recovery wait states would need to be inserted at the end of the last access to
the memory to ensure enough time to get off the bus before the next access occurs.

A similar situation is true if a read access is followed by a write access. The data bus
driver role must change from the memory to the EBU. Again, the memory needs time to
release the data bus, and recovery wait states need to be inserted.

If this recovery wait state insertion would be programmed via the address region
parameters (see Section 12.5.1.2), the wait states would apply to every access to the
device, thus, slowing down the access performance. Instead, the EBU offers the option
to insert such wait states either between accesses to different address regions (different
chip selects) or between read and write accesses.

Programming of these wait states is done through register EBU_CON. Between 0 and 7
idle cycles can be inserted between accesses to different address regions via bit field
DTACS, while DTARW provides the option to insert between 0 and 7 idle cycles between
a read and a write access, or vice versa. With these options, access performance to
external devices is significantly improved, especially when a number of consecutive
access of the same type (read or write) is performed.

12.5.3 Data Width of External Devices

The EBU supports external devices with a data width of 8, 16 or 32 bits. If the data width
of an access is less than or equal to the width of the external device, no special
conditions occur, and the EBU indicates the width of the data via the byte control lines
BC[3:0]. However, if the data width of an access is larger than the width of the external
device, the data needs to assembled/disassembled.

Multiplexed accesses must be performed with a data width less than or equal to the width
of the external device, otherwise only a partial result will be delivered. Table 12-8 shows
the EBU data assemble/disassemble operation for demultiplexed access. Operation in
multiplexed mode is shown in Table 12-9.
User’s Manual 12-18 V2.0, 2001-02

TC1775
System Units

External Bus Unit
Table 12-8 Data Assembly/Disassembly for Demultiplexed Access

FPI Bus
Access
Width

Data Width
of External
Device

EBU Operation for
Demultiplexed Access

BC3 BC2 BC1 BC0

8-bit 8-bit One byte access high high high low

16-bit One byte access on
byte lane 0 (A[0] = 0)

high high high low

One byte access on
byte lane 1 (A[0] = 1)

high high low high

32-bit One byte access on
byte lane 0 (A[1:0] = 00B)

high high high low

One byte access on
byte lane 1 (A[1:0] = 01B)

high high low high

One byte access on
byte lane 2 (A[1:0] = 10B)

high low high high

One byte access on
byte lane 3 (A[1:0] = 11B)

low high high high

16-bit 8-bit First Byte access with A[0] = 0 high high high low

Second Byte access with A[0] = 11) high high low high

16-bit Half-word access on
byte lanes 0 and 1

high high low low

32-bit Half-word access on
byte lanes 0 and 1

high high low low

Half-word access on
byte lanes 2 and 3

low low high high
User’s Manual 12-19 V2.0, 2001-02

TC1775
System Units

External Bus Unit
32-bit 8-bit First Byte access with
A[1:0] = 00B

high high high low

Second Byte access with1)
A[1:0] = 01B

high high low high

Third Byte access with1)
A[1:0] = 10B

high low high high

Forth Byte access with1)

A[1:0] = 11B

low high high high

16-bit First Half-word access on
byte lanes 0 and 1

high high low low

Second Half-word access on2)
byte lanes 2 and 3

low low high high

32-bit One word access on
byte lanes 0..3

low low low low

1) This byte access is performed automatically in consecutive to the previous byte access.
2) This half-word access is performed automatically in consecutive to the pervious half-word access.

Table 12-9 Data Assembly/Disassembly for Multiplexed Access

Access
Width

Data Width of
External
Device

EBU Operation for Multiplexed Access

8-bit 8-bit As for demultiplexed access, see Table 12-8

16-bit As for demultiplexed access, see Table 12-8

32-bit As for demultiplexed access, see Table 12-8

16-bit 8-bit One byte access only with A[0] = 0

16-bit As for demultiplexed access, see Table 12-8

32-bit As for demultiplexed access, see Table 12-8

32-bit 8-bit One byte access only with A[1:0] = 00B

16-bit One half-word access only on byte lanes 0 and 1;
BC[1:0] = low; BC[3:2] = high

32-bit As for demultiplexed access, see Table 12-8

Table 12-8 Data Assembly/Disassembly for Demultiplexed Access (cont’d)

FPI Bus
Access
Width

Data Width
of External
Device

EBU Operation for
Demultiplexed Access

BC3 BC2 BC1 BC0
User’s Manual 12-20 V2.0, 2001-02

TC1775
System Units

External Bus Unit
12.5.4 Basic Access Timing

This section describes the basic access sequences of the EBU to external devices.
Refer to the TC1775 Data Sheet for detailed timing diagrams and timing values.

Note: All timings described in this section are specified relative to the CLKOUT signal.

12.5.4.1 Access to Non-Multiplexed Devices

Devices with non-multiplexed access (demultiplexed access) can be controlled by
separate RD and WR signals (Intel-style). Figure 12-6 shows the basic sequence of a
read access in demultiplexed mode. The sequence is detailed in the following:

• Phase 0: This is an optional cycle, providing a longer address and chip select setup
time before the read signal. This cycle is enabled through bit SETUP in register
EBU_BUSCONx.

• Phase 1a: This cycle is always part of a read access. Please note that the read signal
is activated (low) on the falling edge of CLKOUT.

• Phase 1b: This is an optional cycle that can be repeated several times. Enabling and
programming of the length of this phase is performed through bit fields WAITRDC and
CMULTR in register EBU_BUSCONx. The number of clock cycles is determined
through WAITRDC × CMULTR. The minimum number of waitstates is 0, the
maximum is 127 × 8.

• Phase 2: This cycle is always part of a read access. Please note that the read signal
is deactivated (high) on the falling edge of CLKOUT. The data input is sampled and
latched with this clock edge.

• Phase 3: This is an optional cycle that can be repeated several times. Some devices
may require this recovery cycle before they can be accessed again. Enabling and
programming of the length of this phase is performed through bit field RECOVC in
register EBU_BUSCONx. The number of clock cycles can be 0..3.

The minimum time required for a read access in demultiplexed mode is two clock cycles
(phases 1a and 2). The maximum time is 1022 clock cycles (Phase 0: one clock;
Phase 1a: one clock; Phase 1b: 127 × 8 clocks; Phase 2: one clock; Phase 3: 3 clocks).

Note: In demultiplexed mode ALE is inactive (low).
User’s Manual 12-21 V2.0, 2001-02

TC1775
System Units

External Bus Unit
Figure 12-6 Basic Read Access Timing in Demultiplexed Mode

Note: The timing of the byte control signals BCn can be programmed to be like that of
the control signals RD, RD/WR, or chip-select. (Having RD/WR only is equivalent
to a byte-read enable function).

Figure 12-7 shows the sequence for a write access, detailed as follows.

• Phase 0: This is an optional cycle, providing a longer address and chip select setup
time before the read signal. This cycle is enabled through bit SETUP in register
EBU_BUSCONx.

• Phase 1a: This cycle is always part of a write access. Please note that the write signal
is activated (low) on the falling edge of CLKOUT. The output of the write data starts in
this cycle.

• Phase 1b: This is an optional cycle that can be repeated several times. Enabling and
programming of the length of this phase is performed through bit fields WAITWRC and
CMULT in register EBU_BUSCONx. The number of clock cycles is determined

Phase 3:
Recovery
Cycle;
Optional /
Repeatable

Phase 1b:
Optional;
Repeatable

Phase 0:
Address
Setup;
Optional

AddressAddress

CLKOUT

A[25:0] Address

Phase 1a:
Read
Activation

Phase 2:
Read
Deactivation

MCT04758

RD

RD/WR

BCn

Data InAD[31:0]

CSx

ADV
User’s Manual 12-22 V2.0, 2001-02

TC1775
System Units

External Bus Unit
through WAITWRC × CMULT. The minimum number of clock cycles is 0, the
maximum is 16 × 7.

• Phase 2: This cycle is always part of a read access. Please note that the write signal
is deactivated (high) on the falling edge of CLKOUT. The output data is held stable for
at least another 1/2 clock cycle.

• Phase 3: This is an optional cycle, which can be repeated several times. The output
data is held stable by the EBU during this phase to allow extra time for the external
device to process the write data. Enabling and programming of the length of this
phase is performed through bit field HOLDC in register EBU_BUSCONx. The number
of clock cycles can be 0..3.

• Phase 4: This is an optional cycle that can be repeated several times. Some devices
may require this recovery cycle before they can be accessed again. The output data
is not driven anymore in this phase. Enabling and programming of the length of this
phase is performed through bit field RECOVC in register EBU_BUSCONx. The
number of clock cycles can be 0..3.

The minimum time required for a write access in demultiplexed mode is two clock cycles
(phases 1a and 2). The maximum time is 121 clock cycles (Phase 0: one clock;
Phase 1a: one clock; Phase 1b: 16 × 7 clocks; Phase 2: one clock; Phase 3: 3 clocks;
Phase 4: 3 clocks).
User’s Manual 12-23 V2.0, 2001-02

TC1775
System Units

External Bus Unit
Figure 12-7 Basic Write Access Timing in Demultiplexed Mode

Note: The timing of the byte control signals BCn can be programmed to be like that of
the control signals RD, RD/WR, or chip-select. (Having RD/WR only is equivalent
to a byte-write enable function).

Phase 4:
Recovery
Cycle;
Optional /
Repeatable

Phase 3:
Data Hold;
Optional /
Repeatable

Phase 1b:
Optional;
Repeatable

Phase 0:
Address
Setup;
Optional

AddressAddressAddress

MCT04759

CLKOUT

A[25:0] Address

RD

RD/WR

BCn

Phase 1a:
Write
Activation

Phase 2:
Write
Deactivation

CSx

Data OutAD[31:0]

ADV
User’s Manual 12-24 V2.0, 2001-02

TC1775
System Units

External Bus Unit
12.5.4.2 Access to Multiplexed Devices

Devices using multiplexed address and data lines can be supported by the EBU
according to the following features and requirements. In multiplexed mode, the address/
data bus AD[31:0] is shared between address output and data input/output. In the first
part of an access, the address is driven onto AD[31:0]. The address latch enable signal
(ALE) is used to capture the address either into the external device (supporting
multiplexed address/data) or into an external address latch. Then, the bus is switched to
either input for a read access, or the write data is driven onto the bus on a write access.

Note: In multiplexed mode, the EBU does not perform a data assembly/disassembly
operation. When an access requests data wider than the data width of the external
device (for example, a 32-bit FPI Bus read to an external 8-bit device), the EBU
does not perform a sequence of external read accesses to assemble the
appropriate data. Only one external access will be performed. Software must
match the data width of the external multiplexed device.

Figure 12-8 shows the timing sequence for a read access in mutiplexed mode,
described below.

• Phase 0a: In this cycle, the address latch enable (ALE) signal is generated, the
address is output on the address/data bus AD[31:0], and the chip select is activated.
This cycle is always part of a multiplexed access.

• Phase 0b: This is an optional cycle that can be repeated several times. It is used to
extend the ALE signal and the address setup time before the falling edge of ALE.
Enabling and programming of the length of this cycle is performed via bit field ALEC
in register EBU_BUSCONx. The number of clock cycles can be 0..3.

• Phase 1: This is the address hold cycle after the falling edge of ALE. This cycle is
always part of a multiplexed access.

• Phase 2a: This cycle is always part of a multiplexed access. The address output is
disabled at the beginning of this phase, and the read signal is activated 1/2 cycle later.
This avoids possible bus contention as the output drivers of the accessed device may
be already switched on with the falling edge of RD.

• Phase 2b: This is an optional cycle which can be repeated several times. It extends
the read time for the external device, giving it time to provide valid read data. Enabling
and programming of the length of this phase is performed through bit fields WAITRDC
and CMULTR in register EBU_BUSCONx. The number of clock cycles is determined
through WAITRDC × CMULTR. The minimum number of clock cycles is 0, the
maximum is 127 × 8.

• Phase 3: This cycle is always part of a multiplexed access. Please note that signal RD
is deactivated with the falling edge of CLKOUT.

• Phase 4: This is an optional cycle that can be repeated several times. Some devices
may require this recovery cycle before they can be accessed again. Enabling and
programming of the length of this phase is performed through bit field RECOVC in
register EBU_BUSCONx. The number of clock cycles can be 0..3.
User’s Manual 12-25 V2.0, 2001-02

TC1775
System Units

External Bus Unit
The minimum time required for a read access in multiplexed mode is four clock cycles
(Phases 0a, 1, 2a and 3). The maximum time is 1026 clock cycles (Phase 0a: one clock;
Phase 0b: 3 clocks; Phase 1: one clock; Phase 2a: one clock; Phase 2b: 127 × 8 clocks;
Phase 3: one clock; Phase 4: 3 clocks).

Figure 12-8 Basic Read Access Timing in Multiplexed Mode

Phase 2a:
Read
Activation

Phase 3:
Read
Deactiv.

Phase 1:
Address
Hold

Phase 0a:
Address
Setup

Phase 4:
Recovery;
Optional,
Repeatable

Phase 2b:
Optional,
Repeatable

Phase 0b:
Address
Setup;
Optional /
Repeatable

MCT04760

CLKOUT

AD[31:0]

ALE

Data In

CSx

RD

RD/WR

BCx

Address
User’s Manual 12-26 V2.0, 2001-02

TC1775
System Units

External Bus Unit
Figure 12-9 shows the timing sequence for a write access in multiplexed mode, detailed
in the following:

• Phase 0a: In this cycle, the address latch enable (ALE) signal is generated, the
address is output on the address/data bus AD[31:0], and the chip select is activated.
This cycle is always part of a multiplexed access.

• Phase 0b: This is an optional cycle that can be repeated several times. It is used to
extend the ALE signal and the address setup time before the falling edge of ALE.
Enabling and programming of the length of this cycle is performed via bit field ALEC
in register EBU_BUSCONx. The number of clock cycles can be 0..3.

• Phase 1: This is the address hold cycle after the falling edge of ALE. This cycle is
always part of a multiplexed access.

• Phase 2a: This cycle is always part of a multiplexed access. The address output is
disabled at the beginning of this phase, and the write data is driven onto AD[31:0].
This provides stable write data when the write signal is activated 1/2 cycle later.

• Phase 2b: This is an optional cycle that can be repeated several times. It extends the
write time for the external device, giving it time to store the write data. Enabling and
programming of the length of this phase is performed through bit fields WAITWRC and
CMULT in register EBU_BUSCONx. The number of clock cycles is determined
through WAITWRC × CMULT. The minimum number of clock cycles is 0, the
maximum is 16 × 7.

• Phase 3: This cycle is always part of a multiplexed access. Please note that signal RD/
WR is deactivated with the falling edge of CLKOUT.

• Phase 4: This is an optional cycle that can be repeated several times. The output data
is held stable by the EBU during this phase to allow extra time for the external device
to process the write data. Enabling and programming of the length of this phase is
performed through bit field HOLDC in register EBU_BUSCONx. The number of clock
cycles can be 0..3.

• Phase 5: This is an optional cycle that can be repeated several times. Some devices
may require this recovery cycle before they can be accessed again. Enabling and
programming of the length of this phase is performed through bit field RECOVC in
register EBU_BUSCONx. The number of clock cycles can be 0..3.

The minimum time required for a write access in multiplexed mode is four clock cycles
(Phases 0a, 1, 2a and 3). The maximum time is 125 clock cycles (Phase 0a: one clock;
Phase 0b: 3 clocks; Phase 1: one clock; Phase 2a: one clock; Phase 2b: 16 × 7 clocks;
Phase 3: one clock; Phase 4: 3 clocks; Phase 5: 3 clocks).
User’s Manual 12-27 V2.0, 2001-02

TC1775
System Units

External Bus Unit
Figure 12-9 Basic Write Access Timing in Multiplexed Mode

Phase 2a:
Write
Activation

Phase 3:
Write
Deactiv.

Phase 1:
Address
Hold

Phase 0a:
Address
Setup

Phase 5:
Recovery;
Optional,
Repeatable

Phase 4:
Data Hold;
Optional,
Repeatable

Phase 2b:
Optional,
Repeatable

Phase 0b:
Address
Setup;
Optional /
Repeatable

MCT04761

CLKOUT

AD[31:0]

ALE

Data Out

CSx

RD

RD/WR

BCx

Address
User’s Manual 12-28 V2.0, 2001-02

TC1775
System Units

External Bus Unit
12.6 Detailed External to Internal EBU Operation

The following subsections provide a more detailed insight into the operation of the EBU
for external to internal transactions. Such transactions can be performed by an external
bus master that wants to perform a read or write access to an on-chip FPI Bus device.
The master needs to have ownership of the external bus; thus, bus arbitration will be
required before such an access (see Section 12.7.1). This master can access the EBU
by activating the EBU chip select input CSFPI and presenting a proper address on the
address bus. The features and functions of this operation and its basic timing are
described in the following.

12.6.1 EBU Signal Direction

When the EBU is accessed by an external master that wants to read or write an internal
module, the direction of some of the EBU signals need to be reversed. The address bus
and control signals are now inputs to the EBU, driven by the external master. The data
bus is input for writes, and output for reads. The WAIT signal is now driven by the EBU
to indicate to the master the necessity for additional wait states. Table 12-10 lists the
EBU signals for external to internal operation and indicates their direction and relevance
for the access.

Table 12-10 EBU Signals for External to Internal Operation

Signal Direction Pull Driven by

HOLD Input Up External Master

HLDA Input in Slave Mode,
output in Master Mode

Up External Master (EBU Slave Mode);
EBU (EBU Master Mode);
See Section 12.7.1.

BREQ Output Up EBU

CSFPI Input Up External Master

SVM Input/output Up EBU, External Master

AD[31:0] Input for write access,
output for read access

Up External Master for writes, EBU for
reads

A[23:0] Input Up External Master

RD Input Up External Master

RD/WR Input Up External Master

BC0 Input Up External Master

BC1 Input Up External Master

BC2 Input Up External Master

BC3 Input Up External Master
User’s Manual 12-29 V2.0, 2001-02

TC1775
System Units

External Bus Unit
12.6.2 Address Translation

Because the external address bus is only 24 bits wide, any external address presented
by an external bus master must be extended to the full 32-bit FPI Bus address width by
the EBU. This address extension is performed through three 10-bit extension pointers
located inside the EBU. These pointers are accessible only through the external bus with
a special addressing scheme.

The three extension pointers provide access to any one of three 4-MByte address areas
on the FPI Bus at any point in time. If other address areas are to be accessed, the pointer
values can be reprogrammed by the external bus master. The three extension pointers
are located in one 32-bit register, EBU_EXTCON. The upper two bits, A[23:22], of the
address presented to the EBU (in external slave mode) select the extension pointer to
be used. These two bits are also used to open access to the EBU_EXTCON register for
reprogramming, as shown in Table 12-11.

WAIT/IND Output (Open Drain) Up EBU

CLKOUT Output – EBU

ALE Output Down inactive

CS0 Output Up inactive

CS1 Output Up inactive

CS2 Output Up inactive

CS3 Output Up inactive

CODE Output Up inactive

CSEMU Output Up inactive

CSOVL Output Up inactive

AD[26:24] Input – inactive, not used

Table 12-11 Selection of the Address Extension Pointers

A[23:22] Selection of Location

00B AEXT0 EBU_EXTCON[9:0]

01B Register EBU_EXTCON for
reprogramming

–

10B AEXT2 EBU_EXTCON[19:10]

11B AEXT3 EBU_EXTCON[29:20]

Table 12-10 EBU Signals for External to Internal Operation (cont’d)

Signal Direction Pull Driven by
User’s Manual 12-30 V2.0, 2001-02

TC1775
System Units

External Bus Unit
The default values for these extension pointers AEXTn are chosen such that the bottom
4 MBytes of the three most commonly accessed address segments can be accessed
without reprogramming.

Figure 12-10 gives an overview on the address extension operation. The byte-control
mapping function generates A[1:0] and specifies the access type from the byte-control
signals BC[3:0], which must be generated by the external master. The EBU always
behaves as a little-endian 32-bit device that supports aligned accesses only.

Figure 12-10 External to Internal Address Extension

Table 12-12 Byte Control Mapping Function

BC3 BC2 BC1 BC0 FPI Bus Access Width FPI Bus Address A[1:0]

0 Byte

00B0 0 Half-word

0 0 0 0 Word

0 Byte 01B

0 Byte
10B0 0 Half-word

0 Byte 11B

Other combinations Undefined

MCA04762

31
FPI Bus
Address

22 21 1 02

2

Byte
Control

Mapping

BC2
BC3 BC1

BC0

MUX

22 21 1 0223

AEXT3

AEXT2

AEXT0

A[23:22] = 11B

A[23:22] = 10B

A[23:22] = 00B

10

2 20

External Address
User’s Manual 12-31 V2.0, 2001-02

TC1775
System Units

External Bus Unit
Note: It is the user’s responsibility to write correct address extension values into register
EBU_EXTCON. The extended addresses must never point to an external region
of memory as this could cause a deadlock on the FPI Bus. The EBU would try to
access an external region while it is occupied by the access of the external master.

12.6.3 External to Internal Access Controls

Three bits in register EBU_CON and one bit in register EBU_EXTCON help to control
external accesses to the EBU. Access from an external master to the internal resources
via the EBU can be enabled or disabled via bit EXTACC in register EBU_CON. Accesses
can be performed in User mode or in Supervisor mode as determined by the level at pin
SVM (defined by.bit EBU_CON.EXTSVM). The option to reprogram the address
extension registers by the external master can also be enabled or disabled through bit
EXTRECON. These controls are useful to prevent hostile or faulty accesses from the
external world onto the FPI Bus.

If the external master needs to perform read-modify-write accesses to the FPI Bus, it can
lock the FPI Bus such that no other transaction can take place between the read and the
write operation. This is done through bit FPILOCK in register EBU_EXTCON. See also
Section 12.7.4.2.

12.6.4 Basic Access Timing

When accessed by an external master, the EBU behaves like a 32-bit wide, little-endian
device with byte write capability. Accesses must be naturally aligned. Thus, an external
master must drive the BCn signals and align byte writes to the appropriate data bus byte
lane. Usually, the external master derives its clock from a source other than the EBU.
Thus, timing synchronization is specified in relation to the RD and RD/WR signals.

Access time is mainly determined by the time needed for synchronization (two internal
clock cycles required, worst case) and the time consumed by the FPI Bus transfer (at
least three internal clock cycles required). The earliest start point of an FPI Bus transfer
for an external master access is given in Table 12-13.

Read accesses to an FPI Bus device therefore require additional wait states, requested
through signal WAIT by the EBU. Write accesses to the EBU are buffered. A write access
will only request additional wait-states through the WAIT line if a former write access has
not finished yet.

Table 12-13 Earliest Start Point of FPI Bus Transfer for External Master Accesses

Type of Access Start Point of FPI Transfer (earliest)

External master reads from FPI device synchronized address bus, RD, RD/WR and BC

External master writes to FPI device synchronized address bus, RD, RD/WR, BC
and data bus
User’s Manual 12-32 V2.0, 2001-02

TC1775
System Units

External Bus Unit
Figure 12-11 Basic External to Internal Read Access Timing

Figure 12-12 Basic External to Internal Write Access Timing

MCT04763

A[23:2]

Data Valid

Address / Byte Control
BC[3:0]

CSFPI

RD

RD/WR

WAIT

AD[31:0]

MCT04764

A[23:2]

Data Valid

Address / Byte Control
BC[3:0]

CSFPI

RD

RD/WR

WAIT

AD[31:0]
User’s Manual 12-33 V2.0, 2001-02

TC1775
System Units

External Bus Unit
12.7 Arbitration

The function of the External Bus Controller is manifold. It establishes and controls the
external bus and acts as a bidirectional interface between the internal and the external
system. Additionally, it provides bus arbitration support for the external bus, a function
handled by the FPI Bus Control Unit (BCU) for the internal bus. Figure 12-13 shows an
overview of the EBU as an interface between the internal and the external system. As
can be seen in this figure, the EBU acts as a gateway for accesses from an internal
master to a memory or peripheral in the external system, and for accesses from an
external master to an internal resource, such as a memory or peripheral.

Figure 12-13 EBU Position in between the Internal and the External System

Each of the buses to which the EBU is connected may be used by an internal master in
the case of the FPI Bus, or by an external master in the case of the external bus. When
the masters perform accesses to target modules connected to the same bus to which
they are connected, the EBU is not involved in these transfers. Because the buses are
independent, simultaneous transfers can take place in these cases. However, if an
internal master wishes to access a device connected to the external bus, or if an external
master needs to access a module connected to the internal FPI Bus, the EBU needs to
be involved in this operation.

Since the buses on either side of the EBU may be completely different in terms of data
size, addressing scheme, and timing operation, it is not possible to switch the EBU to
some sort of transparent mode, such that the requesting master controls and drives both
buses. Instead, the accesses must be translated from one bus to the other. This
translation is actively performed by the EBU.

MCA04765

Internal
MEM/PER

Internal
Master

BCU
AB AB

Internal FPI Bus
External
Master

External Bus

External
MEM/PER

Arbitration (AB)

Internal System

EBU

External System
User’s Manual 12-34 V2.0, 2001-02

TC1775
System Units

External Bus Unit
To fulfill the request of a master on one side of the EBU to access a device on the other
side, the EBU must be able to take ownership of the bus to which the addressed target
device is connected to. Due to the translation requirements described above, it now must
act as a master on this bus on behalf of the master requesting the transaction.

The EBU is designed to handle one task at a time. Requests from the FPI Bus or the
external bus are served on a first-come, first-served, base. If the EBU is busy with an
external transaction, it rejects any further FPI Bus requests, and maintains ownership of
the external bus until the transaction is complete. Unlike on the FPI Bus, there is no way
for external masters to retry transaction requests, so an access from an external master
cannot be interrupted or restarted. Thus, external masters have to wait until the EBU is
ready to react on their request.

To gain ownership of one of the buses, the EBU must go through an arbitration process.
While the arbitration for the internal FPI Bus is handled through the FPI Bus Control Unit,
(BCU), the EBU itself contains a submodule which serves as an arbitration logic for the
external bus.

The arbitration schemes differ according to whether an internal or an external master is
requesting the EBU. External arbitration is further dependent on the selected arbitration
mode. Detailed descriptions are given in the following subsections.

12.7.1 External Bus Arbitration

It may be desirable in some systems for there to be an external master that can perform
read/write accesses to other external devices such as shared RAMs, or to the internal
memories and peripherals of the TC1775. Examples of this arrangement include an
external DMA controller or debug unit.

Because only one master, either the EBU or another external master, can have control
over the external bus, an arbitration scheme for ownership of the bus is required. A
master that needs to access the external bus, but does not currently have ownership of
the bus, must request the bus from the current bus owner. The current bus owner
finishes its transaction then releases (that is, tristates) the bus signals, and signals the
requesting master that it now can take over the bus. The new bus owner will then perform
its transactions, generating and driving all necessary bus signals.

To prevent a master from keeping bus ownership forever, a scheme is required to
provide for alternate bus usage. The EBU bus arbitration can be set to different
strategies to accommodate this. If the second bus master is another TC1775 (or a device
with the same arbitration strategy), a three-wire connection is all that is needed between
the two devices to provide proper bus arbitration. The following subsections describe
arbitration in more detail.
User’s Manual 12-35 V2.0, 2001-02

TC1775
System Units

External Bus Unit
12.7.1.1 Arbitration Modes

The arbitration logic of the EBU can be configured to one of four modes:

1. Arbitration Off:
All accesses from internal FPI Bus masters to the external bus via the EBU are
disabled and will cause an FPI Bus error.

2. Arbitration Master Mode:
The EBU is normally the owner of the external bus. This mode is the default after
reset. Bus ownership must be requested from the EBU if another external bus master
(configured to Arbitration Slave Mode) needs to get onto the external bus.

3. Arbitration Slave Mode:
Another external bus master is the default owner of the external bus. The EBU will
request bus ownership from this master only in case of a pending transfer issued by
an internal FPI Bus master.

4. Stand Alone Mode:
This mode is used when the EBU is the only master on the external bus. No external
bus arbitration is necessary in this configuration, and accesses to the external bus are
always possible. The arbitration signals are not evaluated in this mode.

The arbitration mode is programmed through bit field ARBMODE in register EBU_CON.

12.7.1.2 Arbitration Signals

The EBU has three signals dedicated to external bus arbitration, HOLD (hold input),
HLDA (hold acknowledge) and BREQ (bus request). As described in this section, these
signals are used differently depending on the arbitration mode (arbitration master or
slave). Figure 12-14 shows the interconnection of arbitration signals for a master and
slave. Table 12-14 shows the function of the arbitration pins in arbitration master mode,
and Table 12-15 shows the function of these pins in arbitration slave mode. The term
“slave mode” in this context relates to the mode of bus arbitration; the EBU is still
considered as one of the external bus masters in this mode.

Figure 12-14 Connection of the Bus Arbitration Signals

MCA04766

Master Slave

HOLD

HLDA

BREQ

HOLD

HLDA

BREQ
User’s Manual 12-36 V2.0, 2001-02

TC1775
System Units

External Bus Unit
Note: This simple connection allows two devices with the same (such as two TC1775s)
or very similar arbitration schemes to perform bus arbitration. If more than two
external bus masters are used, external circuitry is required for proper arbitration

.

Table 12-14 Arbitration Signals in Arbitration Master Mode

Pin Type Function in Arbitration Master Mode

HOLD In While HOLD is high, the EBU is operating in normal mode and is the
owner of the external bus. A high-to-low transition indicates a hold
request from an external device. The EBU finishes ongoing
transactions, then backs off the bus, activates HLDA and goes into hold
mode.
A low-to-high transition causes it to exit from hold mode. The EBU
deactivates HLDA, takes over the bus, and resumes normal operation.

HLDA Out This signal is high during normal operation. When the EBU enters hold
mode, it sets HLDA low after releasing the bus. On exit of hold mode,
the EBU first sets HLDA high and then goes onto the bus again. It does
this to avoid collisions.

BREQ Out This signal is high during normal operation. The EBU activates BREQ
at the earliest one clock cycle after activating HLDA if it must perform
an external bus access. If the EBU has regained the bus, BREQ is set
to high one clock cycle after deactivation of HLDA.

Table 12-15 Arbitration Signals in Arbitration Slave Mode

Pin Type Function in Arbitration Slave Mode

HOLD In While both HOLD and HLDA are high, the EBU is in hold mode, and the
external bus interface signals are tristated. When the EBU is released
out of hold mode (HLDA = 0) and has completely taken over control of
the external bus, a low level at this pin requests the EBU to go into hold
mode again. But in any case the EBU will perform at least one external
bus cycle before going into hold mode again.

HLDA In A high-to-low transition at this pin releases the EBU from hold mode.

BREQ Out This signal is high as long as the EBU operates from internal memory.
When it detects that an external access is required, it sets BREQ to low
and waits for signal HLDA to become low. BREQ will go back to high
when the slave has backed off the bus after it was requested to go into
hold mode.
User’s Manual 12-37 V2.0, 2001-02

TC1775
System Units

External Bus Unit
12.7.1.3 Arbitration Sequence

Figure 12-15 shows the sequence of bus arbitration signals in a master/slave system.
In this context, the terms “master” and “slaves” refer to the arbitration modes. The slave
is one of the bus masters on the external bus, capable of initiating bus transactions and
driving the external bus, but it is not the default owner of the bus. It must request the bus
from the master (default owner of the external bus) to perform a transaction. At start-up,
the master is in normal mode and operating on the external bus; the slave is in hold
mode, operating from internal memory; the slave’s bus interface is tristated.

• Stage 1) The slave detects that it must perform an external bus access. It activates
BREQ, which issues a hold request to the master.

• Stage 2) The master activates HLDA after having released the bus. This initiates the
slave’s exit from hold sequence.

• Stage 3a) When the master detects that it also must perform external bus accesses,
it activates his BREQ. The earliest time for the master to activate BREQ is one clock
cycle after the activation of the master’s HLDA signal. However, the slave will ignore
this signal until it has finished the current access. In this way it is assured that the slave
will at least perform one complete external bus access.

• Stage 3b) If the master can operate from internal memory while in hold mode, it leaves
the BREQ signal high until it detects that an external bus access must be performed.
Therefore, the slave can stay on the bus until the master does not request the bus.

• Stage 4) When the master has requested the bus again through activation of his
BREQ signal, the slave will complete the current access and go into hold mode again.
After having tristated its bus interface, the slave deactivates its BREQ signal, thus
releasing the master from hold mode.

• Stage 5) The master has terminated its hold mode and deactivates its HLDA signal.
Now, the master again controls the external bus.

• Stage 6) The master deactivates its BREQ signal one cycle after deactivation of
HLDA. From now on (and not earlier), the slave can generate a new hold request to
the master. With this procedure it is assured that the master can perform at least one
complete bus cycle before it goes into hold mode again if requested by the slave.
User’s Manual 12-38 V2.0, 2001-02

TC1775
System Units

External Bus Unit
Figure 12-15 Bus Arbitration Sequence

The result of this arbitration scheme is such that if both devices would constantly request
the bus (for example, if both are executing code out of external memory), they alternately
gain bus access. However, the usual way for this configuration is that the slave would
execute out of internal memory, only eventually requesting an external bus transaction
to load/store data.

12.7.2 Internal Request to the EBU

There are special considerations when an internal FPI Bus master requests an external
bus transaction from the EBU. Several conditions apply to determine the EBU’s reaction:
It first checks the address present on the FPI Bus against the address ranges
programmed in its address select registers, EBU_ADDSELx, as described in
Section 12.5.1. If the address does not fall within one of the ranges, the EBU returns an
error acknowledge code onto the FPI Bus.

If the address belongs to one (or more) of the programmed ranges, further reaction
depends on the following conditions:

• If the EBU is currently busy with another transaction requested previously by another
master, it issues a retry acknowledge code onto the FPI Bus to inform the requesting
master that it needs to re-generate the request at a later point in time.

• If the EBU was idle and is currently already the owner (the master) of the external bus,
it will start to perform the required access.

• If the EBU was idle, but is currently not the owner of the external bus, it issues a retry
acknowledge code back to the master to inform the requesting master that it needs to
re-generate the request at a later point in time. In addition, it immediately starts to
arbitrate for ownership of the external bus. While the arbitration is in progress, the
EBU continues to acknowledge incoming requests with a retry code.

MCT04767

HOLD (Master In)

BREQ (Slave Out)
1) 4)

2) 5)

3b) 6)

1 Cycle

Master on Bus Slave on Bus Master on Bus

1 Cycle>
HLDA (Slave In)

HLDA (Master Out)

BREQ (Master Out)

HOLD (Slave In)

BUS

3a)
User’s Manual 12-39 V2.0, 2001-02

TC1775
System Units

External Bus Unit
FPI Bus masters that receive a retry acknowledge while accessing an internal device will
periodically re-generate their request until it can be fulfilled by the addressed device. In
the last case described above, after having gained ownership of the external bus, the
EBU holds the bus and waits for the next request of a master. This might be the re-
generated request of the master requesting the transaction that triggered the EBU to
gain ownership of the external bus, but it might also be a request from another master.
Requests to the EBU are fulfilled in a first-come, first-served scheme, and the EBU does
not store information about previous requests which it acknowledged with a retry code.

While the EBU is waiting for a new request, it keeps holding ownership of the external
bus. It will not give it up even if an external master requests the bus. However, certain
conditions, such as the occurrence of an error condition, could prevent the master which
originally issued the request to the EBU from re-generating the request. If there is no
other internal master requesting the EBU, this could lead to a dead-lock situation,
blocking the external master from gaining ownership of the external bus. To prevent such
a situation, the EBU contains a time-out counter that can be programmed to a user-
defined value (EBU_CON.TOUTC). This time-out counter is loaded with TOUTC and
starts counting down as soon as the EBU has gained external bus ownership. The
counter is stopped and reloaded again when an internal master requests the EBU.
However, if the counter reaches 0, the EBU will give up ownership of the external bus if
another external bus master has requested the external bus (it will keep ownership if no
external request is present).

12.7.3 External Requests to the EBU

If an external bus master requests an internal FPI Bus transaction from the EBU to read
or write an FPI Bus device, this master first has to gain ownership of the external bus.
Then it accesses the EBU as a slave device as described in Section 12.6.

The EBU now has to act as a master on the FPI Bus on behalf of the external master to
fulfill the request. It generates an FPI Bus request signal to the FPI Bus Control Unit and
waits for the bus grant acknowledge. It then takes over the FPI Bus and performs the
required access.

If the access was a read from an internal device, the EBU asserts the WAIT signal to the
external master until it can provide the read data to the master. The external bus master
must hold its bus signals active for this time duration.

If the access was a write to an internal device, the write data is stored in a write buffer
inside the EBU (provided it is empty, that is, a previous write has finished successfully).
The EBU deasserts the WAIT signal as soon as this write buffer store operation has
finished. Thus, the external master does need to wait until the internal FPI Bus
transaction has finished completely. However, if the EBU is performing a previously
requested write operation that has not yet finished, the write buffer is not empty, and the
external master must wait until the EBU can store the new write data. The EBU asserts
WAIT for this time period.
User’s Manual 12-40 V2.0, 2001-02

TC1775
System Units

External Bus Unit
12.7.4 Atomic Read-Modify-Write Accesses

A read-modify-write access (RMW) consists of a read immediately followed by a write to
the same location. Such an operation is used, for instance, to modify a semaphore bit.
There must be no access of another device between, that is, the operation must be
atomic. Otherwise, a deadlock situation could occur if the other device accesses the
same location before the first one has finished its modification. Special provisions are
implemented in the EBU to support RMW operations on the external bus and for an
access to the internal FPI Bus from an external bus master.

12.7.4.1 Internal to External Read-Modify-Write Access

RMW accesses on the internal FPI Bus are specially indicated in the FPI Bus protocol.
The EBU recognizes such an access. In this case, the arbitration logic will keep
ownership of the external bus (ignoring HOLD requests from another external master)
until the two accesses have been finished. Thus, no other external bus master can
perform a transaction in between the read and write accesses.

12.7.4.2 External to Internal Read-Modify-Write Access

If an external bus master needs to perform a Read-Modify-Write operation on the internal
FPI Bus, an indication to the EBU is required such that it can activate the proper
indication signals on the FPI Bus for this transaction sequence. Because external bus
masters usually do not have a special signal to indicate an RMW transaction, a bit is
used for this purpose.

An external master can lock the FPI Bus, then perform a read access followed by a write
access to an FPI device through the following sequence:

1. Gain bus ownership (if not yet owner of the bus)
2. Perform a write access to register EBU_EXTCON in the EBU to set bit

EBU_EXTCON.FPILOCK.
3. Perform the required read access
4. Perform the required write access
5. Perform a write access to register EBU_EXTCON in the EBU to clear bit

EBU_EXTCON.FPILOCK.

Setting bit FPILOCK will result in that after having been granted the FPI Bus, the EBU
will lock it and therefore keep the FPI Bus until FPILOCK is cleared again. No other
internal bus master can gain ownership of the FPI Bus during this period. The EBU can
then perform the Read-Modify-Write operation as requested by the external bus master.

Note: No provision is implemented in the EBU regarding a time limit for the FPI Bus lock.
The user must ensure that the external bus master unlocks the FPI Bus again.
User’s Manual 12-41 V2.0, 2001-02

TC1775
System Units

External Bus Unit
12.8 EBU Boot Process

If external boot is selected — meaning that after reset, initial code execution begins from
external memory — the EBU needs to access the external default or boot memory.
However, because no application software has been executed yet, there is no
information inside the EBU concerning the type of external memory and the proper
access parameters to it.

To get around this problem, the EBU first starts a “blind” boot access to the external
memory using a set of default values. This boot access is designed such that the EBU
can access the external boot memory without knowing the exact parameters of it. In this
way, the EBU retrieves additional detailed access information from a predefined location
in the boot memory. It configures itself according to these parameters, and then performs
the first true code fetch from location 0 of the boot memory, now with the proper access
parameters. Figure 12-16 gives an overview of this boot access.

Naturally, this boot access can handle only a limited variety of external boot memory
types and access schemes. The boot memory must be either a ROM, EPROM, Flash-
EPROM or a RAM memory compatible to these types. The access is in demultiplexed
mode only. The memory can be 8, 16 or 32 bits wide.

The boot memory must be connected to CS0, the EBU uses registers EBU_ADDSEL0
and EBU_BUSCON0 for the access. Its reset values are such that the boot access is
performed in the following way:

• EBU is external bus master
• CS0 is activated (low)
• Addresses A[25:0] are driven to 00 0004H (accessing offset address 4H in the

memory); demultiplexed address mode
• RD is activated (low)
• RD/WR is deactivated (high)
• Data lines AD[31:0] are switched to input
• Byte control signals BC[3:0] are in control mode and active (low)
• Signal CODE is activated (low)
• A number of wait-states will be inserted in the read access

(EBU_BUSCON.WAITRDC × EBU_BUSCON0.CMULTR = 48 × 1)
• Evaluation of the WAIT input is disabled

With these default parameters, the EBU is able to activate a boot memory that is one of
the types listed above, and is able to read the value stored at location 04H of the memory.
The information stored there is used to adjust the access parameters such that they
exactly fit to the boot memory. This boot information needs to be programmed as shown
in the following:
User’s Manual 12-42 V2.0, 2001-02

TC1775
System Units

External Bus Unit
Note: The gray shaded bit fields are only evaluated by the EBU if bit field BOOTCFG.7
(bit CFG16) is set.

Bit fields AGEN, WAITRDC, WAIT, SETUP, WAITINV, BCGEN, CMULTR, and CMULT
have exactly the same meaning as the respective fields in register EBU_BUSCON0. At
the end of the boot access, the EBU_BUSCON0 fields will be overwritten with the
respective values read from the configuration word BOOTCFG.

Note: During boot, the upper two bits (8-bit boot memory data width selected) or the
upper four bits (16/32-bit boot memory data width selected) of bit field WAITRDC
of CS0 will be loaded.

Note: During boot, bit fields CMULTR and CMULT are loaded with the same value
defined by the external boot memory configuration word BOOTCFG[14:13] when
16/32-bit boot memory data width is selected.

Bits CFG16 and CFG32 determine the data width of the boot memory according to the
Table 12-16:

If the data width of the boot memory is 8 bits, bit CFG16 is set to 0, and the EBU will only
read and evaluate bits 7..0 of the boot word BOOTCFG. The parameters for BCGEN,
CMULTR and CMULT then must be set by software. It is advisable to perform this early
in the initialization code of the application because the EBU uses the default number of
waitstates to read the boot memory.

If the data width of the boot memory is 16 bits or 32 bits, bit CFG16 in the boot word is
set to 1, and the EBU reads and evaluates bits 15..0 of the boot word BOOTCFG. Bit
CFG32 is set to 0 in case of a 16-bit boot memory, and set to 1 if the data width of the
boot memory is 32 bits. The EBU will update bit field EBU_BUSCON0.PORTW
according to the data width of the boot memory.

BOOTCFG
EBU External Boot Memory Configuration Word

Boot Memory Offset Address + 04H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CFG
32

CMULT
CMULTR BCGEN WAITRDC

[4:3]
WAI

T
INV

CFG
16

SET
UP WAIT WAITRDC

[6:5] AGEN

Table 12-16 Boot Memory Data Width Encoding

CFG32 CFG16 Boot Memory Data Width

don’t care 0 00B: 8-bit

0 1 01B: 16-bit

1 1 10B: 32-bit
User’s Manual 12-43 V2.0, 2001-02

TC1775
System Units

External Bus Unit
Figure 12-16 EBU Boot Process after Reset

At the beginning of this sequence, 256 clock cycles will be inserted to satisfy the
recovery needs of external synchronous devices like flash ROMs between the time that
reset becomes inactive and the above-described access occurs.

In this example it is assumed, that the EBU is in external master mode when a boot from
external memory is performed. That means that during the reset phase the HLDA signal
will be pulled inactive (via a pull-up), and that the EBU is owner of the external bus
immediately after reset.

If the EBU is configured for external slave mode, HOLD and HLDA are high. Thus, the
EBU is in hold mode and the external bus interface signals are tristated.

When external boot is disabled, the EBU will come up with external bus arbitration turned
off after reset, that is, no access from the FPI Bus to external memory is possible without
EBU reconfiguration.

MCT04768

CLKOUT

Data In

A[25:0]

CS0

RD

RD/WR

AD[31:0]

BC[3:0]

CODE

00 0004H

Repeated
with max.
number of
recovery
wait states

Repeated
with 48
wait states

Repeated
256 times
User’s Manual 12-44 V2.0, 2001-02

TC1775
System Units

External Bus Unit
12.9 Emulation Support

The TC1775 supports emulation and debugging via a number of measures. Some of
features are provided through the EBU via the external bus. A special emulation boot is
provided after reset which activates the EBU to direct code and data accesses from the
CPU to a dedicated emulator memory region. Additionally, accesses to application
memory can be redirected to emulation memory during debugging and emulation to
allow replacement of application memory contents with special emulation memory.

Note: The EBU uses special registers and signals for this emulation support. These
resources are dedicated for these purposes and must not be used in normal
operation. Proper emulation and debugging is not guaranteed and supported if
these restrictions are not obeyed.

The following subsections describe the EBU emulation support in more detail.

12.9.1 Emulation Boot

One of the boot options of the TC1775, selectable during reset, is to start execution out
of a special external emulation memory. This memory is connected to the external bus
of the EBU in a standard way, however, a special chip select, CSEMU, is provided for
this memory. The address range for this emulation memory is predefined to Segment 11,
starting at address BE00 0000H with a size of 16 MByte.

If emulation boot is selected during reset, then after the end of the reset sequence the
Program Counter (PC) of the CPU is set to BE00 0000H (pointing to the emulation
memory) and the EBU is enabled. The EBU has an address select register,
EBU_EMUAS, and a bus control register, EBU_EMUBC, dedicated to the emulation
memory. The address area and access parameters in these registers are set to
predefined default values for a certain type of emulation memory. Thus, the EBU does
not need to perform a boot access to the memory to retrieve further configuration data,
as required for a normal boot. The code fetch requests from the CPU activate the EBU,
which in turn performs a respective access to the emulation memory.

In this way, emulation software instead of application software is executed directly after
reset. After having performed necessary initialization and programming, the emulation
software usually executes a soft reset with the proper boot configuration to perform a
normal boot and returning to the application software.

12.9.2 Overlay Memory

During emulation and debugging, it is often necessary to modify or replace the
application code. While this is not very difficult to do with easily writable memories, such
as RAMs, it can be awkward or even not possible without removing the memory or
adding special provisions for on-board reprogramming when the code is stored in non-
volatile memory such as a ROM or an EPROM.
User’s Manual 12-45 V2.0, 2001-02

TC1775
System Units

External Bus Unit
The solution to this problem provided by the EBU is an overlay memory chip select,
CSOVL. This chip select line can be programmed to be active in addition to the normal
chip select connected to the application memory. An additional overlay memory can then
be connected to the external bus, using this overlay chip select to activate it. Additionally,
the CSOVL line is used to gate the read and write signals to the application memory.
Figure 12-17 gives an overview for such a configuration. Only the signals relevant for
this feature are shown.

Figure 12-17 Use of the Overlay Chip Select

If the overlay chip select option is selected for an address range, then it is activated for
all accesses to this address range in addition to the activation of the regular chip select,
CSx. Thus, the overlay memory is activated for these accesses. To ensure that the
regular application memory is not driving the bus on a read or storing the data on a write,
the inverted overlay chip select controls two OR-gates to disable the read and write
signals to the memory. In this way, the overlay memory is accessed instead of the
application memory.

The selection of the overlay chip select is performed through register EBU_EMUCON.
For each of the four regular chip selects CS[3:0], an enable bit for CSOVL is provided. It
is possible to activate CSOVL for one or more of the regular chip selects.

Note: To guarantee proper access, the overlay memory must meet the same access
requirements as the application memory. The access to it is performed according
to the parameters programmed for the application memory via the
EBU_BUSCONx register associated with the regular chip select.

Note: Use of the overlay chip select feature is intended for emulation support. The
circuitry shown in Figure 12-17 is usually provided on the emulator probe. It does
not need to be included in the application circuitry.

MCS04769

EBU

CSx

RD/WR

RD

Application
Memory

&

OE

WE

CE

CSOVL CE

WE

OE

Overlay
Memory

>1

>1
User’s Manual 12-46 V2.0, 2001-02

TC1775
System Units

External Bus Unit
12.10 External Instruction Fetches

This section describes the synchronous burst Flash memory accesses that are initiated
and controlled by the PMU and which use the EBU lines for external access.

12.10.1 Signal List

The signals shown in Table 12-17 are used for synchronous burst Flash memory
accesses and are part of the EBU interface:

12.10.2 Basic Functions

The PMU is designed to perform burst mode cycles for an external code Flash memory.
These burst mode cycles are executed via a separate instruction fetch bus as shown in
Figure 12-1. In general, the burst mode cycle capability provides the following features:

• Fully synchronous timing with flexible programmable timing parameters
• 32-bit data bus width
• Support of INTEL 28F800F3 and 28F160F3 Fast Boot Block Flash Memory
• Support of AMD 29BL162 Burst Mode Flash Memory

Figure 12-18 shows the basic configuration of external burst Flash memory
connections. Note, that only 32-bit data bus width is supported for synchronous burst
Flash memory accesses.

Table 12-17 EBU Signals used for Burst Flash Memory Accesses

Signal Type Function

AD[31:0] I/O Data bus

RD O Read control

AD[25:0] O Address bus

ADV O Address valid strobe

BAA O Burst address advance

WAIT I Wait/terminate burst control

CS0 O Chip select 0

CLKOUT O Clock output

CLKIN I EBU clock input

CODE O Code fetch status output
User’s Manual 12-47 V2.0, 2001-02

TC1775
System Units

External Bus Unit
Figure 12-18 Basic Configurations of External Burst Flash Memory Connections

See also Section 12.10.5 for specific examples of burst Flash memory configurations
with Intel or AMD devices.

Note that within Segment 10 instruction fetches can be also executed via the FPI Bus
using the asynchronous access schemes as described in Section 12.5. Two control bits
in the SCU control register SCU_CON define which path in Figure 12-1 is selected for
instruction fetches (details on register SCU_CON see Chapter 4).

12.10.3 External Instruction Fetch Control Register

The external burst mode instruction fetches are controlled and defined by the
PMU_EIFCON register which is located in the PMU. Table 12-18 summarizes the
functions of its bits. The register itself is described in detail in Section 8.6.2.

Table 12-18 PMU_EIFCON Register Bits/Bit Fields

Name Bit(s) Function

ADVLEN 0 Defines the number of address cycles;
0 One address cycle
1 Two address cycles

RDWLEN [3:1] Defines the delay (read wait cycles) between the initial
address cycle and the first data cycle
0H-7H: 0-7 read wait cycles can be selected

MCA04770

TC 1775

A2
A3

A20

16-Bit
Burst
Flash

Memory

A0
A1

A18
D[15:0]

AD[15:0]

AD[31:16]

16-Bit
Burst
Flash

Memory

A0
A1

A18

D[15:0]

D[15:0]

D[31:16]

CSO
User’s Manual 12-48 V2.0, 2001-02

TC1775
System Units

External Bus Unit
DATLEN 4 Defines the number of data cycles;
0 One data cycle
1 Two data cycles

WAITFUNC 5 Defines the operation of the WAIT input;
0 WAIT input operates as a wait data bus function on

bursts
1 The WAIT input operates as a terminate burst

function

FBBMSEL 6 Defines the mode of the Flash Burst Buffer;
0 Continuous mode
1: Flash burst buffer length defined by value in

FBBLEN

FBBLEN [9:7] Defines the maximum number of linear Flash burst data
cycles which are provided by the Flash without additional
access delay.

EIFBLEN [11:10] Defines the Instruction Fetch Burst Length;
Defines maximum number of burst data cycles which are
executed by the PMU. A new burst cycle starting with
address cycles is always initiated at the 2EIFBLEN address
limit.
00B 1 data access
01B 2 data accesses
10B 4 data accesses
11B 8 data accesses

CS0D 13 Defines whether CS0 is generated during burst mode.
accesses or not.
0 CS0 is activated during code fetch
1 CS0 is not activated during code fetch

SIDC 14 This bit defines whether address cycle 2 (Cycle 1 in
Figure 12-19) is available during a synchronous burst
operation or not.
0 Cycle 1 is available (not saved; default after reset)
1 Cycle 1 is not avaiable (saved)

Table 12-18 PMU_EIFCON Register Bits/Bit Fields (cont’d)

Name Bit(s) Function
User’s Manual 12-49 V2.0, 2001-02

TC1775
System Units

External Bus Unit
12.10.4 Cycle Definitions of Burst Mode Timing

See also the description of “External Code Fetches via External Bus Interface Unit” in
Chapter 8 in this User’s Manual.

The timing diagrams on the following pages use abbreviations for the clock cycles:

• Fully synchronous timing
– Cycle 0 Address cycle 1, programmable to either 1 or 2
– Cycle 1: Address cycle 2, programmable to either 0 or 1
– Cycle 2: Read wait cycle, programmable from 0-7
– Cycle 3: Initial data cycle, programmable to either 1 or 2 for one data access
– Cycle 4: Burst data cycle, programmable to either 1 or 2 for one data access
– Cycle 5: Last burst data cycle
– Cycle 6: End-of-burst cycle

• Programmable burst length
• Programmable Flash burst buffer length

Figure 12-19 shows the basic timing of a synchronous burst mode operation.

Figure 12-19 Synchronous Burst Read Operation (4 Word Burst)

MCT04723

CLKIN

ADV

A[25:0]

RD

BAA

Cycle 0 Cycle 1 Cycle 2 Cycle 4 Cycle 5

Address

Cycle 6
or

Cycle 0
Cycle 3 Cycle 4

1)

New
Addr

1) The dotted waveforms indicate the start of a new address cycle

D[31:0] Data of
Addr+12

Data of
Addr+8

Data of
Addr+4

Data of
Addr

CS0
CODE
User’s Manual 12-50 V2.0, 2001-02

TC1775
System Units

External Bus Unit
Address cycle 1 (cycle 0) can be repeated once controlled by bit
PMU_EIFCON.ADVLEN.

Figure 12-20 Programming of Address Cycle 1 Duration

Note: Address cycle 2 (cycle 1 in the timing diagrams) can be switched off by setting bit
PMU_EIFCON.SIDC to 1. After reset, cycle 1 is switched on.

MCT04772

CLKIN

ADV

A[25:0]

RD

Cycle 0 Cycle 1

Valid Address

ADVLEN = 0

Cycle 0 Cycle 0

Valid Address

ADVLEN = 1

Cycle 1

CS0
CODE
User’s Manual 12-51 V2.0, 2001-02

TC1775
System Units

External Bus Unit
The delay between the address latch phase and the first data burst cycle (number of read
wait cycles, cycle 2) can be programmed by bit field PMU_EIFCON.RDWLEN, This
feature allows a flexible adoption of the initial read access time of a burst mode device.
Further, the number of data cycles for one data access can be one or two CLKOUT
periods (defined by bit PMU_EIFCON.DATLEN).

Figure 12-21 Programming of Read Wait Cycles and Data Cycles

MCT04773

CLKIN

ADV

A[25:0]

RD

BAA

Cycle 0 Cycle 1 Cycle 2 Cycle 4 Cycle 3

Valid Address

D[31:0]

Cycle 4

Data 2

RDWLEN = 2 DATLEN = 1

Cycle 2 Cycle 3

Data 1

CS0
CODE
User’s Manual 12-52 V2.0, 2001-02

TC1775
System Units

External Bus Unit
If the WAIT input is defined for data wait cycle operation (PMU_EIFCON.
WAITFUNC = 0), wait cycles can be inserted between burst data cycles. A wait cycle is
inserted if a low level is detected at the end of a data cycle (Cycle 3 or 4). A high level at
WAIT at the end of a data cycle proceeds the burst data cycles.

Figure 12-22 Inserting Wait Cycles within a Burst (PMU_EIFCON.WAITFUNC = 0)

MCT04774

CLKIN

ADV

A[25:0]

RD

WAIT

Cycle 0 Cycle 1 Cycle 3 Cycle 4 Cycle 4

Valid Address

Data 1D[31:0] Data 2

Wait
Cycle

Wait
Cycle Cycle 4

Data 3

ADVLEN = 0 RDWLEN = 0 DATLEN = 0
CS0
CODE
User’s Manual 12-53 V2.0, 2001-02

TC1775
System Units

External Bus Unit
If the WAIT input is assigned for terminate burst function (PMU_EIFCON.
WAITFUNC = 1), consecutive data burst cycles are terminated if a low level is detected
at the end of a data cycle (Cycle 3 or 4).

Figure 12-23 Terminating a Continuous Burst Operation with WAIT
(PMU_EIFCON.WAITFUNC = 1)

MCT04775

CLKIN

ADV

A[25:0]

RD

BAA

WAIT

Cycle 0 Cycle 1 Cycle 3 Cycle 4 Cycle 4 Cycle 6

Valid Address

Data 1 Data 3D[31:0]

Cycle 4

Data 2 Data 4

CS0
CODE
User’s Manual 12-54 V2.0, 2001-02

TC1775
System Units

External Bus Unit
If the PMU detects an address change not in the current sequential address burst, the
current burst is terminated and a new initial address for the next data cycle(s) must be
issued. Figure 12-24 shows an example with data wait cycle insertion
(PMU_EIFCON.WAITFUNC = 0) and generation of a new address cycle after the
second data byte.

Figure 12-24 Terminate Continuous Burst Operation — Start New Address Cycle

MCT04776

CLKIN

ADV

A[25:0]

RD

BAA

WAIT

Cycle 0 Cycle 1 Cycle 4 Wait
Cycle Cycle 5 Cycle 6

 1)
Cycle 0 Cycle 1 Cycle 4

Valid Address New Valid Addr.

Data 1 Data 2D[31:0]

1) Cycle 6 is optional. Cycle 0 can follow direct after cycle 5.

CS0
CODE
User’s Manual 12-55 V2.0, 2001-02

TC1775
System Units

External Bus Unit
12.10.5 Typical Burst Flash Memory Configuration

Figure 12-25 Example Configuration for Connection with Intel/AMD Flash Devices

12.10.6 Arbitration between EBU and PMU for External Accesses

After reset with external boot selected, FPI Bus accesses have high priority until the boot
process has been finished. Afterwards, burst mode accesses initiated by the PMU have
higher priority.

TC 1775

D[31:16]
D[15:0]

Flash Mem.
1M × 16
(Intel)

ADV
CS0
RD

BAA
WAIT

A
[1

9:
0]

A
D

V

O
E

W
A

IT C
E

D
Q

[1
5:

0]

C
LK

D
Q

[1
5:

0]

CLKOUT
CLKIN

A[21:2]

20

16

16

MCA04777
User’s Manual 12-56 V2.0, 2001-02

TC1775
System Units

External Bus Unit
12.11 EBU Registers

This section describes the control registers and programmable parameters of the EBU.
Figure 12-26 shows all FPI Bus accessible registers associated with the EBU. Register
EBU_EXTCON, accessible from the external bus only, is described at the end.

Figure 12-26 EBU Registers

Table 12-19 EBU Registers

Register
Short Name

Register Long Name Offset
Address

Description
see

EBU_CLC EBU Clock Control Register 0000H Page 12-58

EBU_CON EBU Global Control Register 0010H Page 12-59

EBU_ADDSEL0 EBU Address Select Register 0 0020H Page 12-61

EBU_ADDSEL1 EBU Address Select Register 1 0024H

EBU_ADDSEL2 EBU Address Select Register 2 0028H

EBU_ADDSEL3 EBU Address Select Register 3 002CH

EBU_BUSCON0 EBU Bus Configuration Register 0 0060H Page 12-62

EBU_BUSCON1 EBU Bus Configuration Register 1 0064H

EBU_BUSCON2 EBU Bus Configuration Register 2 0068H

EBU_BUSCON3 EBU Bus Configuration Register 3 006CH

EBU_EMUAS EBU Emulator Address Select Register 0080H Page 12-69

EBU_EMUBC EBU Emulator Bus Configuration Register 0084H Page 12-66

EBU_EMUCON EBU Emulator Configuration Register 0088H Page 12-65

MCA04778

EBU_CLC EBU_EMUASEBU_ADDSEL0

Control / Status
Registers

Address Region
Registers

Emulator Registers

EBU_CON

EBU_EXTCON1)

EBU_BUSCON0

EBU_BUSCON1

EBU_BUSCON2

EBU_BUSCON3

EBU_ADDSEL1

EBU_ADDSEL2

EBU_ADDSEL3

EBU_EMUBC

EBU_EMUCON

1) This register is only accessible from the external bus not via the FPI Bus.
User’s Manual 12-57 V2.0, 2001-02

TC1775
System Units

External Bus Unit
12.11.1 Clock Control Register

The EBU clock control register EBU_CLC allows to enable/disable the EBU in general.
After reset the EBU is enabled.

EBU_CLC
EBU Clock Control Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 DIS
S

DIS
R

r r rw

Field Bits Type Description

DISR 0 rw EBU Disable Request Bit
Used for enable/disable control of the EBU.
0 EBU disable is not requested
1 EBU disable is requested

DISS 1 r EBU Disable Status Bit
Bit indicates the current status of the EBU.
0 EBU is enabled (default after reset)
1 EBU is disabled

0 [31:2] r Reserved; read as 0; should be written with 0.
User’s Manual 12-58 V2.0, 2001-02

TC1775
System Units

External Bus Unit
12.11.2 Global Control Register

The EBU Global Control Register EBU_CON provides global control of the EBU.

EBU_CON
EBU Global Control Register Reset Value (internal boot): 0000 0028H

Reset Value (external boot, master mode): 0000 0068H
Reset Value (external boot, slave mode): 0000 00A8H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 DTACS 0 DTARW

r rw r rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TOUTC ARB
MODE

ARB
SYN

C

EXT
LOC

K
EXT
ACC

EXT
SVM

EXT
RE

CON
0

r rw rw rw rw rw rwr r

Field Bits Type Description

EXTRECON 1 rw External Address Extension Reconfiguration
Control
0 External address extension register

reconfiguration is disabled (default after reset).
1 External address extension register

reconfiguration is enabled.

EXTSVM 2 rw External Supervisor Mode Access Control
0 All accesses from external master are

performed in user mode (default after reset).
1 All accesses from external master are

performed in the mode defined by the level at
the SVM pin.

EXTACC 3 rw External Access to FPI Bus Control
0 External accesses to the FPI Bus are disabled.
1 External accesses to the FPI Bus are enabled

(default after reset).

EXTLOCK 4 rw External Bus Lock Control
0 External bus will not be locked after EBU has

gained ownership (default after reset).
1 External bus will be locked after EBU has gained

ownership.
User’s Manual 12-59 V2.0, 2001-02

TC1775
System Units

External Bus Unit
ARBSYNC 5 rw Arbitration Inputs Evaluation Control
0 Arbitration inputs are synchronous
1 Arbitration inputs are asynchronous

(default after reset)

ARBMODE [7:6] rw Arbitration Mode
00B EBU is disabled.

(default after reset after internal boot)
01B EBU is external master
10B EBU is external slave
11B Arbitration is disabled; EBU is the only bus

master

TOUTC [15:8] rw Time-Out Control
Specifies the number of inactive cycles required to
indicate a time-out condition after the EBU has gained
ownership of the external bus, in units of eight clock
cycles.
n Time-out is n × 8 clock cycles, where n can be in

the range of 00H - FFH
(00H = default after reset)

DTARW [18:16] rw Driver Turn-Around Control, read-write triggered
Specifies the minimum number of inactive cycles
between external accesses to the same device when
switching from read to write or vice versa.
n Insert n inactive cycles, where n is in the range

of 0 - 7 (000B = default after reset)

DTACS [22:20] rw Driver Turn-Around Control, chip select triggered
Specifies the minimum number of inactive cycles
between external accesses when switching from one
chip select to another.
n Insert n inactive cycles, where n is in the range

of 0 - 7 (000B = default after reset)

0 0, 19,
[31:23]

r Reserved; read as 0; should be written with 0.

Field Bits Type Description
User’s Manual 12-60 V2.0, 2001-02

TC1775
System Units

External Bus Unit
12.11.3 Address Select Registers

The EBU Address Select Registers EBU_ADDSELx (x = 0-3) establish and control
memory regions for external accesses.

EBU_ADDSELx (x = 0-3)
EBU Address Select Register x Reset Value (internal boot): 0000 0000H

Reset Value (external boot): A000 0001H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BASE

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BASE 0 MASK 0
MIR
ROR

E
REG
EN

rw r rw r rw r

Field Bits Type Description

REGEN 0 r Memory Region Enable Control
0 Memory region disabled
1 Memory region enabled

MIRRORE 1 rw Memory Region Mirror Enable Control
0 Memory region is not mirrored into memory

Segment 11
1 Memory region is mirrored into memory

Segment 11

MASK [7:4] rw Memory Region Address Mask
Specifies the number of right-most bits in the base
address that should be included in the address
comparison, starting at bit position 26. Bits 31:27 are
always part of the address comparison.

BASE [31:12] rw Memory Region Base Address
FPI Bus addresses are compared to this base address
in conjunction with the mask control.

0 2, 3,
[11:8]

r Reserved; read as 0; should be written with 0.
User’s Manual 12-61 V2.0, 2001-02

TC1775
System Units

External Bus Unit
12.11.4 Bus Configuration Registers

The EBU Bus Configuration Registers EBU_BUSCONx (x = 0-3) configure access
modes and access timing to the external memory regions defined through the
EBU_ADDSELx registers.

Note: In case of an external boot, the reset value of EBU_BUSCON0 will be modified by
the external boot configuration information retrieved from the external memory.

EBU_BUSCONx (x = 0-3)
EBU Bus Configuration Register x Reset Value: E802 61FFH

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

WR
DIS ALEC BCGEN 0 AGEN CMULTR WAIT WAI

TINV
SET
UP PORTW

rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WAITRDC WAITWRC HOLDC RECOVC CMULT

rw rw rw rw rw

Field Bits Type Description

CMULT [1:0] rw Wait Cycle Multiplier Control
Specifies a multiplier for the cycles specified via the
WAITWRC, HOLDC and RECOVC fields.
00B Multiplier is 1.
01B Multiplier is 4.
10B Multiplier is 8.
11B Multiplier is 16 (default after reset).

RECOVC [3:2] rw Recovery Cycle Control
Specifies the number of inactive cycles to be inserted
after access to an external device.
n Insert n inactive cycles after access, where n is

in the range 0 - 3.
(Default after reset is 3 cycles)

HOLDC [5:4] rw Hold/Pause Cycle Control
Controls number of hold cycles in DEMUXED mode.
n Insert n cycles after access, where n is in the

range 0 - 3. (Default after reset is 3 hold cycles.)
User’s Manual 12-62 V2.0, 2001-02

TC1775
System Units

External Bus Unit
WAITWRC [8:6] rw Write Access Wait-State Control
n Insert n wait states into write access, where n is

in the range 0 - 7.
(Default after reset is 7 wait states.)

WAITRDC [15:9] rw Read Access Wait-State Control
n Insert n wait states into read access, where n is

in the range 0 - 127.
(Default after reset is 48 wait states.)

PORTW [17:16] rw External Device Data Width Control
00B 8-bit data
01B 16-bit data
10B 32-bit data (default after reset)
11B Undefined, reserved

SETUP 18 rw Extended Address Setup Control
0 Cycle 0 not generated (default after reset)
1 Cycle 0 generated

WAITINV 19 rw Active WAIT Level Control
0 WAIT active low (default after reset)
1 WAIT active high

WAIT [21:20] rw Variable Wait-State Insertion Control
00B Variable wait-state insertion disabled

(default after reset)
01B Asynchronous wait-state insertion
10B Synchronous wait-state insertion
11B Undefined, reserved

CMULTR [23:22] rw Cycle Multiplier Control for Read Cycles
Specifies a multiplier for the cycles specified by
WAITRDC.
00B Multiplier is 1 (default after reset)
01B Multiplier is 2
10B Multiplier is 4
11B Multiplier is 8

AGEN [25:24] rw Address Generation Control
00B Demultiplexed address (default after reset)
01B Reserved
10B Multiplexed address/data
11B Reserved

0 26 rw Reserved; read as 0; should be written with 0.

Field Bits Type Description
User’s Manual 12-63 V2.0, 2001-02

TC1775
System Units

External Bus Unit
BCGEN [28:27] rw Byte Control Signal Timing Mode Control
00B Chip Select Mode
01B Control Mode (default after reset)
10B Write Enable Mode
11B Reserved

ALEC [30:29] rw Address Latch Enable (ALE) Duration Control
n Insert n additional address setup cycles for

accesses to a multiplexed device, where n is in
the range 0 - 3. (Default after reset is 3 cycles.)

WRDIS 31 rw Memory Region Write Protection
0 Writes to the memory region are enabled
1 Writes to the memory region are disabled

(default after reset)

Field Bits Type Description
User’s Manual 12-64 V2.0, 2001-02

TC1775
System Units

External Bus Unit
12.11.5 Emulator Configuration Register

The EBU Emulator Configuration Register EBU_EMUCON provides overlay memory
control to the emulator.

EBU_EMUCON
EBU Emulator Configuration Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 OVL
3

OVL
2

OVL
1

OVL
0

r rw rw rw rw

Field Bits Type Description

OVL0 0 rw Overlay Memory Control for Region 0
0 Do not activate CSOVL on an access to region 0
1 Activate CSOVL on an access to region 0

OVL1 1 rw Overlay Memory Control for Region 1
0 Do not activate CSOVL on an access to region 1
1 Activate CSOVL on an access to region 1

OVL2 2 rw Overlay Memory Control for Region 2
0 Do not activate CSOVL on an access to region 2
1 Activate CSOVL on an access to region 2

OVL3 3 rw Overlay Memory Control for Region 3
0 Do not activate CSOVL on an access to region 3
1 Activate CSOVL on an access to region 3

0 [31:4] r Reserved; read as 0; should be written with 0.
User’s Manual 12-65 V2.0, 2001-02

TC1775
System Units

External Bus Unit
12.11.6 Emulator Bus Configuration Register

The EBU Emulator Bus Configuration Register EBU_EMUBC defines the access
parameters for the emulator memory region determined through register EBU_EMUAS.
This register has the same layout and semantics as the EBU_BUSCONx registers.

EBU_EMUBC
EBU Emulator Bus Configuration Register Reset Value: 0016 0280H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

WR
DIS ALEC BCGEN AGEN CMULTR WAIT WAI

TINV
SET
UP PORTW

rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WAITRDC WAITWRC HOLDC RECOVC CMULT

rw rw rw rw rw

Field Bits Type Description

CMULT [1:0] rw Wait Cycle Multiplier Control
Specifies a multiplier for the cycles specified via the
WAITWRC, HOLDC and RECOVC fields.
00B Multiplier is 1 (default after reset).
01B Multiplier is 4.
10B Multiplier is 8.
11B Multiplier is 16.

RECOVC [3:2] rw Recovery Cycle Control
Specifies the number of inactive cycles to be inserted
after access to an external device.
n Insert n inactive cycles after access, where n is

in the range 0 - 3.
(Default after reset is 0 cycles)

HOLDC [5:4] rw Hold/Pause Cycle Control
Controls number of hold cycles in DEMUXED mode.
n Insert n cycles after access, where n is in the

range 0 - 3. (Default after reset is 0 hold cycles.)

WAITWRC [8:6] rw Write Access Wait-State Control
n Insert n wait states into write access, where n is

in the range 0 - 7.
(default after reset is 2 wait states)
User’s Manual 12-66 V2.0, 2001-02

TC1775
System Units

External Bus Unit
WAITRDC [15:9] rw Read Access Wait-State Control
n Insert n wait states into read access, where n is

in the range 0 - 127.
(Default after reset is 1 wait state)

PORTW [17:16] rw External Device Data Width Control
00B 8-bit data
01B 16-bit data
10B 32-bit data (default after reset)
11B Undefined, reserved

SETUP 18 rw Extended Address Setup Control
0 Cycle 0 not generated
1 Cycle 0 generated (default after reset)

WAITINV 19 rw Active WAIT Level Control
0 WAIT active low (default after reset)
1 WAIT active high

WAIT [21:20] rw Variable Wait-State Insertion Control
00B Variable wait-state insertion disabled.
01B Asynchronous wait-state insertion

(default after reset)
10B Synchronous wait-state insertion
11B Undefined, reserved

CMULTR [23:22] rw Cycle Multiplier Control for Read Cycles
Specifies a multiplier for the cycles specified by
WAITRDC.
00B Multiplier is 1 (default after reset)
01B Multiplier is 2
10B Multiplier is 4
11B Multiplier is 8

AGEN [26:24] rw Address Generation Control
000B Demultiplexed address (default after reset)
001B Reserved
010B Multiplexed address/data
All other values AGEN = 011B - 111B are undefined
and reserved.

BCGEN [28:27] rw Byte Control Signal Timing Mode Control
00B Chip Select Mode (default after reset)
01B Control Mode
10B Write Enable Mode
11B Reserved

Field Bits Type Description
User’s Manual 12-67 V2.0, 2001-02

TC1775
System Units

External Bus Unit
ALEC [30:29] rw Address Latch Enable (ALE) Duration Control
n Insert n additional address setup cycles for

accesses to a multiplexed device, where n is in
the range 0 - 3. (Default after reset is 0 cycles.)

WRDIS 31 rw Memory Region Write Protection
0 Writes to the memory region are enabled.

(default after reset)
1 Writes to the memory region are disabled

Field Bits Type Description
User’s Manual 12-68 V2.0, 2001-02

TC1775
System Units

External Bus Unit
12.11.7 Emulator Address Select Register

The EBU Emulator Address Select Register EBU_EMUAS defines the address region
for the emulator memory. This register has the same layout and semantics as the
EBU_ADDSELx registers.

EBU_EMUAS
EBU Emulator Address Select Register Reset Value: BE00 0031H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BASE

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BASE 0 MASK 0
MIR
ROR

E
REG
EN

rw r rw r rw r

Field Bits Type Description

REGEN 0 r Emulator Memory Region Enable Control
0 Memory region disabled
1 Memory region enabled (default after reset)

MIRRORE 1 rw Emulator Memory Region Mirror Enable Control
0 Memory region is not mirrored into memory

Segment 11 (default after reset)
1 Memory region is mirrored into memory

Segment 11

MASK [7:4] rw Emulator Memory Region Address Mask
Specifies the number of right-most bits in the base
address starting at bit position 26, which should be
included in the address comparison. Bits [31:27] are
always part of the address comparison.
(default after reset = 0011B)

BASE [31:12] rw Emulator Memory Region Base Address
Any FPI address is compared to this base address in
conjunction with mask control.

0 2, 3,
[11:8]

r Reserved; read as 0; should be written with 0.
User’s Manual 12-69 V2.0, 2001-02

TC1775
System Units

External Bus Unit
12.11.8 External Access Configuration Register

The External Access Configuration Register EBU_EXTCON s only accessible from the
external bus, not via the internal FPI Bus. To reach this register, an external access to
the EBU with an address according to the following conditions must be performed:

• A[23:22] = 01B
• A[21:3] = don’t care
• A[2] = 0
• A[1:0] = don’t care.

EBU_EXTCON
EBU External Access Configuration Register Reset Value: BE00 0031H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

FPI
L

OCK
0 AEXT3[9:0] AEXT2[9:6]

rw r rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AEXT2[5:0] AEXT0[9:0]

rw rw

Field Bits Type Description

AEXT0 [9:0] rw Address Extension Bit Field 0
Specifies address lines A[31:22] for external accesses
with A[23:22] = 00B.

AEXT2 [19:10] rw Address Extension Bit Field 2
Specifies address lines A[31:22] for external accesses
with A[23:22] = 10B.

AEXT3 [29:20] rw Address Extension Bit Field 3
Specifies address lines A[31:22] for external accesses
with A[23:22] = 11B.

0 30 r Reserved; read as 0; should be written with 0.

FPILOCK 31 rw FPI Bus Lock Control
Specifies whether a locked FPI Bus transaction is
performed by the external master.
0 Normal FPI Bus transaction
1 Locked FPI Bus transaction (default after reset)
User’s Manual 12-70 V2.0, 2001-02

TC1775
System Units

External Bus Unit
12.11.9 EBU Register Address Range

In the TC1775, the registers of the EBU are located in the following address range:

– Module Base Address. F000 0500H
Module End Address. F000 05FFH

– Absolute Register Address = Module Base Address + Offset Address
(offset addresses see Table 12-19)
User’s Manual 12-71 V2.0, 2001-02

TC1775
System Units

Interrupt System
13 Interrupt System
The TC1775 interrupt system provides a flexible and time-efficient means for processing
interrupts. This chapter describes the interrupt system for the TC1775. Topics covered
include the architecture of the interrupt system, interrupt system configuration, and the
interrupt operations of the TC1775 peripherals and Central Processing Unit (CPU).
General information is also given about the Peripheral Control Processor (PCP). For
details about that unit, see Chapter 15.
User’s Manual 13-1 V2.0, 2001-02

TC1775
System Units

Interrupt System
13.1 Overview

An interrupt request can be serviced either by the CPU or by the Peripheral Control
Processor (PCP). These units are called “Service Providers”. Interrupt requests are
called “Service Requests” rather than “Interrupt Requests” in this document because
they can be serviced by either of the Service Providers.

Each peripheral in the TC1775 can generate service requests. Additionally, the Bus
Control Unit, the Debug Unit, the PCP, and even the CPU itself can generate service
requests to either of the two Service Providers.

As shown in Figure 13-1, each TC1775 unit that can generate service requests is
connected to one or multiple Service Request Nodes (SRN). Each SRN contains a
Service Request Control Register mod_SRCx, where “mod” is the identifier of the
service requesting unit and “x” an optional index. Two buses connect the SRNs with two
Interrupt Control Units, which handle interrupt arbitration among competing interrupt
service requests, as follows:

• The Interrupt Control Unit (ICU) arbitrates service requests for the CPU and
administers the CPU Interrupt Arbitration Bus.

• The Peripheral Interrupt Control Unit (PICU) arbitrates service requests for the PCP
and administers the PCP Interrupt Arbitration Bus.

Units which can generate service requests are:

– General Purpose Timer Unit (GPTU) with 8 SRNs
– General Purpose Timer Array (GPTA) with 54 SRNs
– Two High-Speed Synchronous Serial Interfaces (SSC0/SSC1) with 3 SRNs each
– Two Asynchronous/Synchronous Serial Interfaces (ASC0/ASC1) with 4 SRNs each
– TwinCAN controller with 8 SRNs
– Serial Data Link Module (SDLM) with 2 SRNs
– Two Analog/Digital Converters (ADC0/ADC1) with 4 SRNs each
– Real Time Clock (RTC) with 1 SRN
– Bus Control Unit (BCU) with 1 SRN
– Peripheral Control Processor (PCP) with 4 SRNs
– Central Processing Unit (CPU) with 4 SRNs
– Debug Unit (OCDS) with 1 SRN

The PCP can make service requests directly to itself (via the PICU), or it can make
service requests to the CPU. The Debug Unit can generate service requests to the PCP
or the CPU. The CPU can make service requests directly to itself (via the ICU), or it can
make service requests to the PCP. The CPU Service Request Nodes are activated
through software.
User’s Manual 13-2 V2.0, 2001-02

TC1775
System Units

Interrupt System

Figure 13-1 Block Diagram of the TC1775 Interrupt System

MCB04779

54 SRNs

Int. Req.8 SRNs
8

GPTU

54
GPTA

3 SRNs
3

SSC0

3 SRNs
3

SSC1

4 SRNs
4

ASC0

4 SRNs
4

ASC1

8 SRNs
8

CAN

2 SRNs
2

SDLM

4 SRNs
4

ADC0

4 SRNs
4

ADC1

1 SRN
1

RTC

1 SRN
1

BCU

Service
Request
Nodes

Service
Requestors

8

8

54

2

54

3

3

3

4

4

4

4

8

8

2

2

4

4

4

4

1

1

1

1

PCP
Interrupt

Arbitration Bus

CPU
Interrupt
Arbitration Bus

2 SRNs

2 SRNs

Interrupt
Control Units

2

PIPN

PCP

Int. Ack.

CCPN

2

Interrupt
Service

Providers

2

1

1 1 SRNs
1 Debug

Unit

4

4 4 SRNs
4

Int. Req.

PIPN

CPU

CCPN
Int. Ack.

Software
Interrupt

ICU

PICU
3

User’s Manual 13-3 V2.0, 2001-02

TC1775
System Units

Interrupt System
13.2 External Interrupts

External interrupt inputs in TC1775 are available using the input pins connected to the
General Purpose Timer Unit (GPTU). Each of the eight GPTU I/O pins can be used as
an external interrupt input, using the Service Request Nodes of the GPTU module.
Additionally, such an external interrupt input can also trigger a timer function.

13.3 Service Request Nodes

In total, there are 105 Service Request Nodes available in the TC1775. Note that the four
CPU Service Request Nodes can be activated only by software (either CPU instructions
or PCP instructions).

Each Service Request Node contains a Service Request Control Register and interface
logic that connects it to the triggering unit on one side and to the two interrupt arbitration
buses on the other side. Some peripheral units of the TC1775 have multiple Service
Request Nodes.

13.3.1 Service Request Control Registers

All Service Request Control Registers in the TC1775 have the same format. In general,
these registers contain:

• Enable/disable information
• Priority information
• Service Provider destination
• Service request active status bit
• Software-initiated service request set and reset bits

Besides being activated by the associated triggering unit through hardware, each SRN
can also be set or reset by software via two software-initiated service request control
bits.

Note: The description given in this chapter characterizes all Service Request Control
Registers of the TC1775. Informations on further peripheral module interrupt
functions, such as enable or request flags, are described in the corresponding
chapters of the peripheral modules.

User’s Manual 13-4 V2.0, 2001-02

TC1775
System Units

Interrupt System
mod_SRC
Service Request Control Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SET
R

CLR
R SRR SRE TOS 0 SRPN

w w rh rw rw r rw

Field Bits Type Description

SRPN [7:0] rw Service Request Priority Number
00H Service request is never serviced
01H Service request is on lowest priority
.. ..
FFH Service request is on highest priority

TOS [11:10] rw Type of Service Control
00B CPU service is initiated
01B PCP request is initiated
1XB Reserved

SRE 12 rw Service Request Enable
0 Service request is disabled
1 Service request is enabled

SRR 13 rh Service Request Flag
0 No service request is pending
1 A service request is pending

CLRR 14 w Request Clear Bit
CLRR is required to reset SRR.
0 No action
1 Clear SRR; bit value is not stored; read always

returns 0; no action if SETR is set also.

SETR 15 w Request Set Bit
SETR is required to set SRR.
0 No action
1 Set SRR; bit value is not stored; read always

returns 0; no action if CLRR is set also.

0 [9:8],
[31:16]

r Reserved; read as 0; should be written with 0.
User’s Manual 13-5 V2.0, 2001-02

TC1775
System Units

Interrupt System
13.3.1.1 Service Request Flag (SRR)

A trigger event in a peripheral associated with this register causes SRR to be set to 1.
Service requests can be acknowledged automatically by hardware or can be polled by
software. If the corresponding enable bit SRE is set, a service request will be forwarded
for arbitration to the Service Provider indicated by the TOS bit. When the service request
is acknowledged by the Service Provider (either the CPU or the PCP) this bit is reset by
hardware to 0.

The SRR bit can also be monitored, set, and reset by software via the SETR or CLRR
bits respectively. This allows software to poll for events in peripheral devices. Writing
directly to SRR via software has no effect.

13.3.1.2 Request Set and Clear Bits (SETR, CLRR)

The SETR and CLRR bits allow software to set or clear the service request bit SRR.
Writing a 1 to SETR causes bit SRR to be set to 1. Writing a 1 to CLRR causes bit SRR
to be cleared to 0. If hardware attempts to modify SRR during an atomic read-modify-
write software operation (such as the bit-set or bit-clear instructions) the software
operation will succeed and the hardware operation will have no effect.

The value written to SETR or CLRR is not stored. Writing a 0 to these bits has no effect.
These bits always return 0 when read. If both, SETR and CLRR are set to 1 at the same
time, SRR is not changed.

13.3.1.3 Enable Bit (SRE)

The SRE bit enables an interrupt to take part in the arbitration for the selected Service
Provider. It does not enable or disable the setting of the request flag SRR; the request
flag can be set by hardware or by software (via SETR) independent of the state of the
SRE bit. This allows service requests to be handled automatically by hardware or
through software polling.

If SRE = 1, pending service requests are passed on to the designated Service Provider
for interrupt arbitration. The SRR bit is automatically set to 0 by hardware when the
service request is acknowledged and serviced. It is recommended that in this case,
software should not modify the SRR bit to avoid unexpected behavior due to the
hardware controlling this bit.

If SRE = 0, pending service requests are not passed on to Service Providers. Software
can poll the SRR bit to check whether a service request is pending. To acknowledge the
service request, the SRR bit must then be reset by software by writing a 1 to CLRR.

Note: In this document, ‘active source’ means a Service Request Node whose Service
Request Control Register has its request enable bit SRE set to 1 to allow its
service requests to participate in interrupt arbitration.
User’s Manual 13-6 V2.0, 2001-02

TC1775
System Units

Interrupt System
13.3.1.4 Service Request Flag (SRR)

When set, the SRR flag indicates that a service request is pending. It can be set or reset
directly by hardware or indirectly through software using the SETR and CLRR bits.
Writing directly to this bit via software has no effect.

The SRR status bit can be directly set or reset by the associated hardware. For instance,
in the General Purpose Timer Unit, an associated timer event can cause this bit to be set
to 1. The details of how hardware events can cause the SRR bit to be set are defined in
the individual peripheral chapters.

The acknowledgment of the service request by either the Interrupt Control Unit (ICU) or
the PCP Interrupt Control Unit (PICU) causes the SRR bit to be cleared.

SRR can be set or cleared either by hardware or by software regardless of the state of
the enable bit SRE. However, the request is only forwarded for service if the enable bit
is set. If SRE = 1, a pending service request takes part in the interrupt arbitration of the
service provider selected by the device’s TOS field. If SRE = 0, a pending service
request is excluded from interrupt arbitrations.

SRR is automatically reset by hardware when the service request is acknowledged and
serviced. Software can poll SRR to check for a pending service request. SRR must be
reset by software in this case by writing a 1 to CLRR.

13.3.1.5 Type-of-Service Control (TOS)

There are two Service Providers for service requests in the TC1775, the CPU and the
PCP. The TOS bit field is used to select whether a service request generates an interrupt
to the CPU (TOS[0] = 0) or to the PCP (TOS[0] = 1). Bit TOS[1] is read-only, returning 0
when read. Writing to this bit position has no effect. However, to ensure compatibility with
future extensions, it should always be written with 0.

13.3.1.6 Service Request Priority Number (SRPN)

The 8-bit Service Request Priority Number (SRPN) indicates the priority of a service
request with respect to other sources requesting service from the same Service
Provider, and with respect to the priority of the Service Provider itself.

Each active source selecting the same Service Provider must have a unique SRPN
value to differentiate its priority. The special SRPN value of 00H excludes an SRN from
taking part in arbitration, regardless of the state of its SRE bit. The SRPN values for
active sources selecting different Service Providers (CPU vs. PCP) may overlap. If a
source is not active — meaning its SRE bit is 0 — no restrictions are applied to the
service request priority number.

The SRPN is used by Service Providers to select an Interrupt Service Routine (ISR) or
Channel Program (in case of the PCP) to service the request. ISRs are associated with
Service Request Priority Numbers by an Interrupt Vector Table located in each Service
User’s Manual 13-7 V2.0, 2001-02

TC1775
System Units

Interrupt System
Provider. This means that the TC1775 Interrupt Vector Table is ordered by priority
number. This is unlike traditional interrupt architectures in which their interrupt vector
tables are ordered by the source of the interrupt. The TC1775 Interrupt Vector Table
allows a single peripheral can have multiple priorities for different purposes.

The range of values for SRPNs used in a system depends on the number of possible
active service requests and the user-definable organization of the Interrupt Vector Table.
The 8-bit SRPNs permit up to 255 sources to be active at one time (remembering that
the special SRPN value of 00H excludes an SRN from taking part in arbitration).
User’s Manual 13-8 V2.0, 2001-02

TC1775
System Units

Interrupt System
13.4 Interrupt Control Units

The Interrupt Control Units manage the interrupt system, arbitrate incoming service
requests, and determine whether and when to interrupt the Service Provider. The
TC1775 contains two interrupt control units, one for the CPU (called ICU), and one for
the PCP (called PICU). Each one controls its associated interrupt arbitration bus and
manages the communication with its Service Provider (see Figure 13-1).

13.4.1 Interrupt Control Unit (ICU)

13.4.1.1 ICU Interrupt Control Register (ICR)

The ICU Interrupt Control Register ICR holds the current CPU priority number (CCPN),
the global interrupt enable/disable bit (IE), the pending interrupt priority number (PIPN),
and bit fields which control the interrupt arbitration process.

ICR
ICU Interrupt Control Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0
C

ONE
CYC

CARBCYC PIPN

r rw rw rh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 IE CCPN

r rwh rwh

Field Bits Type Description

CCPN [7:0] rwh Current CPU Priority Number
The Current CPU Priority Number (CCPN) bit field
indicates the current priority level of the CPU. It is
automatically updated by hardware on entry and exit of
interrupt service routines, and through the execution of
a BISR instruction. CCPN can also be updated through
an MTCR instruction.
User’s Manual 13-9 V2.0, 2001-02

TC1775
System Units

Interrupt System
IE 8 rwh Global Interrupt Enable Bit
The interrupt enable bit globally enables the CPU
service request system. Whether a service request is
delivered to the CPU depends on the individual
Service Request Enable Bits (SRE) in the SRNs, and
the current state of the CPU.
IE is automatically updated by hardware on entry and
exit of an Interrupt Service Routine (ISR).
IE is cleared to 0 when an interrupt is taken, and is
restored to the previous value when the ISR executes
an RFE instruction to terminate itself.
IE can also be updated through the execution of the
ENABLE, DISABLE, MTCR, and BISR instructions.
0 Interrupt system is globally disabled
1 Interrupt system is globally enabled

PIPN [23:16] rh Pending Interrupt Priority Number
PIPN is a read-only bit field that is updated by the ICU
at the end of each interrupt arbitration process. It
indicates the priority number of the pending service
request. PIPN is set to 0 when no request is pending,
and at the beginning of each new arbitration process.
00H No valid pending request
YYH A request with priority YYH is pending

CARBCYC [25:24] rw Number of Arbitration Cycles
CARBCYC controls the number of arbitration cycles
used to determine the request with the highest priority.
00B 4 arbitration cycles (default)
01B 3 arbitration cycles
10B 2 arbitration cycles
11B 1 arbitration cycle

CONECYC 26 rw Number of Clocks per Arbitration Cycle Control
The CONECYC bit determines the number of system
clocks per arbitration cycle. This bit should be set to 1
only for system designs utilizing low system clock
frequencies.
0 2 clocks per arbitration cycle (default)
1 1 clock per arbitration cycle

0 [15:9],
[31:27]

r Reserved; read as 0; should be written with 0.

Field Bits Type Description
User’s Manual 13-10 V2.0, 2001-02

TC1775
System Units

Interrupt System
13.4.1.2 Operation of the Interrupt Control Unit (ICU)

Service-request arbitration is performed in the ICU in parallel with normal CPU
operation. When a triggering event occurs in one or more interrupt sources, the
associated SRNs, if enabled, send service requests to the CPU through the ICU. The
ICU determines which service request has the highest priority. The ICU will then forward
the service request to the CPU. The service request will be acknowledged by the CPU
and serviced, depending upon the state of the CPU.

The ICU arbitration process takes place in one or more arbitration cycles over the CPU
Interrupt Arbitration Bus. The ICU begins a new arbitration process when a new service
request is detected. At the end of the arbitration process, the ICU will have determined
the service request with the highest priority number. This number is stored in the
ICR.PIPN bit field and becomes the pending service request.

After the arbitration process, the ICU forwards the pending service request to the CPU
by attempting to interrupt it. The CPU can be interrupted only if interrupts are enabled
globally (that is, ICR.IE = 1) and if the priority of the service request is higher than the
current processor priority (ICR.PIPN > ICR.CCPN). Also, the CPU may be temporarily
blocked from taking interrupts, for example, if it is executing a multi-cycle instruction such
as an atomic read-modify-write operation. The full list of conditions which could block the
CPU from immediately responding to an interrupt request generated by the ICU is:

– Current CPU priority, ICR.CCPN, is equal to or higher than the pending interrupt
priority, ICR.PIPN

– Interrupt system is globally disabled (ICR.IE = 0)
– CPU is in the process of entering an interrupt- or trap-service routine
– CPU is executing non-interruptible trap services
– CPU is executing a multi-cycle instruction
– CPU is executing an instruction which modifies the conditions of the global interrupt

system, such as modifying the ICR
– CPU detects a trap condition (such as context depletion) when trying to enter a

service routine

When the CPU is not otherwise prevented from taking an interrupt, the CPU’s program
counter will be directed to the Interrupt Service Routine entry point associated with the
priority of the service request. Now, the CPU saves the value of ICR.PIPN internally, and
acknowledges the ICU. The ICU then forwards the acknowledge signal back to the SRN
that is requesting service, to inform it that it will be serviced by the CPU. The SRR bit in
this SRN is then reset to 0.

After sending the acknowledgement, the ICU resets ICR.PIPN to 0 and immediately
starts a new arbitration process to determine if there is another pending interrupt
request. If not, ICR.PIPN remains at 0 and the ICU enters an idle state, waiting for the
next interrupt request to awaken it. If there is a new service request waiting, the priority
number of the new request will be written to ICR.PIPN at the end of the new arbitration
User’s Manual 13-11 V2.0, 2001-02

TC1775
System Units

Interrupt System
process and the ICU will deliver the pending interrupt to the CPU according to the rules
described in this section.

If a new service request is received by the ICU before the CPU has acknowledged the
pending interrupt request, the ICU deactivates the pending request and starts a new
arbitration process. This reduces the latency of service requests posted before the
current request is acknowledged. The ICU deactivates the current pending interrupt
request by setting the ICR.PIPN bit field to 0, indicating that the ICU has not yet found a
new valid pending request. It then executes its arbitration process again. If the new
service request has a higher priority than the previous one, its priority will be written to
ICR.PIPN. If the new interrupt has a lower priority, the priority of the previous interrupt
request will again be written to ICR.PIPN. In any case, the ICU will deliver a new interrupt
request to the CPU according to the rules described in this section.

Once the CPU has acknowledged the current pending interrupt request, any new service
request generated by an SRN must wait at least until the end of the next service request
arbitration process to be serviced.

Essentially, arbitration in the ICU is performed whenever a new service request is
detected, regardless of whether or not the CPU is servicing interrupts. Because of this,
the ICR.PIPN bit field always reflects the pending service request with the highest
priority. This can, for example, be used by software polling techniques to determine high-
priority requests while leaving the interrupt system disabled.

13.4.2 PCP Interrupt Control Unit (PICU)

The PCP Interrupt Control Unit (PICU) is closely coupled with the PCP and its Interrupt
Control Register (PCP_PICR). The operation of the PICU is very similar to the ICU of the
CPU with respect to the overall scheme. However, the PCP cannot handle nested
interrupts, that is, an interrupt request to the PCP cannot interrupt the service of another
interrupt request. Thus, schemes such as interrupt priority grouping, are not feasible in
the PCP.

Note: Details of the PCP_ICR register are described in Chapter 15.
User’s Manual 13-12 V2.0, 2001-02

TC1775
System Units

Interrupt System
13.5 Arbitration Process

The arbitration process implemented in the TC1775 uses a number of arbitration cycles
to determine the pending interrupt request with the highest priority number, SRPN. In
each of these cycles, two bits of the SRPNs of all pending service requests are
compared against each other. The sequence starts with the high-order bits of the SRPNs
and works downwards, such that in the last cycle, bits[1:0] of the SRPNs are compared.
Thus, to perform an arbitration through all 8 bits of an SRPN, four arbitration cycles are
required. There are two factors determining the duration of the arbitration process:

– Number of arbitration cycles, and
– Duration of arbitration cycles.

Both of these can be controlled by the user, as described in the following sections.

13.5.1 Controlling the Number of Arbitration Cycles

In a real-time system where responsiveness is critical, arbitration must be as fast as
possible. Yet to maintain flexibility, the TC1775 system is designed to have a large range
of service priorities. If not all priorities are needed in a system, arbitration can be speeded
up by not examining all the bits used to identify all 255 unique priorities.

For instance, if a 6-bit number is enough to identify all priority numbers used in a system,
(meaning that bits [7:6] of all SRPNs are always 0), it is not necessary to perform
arbitration on these two bits. Three arbitration cycles will be enough to find the highest
number in bits [5:0] of the SRPNs of all pending requests. Similarly, the number of
arbitration cycles can be reduced to two if only bits [3:0] are used in all SRPNs, and the
number of arbitration cycles can be reduced to one cycle if only bits [1:0] are used.

The ICR.CARBCYC bit field controls the number of cycles in the arbitration process. Its
default value is 0, which selects four arbitration cycles. Table 13-1 gives the options for
arbitration cycle control.

Note: If less than four arbitration cycles are selected, the corresponding upper bits of the
SRPNs are not examined, even if they do not contain zeros.

Table 13-1 Arbitration Cycle Control

Number of Arbitration Cycles 4 3 2 1

ICR.CARBCYC 00B 01B 10B 11B

Relevant bits of the SRPNs [7:0] [5:0] [3:0] [1:0]

Range of priority numbers covered 1..255 1..63 1..15 1..3
User’s Manual 13-13 V2.0, 2001-02

TC1775
System Units

Interrupt System
13.5.2 Controlling the Duration of Arbitration Cycles

During each arbitration cycle, the rate of information flow between the SRNs and the ICU
can become limited by propagation delays within the TC1775 when it is executing at high
system clock frequencies. At high frequencies, arbitration cycles may require two system
clocks to execute properly. In order to optimize the arbitration scheme at lower system
frequencies, an additional control bit, ICR.CONECYC is implemented. The default value
of 0 of this bit selects two clock cycles per arbitration cycle. Setting this bit to 1 selects
one clock cycle per arbitration cycle. This bit should only be set to 1 for lower system
frequencies. Setting this bit for system frequencies above the specified limit leads to
unpredictable behavior of the interrupt system. Correct operation is not then guaranteed.

13.6 Entering an Interrupt Service Routine

When an interrupt request from the ICU is pending and all conditions are met such that
the CPU can now service the interrupt request, the CPU performs the following actions
in preparation for entering the designated Interrupt Service Routine (ISR):

1. Upper context of the current task is saved1). The current CPU priority number,
ICR.CCPN, and the state of the global interrupt enable bit, ICR.IE, are automatically
saved with the PCXI register (bit field PCPN and bit PIE).

2. Interrupt system is globally disabled (ICR.IE is set to 0).
3. Current CPU priority number (ICR.CCPN) is set to the value of ICR.PIPN.
4. PSW is set to a default value:

– All permissions are enabled, that is, PSW.IO = 10B
– Memory protection is switched to PRS0, that is, PSW.PRS = 0.
– The stack pointer bit is set to the interrupt stack, that is, PSW.IS = 1.
– The call depth counter is cleared, the call depth limit is set to 63, that is,

PSW.CDC = 0.
5. Stack pointer, A10, is reloaded with the contents of the Interrupt Stack Pointer, ISP, if

the PSW.IS bit of the interrupted routine was set to 0 (using the user stack), otherwise
it is left unaltered.

6. CPU program counter is assigned an effective address consisting of the contents of
the BIV register ORed with the ICR.PIPN number left-shifted by 5. This indexes the
Interrupt Vector Table entry corresponding to the interrupt priority.

7. Contents at the effective address of the program counter in the Interrupt Vector Table
is fetched as the first instruction of the Interrupt Service Routine (ISR). Execution
continues linearly from there until the ISR branches or exits.

1) Note that, if a context-switch trap occurs while the CPU is in the process of saving the upper context of the
current task, the pending ISR will not be entered, the interrupt request will be left pending, and the CPU will
enter the appropriate trap handling routine instead.
User’s Manual 13-14 V2.0, 2001-02

TC1775
System Units

Interrupt System
As explained, receipt of further interrupts is disabled (ICR.IE = 0) when an Interrupt
Service Routine is entered. At the same time, the current CPU priority ICR.CCPN is set
by hardware to the priority of the interrupting source (ICR.PIPN).

Clearly, before the processor can receive any more interrupts, the ISR must eventually
re-enable the interrupt system again by setting ICR.IE = 1. Furthermore, the ISR can
also modify the priority number ICR.CCPN to allow effective interrupt priority levels. It is
up to the user to enable the interrupt system again and optionally modify the priority
number CCPN to implement interrupt priority levels or handle special cases (see next
sections).

To simply enable the interrupt system again, the ENABLE instruction can be used, which
sets ICR.IE bit to 1. The BISR instruction offers a convenient way to re-enable the
interrupt system, to set ICR.CCPN to a new value, and to save the lower context of the
interrupted task. It is also possible to use an MTCR instruction to modify ICR.IE and
ICR.CCPN. However, this should be performed together with an ISYNC instruction
(which synchronizes the instruction stream) to ensure completion of this operation before
the execution of following instructions.

Note: The lower context can also be saved through execution of a SVLCX (Save Lower
Context) instruction.

13.7 Exiting an Interrupt Service Routine

When an ISR exits with an RFE (Return From Exception) instruction, the hardware
automatically restores the upper context. Register PCXI, which holds the Previous CPU
Priority Number (PCPN) and the Previous Global Interrupt Enable Bit (PIE), is a part of
this upper context. The value saved in PCPN is written to ICR.CCPN to set the CPU
priority number to the value before the interruption, and bit PIE is written to ICR.IE to
restore the state of this bit. The interrupted routine then continues.

Note: There is no automatic restoring of the lower context on an exit from an Interrupt
Service Routine. If the lower context was saved during the execution of the ISR,
either through execution of the BISR instruction or a SVLCX instruction, the ISR
must restore the lower context again via the RSLCX (Restore Lower Context)
instruction before it exits through RFI execution.
User’s Manual 13-15 V2.0, 2001-02

TC1775
System Units

Interrupt System
13.8 Interrupt Vector Table

Interrupt Service Routines are associated with interrupts at a particular priority by way of
the Interrupt Vector Table. The Interrupt Vector Table is an array of Interrupt Service
Routine entry points.

When the CPU takes an interrupt, it calculates an address in the Interrupt Vector Table
that corresponds with the priority of the interrupt (the ICR.PIPN bit field). This address is
loaded in the program counter. The CPU begins executing instructions at this address in
the Interrupt Vector Table. The code at this address is the start of the selected Interrupt
Service Routine (ISR). Depending on the code size of the ISR, the Interrupt Vector Table
may only store the initial portion of the ISR, such as a jump instruction that vectors the
CPU to the rest of the ISR elsewhere in memory.

The Interrupt Vector Table is stored in code memory. The BIV register specifies the base
address of the Interrupt Vector Table. Interrupt vectors are ordered in the table by
increasing priority.

The Base of Interrupt Vector Table register (BIV) stores the base address of the Interrupt
Vector Table. It can be assigned to any available code memory. Its default on power-up
is fixed at 0000 0000H. However, the BIV register can be modified using the MTCR
instruction during the initialization phase of the system, before interrupts are enabled.
With this arrangement, it is possible to have multiple Interrupt Vector Tables and switch
between them by changing the contents of the BIV register.

Note: The BIV register is protected by the ENDINIT bit (see Chapter 18). Modifications
should only be done while the interrupt system is globally disabled (ICR.IE = 0).
Also, an ISYNC instruction should be issued after modifying BIV to ensure
completion of this operation before execution of following instructions.

When interrupted, the CPU calculates the entry point of the appropriate Interrupt Service
Routine from the PIPN and the contents of the BIV register. The PIPN is left-shifted by
five bits and ORed with the address in the BIV register to generate a pointer into the
Interrupt Vector Table. Execution of the ISR begins at this address. Due to this operation,
it is recommended that bits [12:5] of register BIV are set to 0 (see Figure 13-2). Note that
bit 0 of the BIV register is always 0 and cannot be written to (instructions have to be
aligned on even byte boundaries).
User’s Manual 13-16 V2.0, 2001-02

TC1775
System Units

Interrupt System
Figure 13-2 Interrupt Vector Table Entry Address Calculation

Left-shifting the PIPN by 5 bits creates entries into the Interrupt Vector Table which are
evenly spaced 8 words apart. If an ISR is very short, it may fit entirely within the eight
words available in the vector table entry. Otherwise, the code at the entry point must
ultimately cause a jump to the rest of the ISR residing elsewhere in memory. Due to the
way the vector table is organized according to the interrupt priorities, the TC1775 offers
an additional option by allowing to span several Interrupt Vector Table entries so long as
those entries are otherwise unused. Figure 13-3 illustrates this.

The required size of the Interrupt Vector Table depends only on the range of priority
numbers actually used in a system. Of the 256 vector entries, 255 may be used. Vector
entry 0 is never used, because if ICR.PIPN is 0, the CPU is not interrupted. Distinct
interrupt handlers are supported, but systems requiring fewer entries need not dedicate
the full memory area required by the largest configurations.

MCA04780

0

0000

531

BIV
PIPN

OR

Resulting Interrupt Vector Table Entry Address

00

12

0 0 0
User’s Manual 13-17 V2.0, 2001-02

TC1775
System Units

Interrupt System

Figure 13-3 Interrupt Vector Table

8 Words

8 Words

MCA04781

Interrupt Vector Table

8 Words

8 Words

BIV PN = 0 (never used)

PN = 1

PN = 2

PN = 3

PN = 4

PN = 5

PN = 255

Priority Number

(may not be used
if spanned by ISR
with PN = 2)

Service
Routine
may span
several
entries
User’s Manual 13-18 V2.0, 2001-02

TC1775
System Units

Interrupt System
13.9 Usage of the TC1775 Interrupt System

The following sections give some examples of using the TC1775 interrupt system to
solve both typical and special application requirements.

13.9.1 Spanning Interrupt Service Routines Across Vector Entries

Each Interrupt Vector Table entry consists of eight words of memory. If an ISR can be
made to fit directly in the Interrupt Vector Table there is no need for a jump instruction to
vector to the rest of the interrupt handler elsewhere in memory. However, only the
simplest ISRs can fit in the eight words available to a single entry in the table. But it is
easy to arrange for ISRs to span across multiple entries, since the Interrupt Vector Table
is ordered not by the interrupt source but by interrupt priority. This technique is explained
in this section.

In the example of Figure 13-3, entry locations 3 and 4 are occupied by the ISR for
entry 2. In Figure 13-3, the next available entry after entry 2 is entry 5. Of course, if this
technique is used, it would be improper to allow any SRN to request service at any of the
spanned vector priorities. Thus, priority levels 3 and 4 must not be assigned to SRNs
requesting CPU service. They can, however, be used to request PCP service.

There is a performance trade-off which may arise when using this technique because the
range of priority numbers used increases. This may have an impact on the number of
arbitration cycles required to perform arbitration. Consider the case in which a system
uses only three active interrupt sources, that is, where there are only three SRNs
enabled to request service. If these three active sources are assigned to priority numbers
1, 2, and 3, it would be sufficient to perform the arbitration in just one cycle. However, if
the ISR for interrupt priority 2 is spanned across three Interrupt Vector Table entries as
shown in Figure 13-3, the priority numbers 1, 2 and 5 would have to be assigned. Thus,
two arbitration cycles would have to be used to perform the full arbitration process.

The trade-off between the performance impact of the number of arbitration cycles and
the performance gain through spanning service routines can be made by the system
designer depending on system needs. Reducing the number of arbitration cycles
reduces the service request arbitration latency - spanning service routines reduces the
run time of service routines (and therefore also the latency for further interrupts at that
priority level or below). For example, if there are multiple fleeting measurements to be
made by a system, reducing arbitration latency may be most important. But if keeping
total interrupt response time to a minimum is most urgent, spanning Interrupt Vector
Table entries may be a solution.
User’s Manual 13-19 V2.0, 2001-02

TC1775
System Units

Interrupt System
13.9.2 Configuring Ordinary Interrupt Service Routines

When the CPU starts to service an interrupt, the interrupt system is globally disabled and
the CPU priority ICR.CCPN is set to the priority of the interrupt now being serviced. This
blocks all further interrupts from being serviced until the interrupt system is enabled
again.

After an ordinary ISR begins execution, it is usually desirable for the ISR to re-enable
global interrupts so that higher-priority interrupts (that is, interrupts that are greater than
the current value of ICR.CCPN) can be serviced even during the current ISR’s execution.
Thus, such an ISR may set ICR.IE = 1 again with, for instance, the ENABLE instruction.

If the ISR enables the interrupt system again by setting ICR.IE = 1 but does not change
ICR.CCPN, the effect is that from that point on the hardware can be interrupted by
higher-priority interrupts but will be blocked from servicing interrupt requests with the
same or lower priority than the current value of ISR.CCPN. Since the current ISR is
clearly also at this priority level, the hardware is also blocked from delivering further
interrupts to it as well. (This condition is clearly necessary so that the ISR can service
the interrupt request atomically.)

When the ISR is finished, it exits with an RFE instruction. Hardware then restores the
values of ICR.CCPN and ICR.IE to the values of the interrupted program.

13.9.3 Interrupt Priority Groups

It is sometimes useful to create groups of interrupts at the same or different interrupt
priorities that cannot interrupt each other’s ISRs. For instance, devices which can
generate multiple interrupts, such as the General Purpose Timer, may need to have
interrupts at different priorities interlocked in this way. The TC1775 interrupt architecture
can be used to create such interrupt priority groups. It is effected by managing the
current CPU priority level ICR.CCPN in a way described in this section.

If it is wished, for example, to make an interrupt priority group out of priority numbers 11
and 12, one would not want an ISR executing at priority 11 to be interrupted by a service
request at priority 12, since this would be in the same priority group. One would wish that
only interrupts above 12 should be allowed to interrupt the ISRs in this interrupt priority
group. However, under ordinary ISR usage the ISR at priority 11 would be interrupted by
any request with a higher priority number, including priority 12.

If, however, all ISRs in the interrupt priority group set the value of ICR.CCPN to the
highest priority level within their group before they re-enable interrupts, then the desired
interlocking will be effected.

Figure 13-4 shows an example for this. The interrupt requests with the priority numbers
11 and 12 form one group, while the requests with priority numbers 14 through 17 form
another group. Each ISR in group 1 sets the value of ICR.CCPN to 12, the highest
number in that group, before re-enabling the interrupt system. Each ISR in group 2 sets
the value of ICR.CCPN to 17 before re-enabling the interrupt system. If, for example,
User’s Manual 13-20 V2.0, 2001-02

TC1775
System Units

Interrupt System
interrupt 14 is serviced, it can only be interrupted by requests with a priority number
higher than 17; therefore it will not be interrupted by requests from its own priority group
or requests with lower priority.

In Figure 13-4, the interrupt request with priority number 13 can be said to form an
interrupt priority group with just itself as a member.

Setting ICR.CCPN to the maximum value 255 in each service routine has the same
effect as not re-enabling the interrupt system; all interrupt requests can then be
considered to be in the same group.

Interrupt priority groups are an example of the power of the TC1775 priority-based
interrupt-ordering system. Thus the flexibility of interrupt priority levels ranges from all
interrupts in one group to each interrupt request building its own group, and to all
possible combinations in between.

Figure 13-4 Interrupt Priority Groups

13.9.4 Splitting Interrupt Service Across Different Priority Levels

Interrupt service can be divided into multiple ISRs that execute at different priority levels.
For example, the beginning stage of interrupt service may be very time-critical, such as
to read a data value within a limited time window after the interrupt request activation.
However, once the time-critical phase is past, there may still be more to do — for

MCA04782

Interrupt Vector Table

PN = 255

PN = 18

PN = 17

PN = 16

PN = 15

PN = 14

PN = 13

PN = 12

PN = 11

PN = 10

Priority
Group 2

Priority
Group 1
User’s Manual 13-21 V2.0, 2001-02

TC1775
System Units

Interrupt System
instance, to process the observation. During this second phase, it might be acceptable
for this ISR to be interrupted by lower-level interrupts. This can be performed as follows.

Say for example, the initial interrupt priority is fixed very high because response time is
critical. The necessary actions are carried out immediately by the ISR at that high-priority
level. Then the ISR prepares to invoke another ISR at a lower priority level through
software to perform the lower-priority actions.

To invoke an ISR through software, the high-priority ISR directly sets an interrupt request
bit in a SRN that will invoke the appropriate low-priority ISR. Then the high-priority ISR
exits.

When the high-priority ISR exits, the pending low-priority interrupt will eventually be
serviced (depending on the priority of other pending interrupts). When the low-priority
ISR eventually executes, the low-priority actions of the interrupt will be performed.

The inverse of this method can also be employed, where a low-priority ISR raises its own
priority level, or leaves interrupts turned off while it executes. For instance, the priority of
a service request might be low because the time to respond to the event is not critical,
but once it has been granted service, this service should not be interrupted. In this case,
the ISR could raise the value of ICR.CCPN to a priority that would exclude some or all
other interrupts, or simply leave interrupts disabled.

13.9.5 Using different Priorities for the same Interrupt Source

For some applications, the urgency of a service request may vary, depending on the
current state of the system. To handle this, different priority numbers (SRPNs) can be
assigned at different times to a service request depending on the application needs.

Of course, Interrupt Service Routines must be placed in the Interrupt Vector Table at all
addresses corresponding to the range of priorities used. If service remains the same at
different priorities, copies of the ISR can be placed at the possible different entries, or
the entries can all vector to a common ISR. If the ISR should execute different code
depending on its priority, one need merely put the appropriate ISR in the appropriate
entry of the Interrupt Vector Table.

This flexibility is another advantage of the TC1775 interrupt architecture. In traditional
interrupt systems where the interrupt vectors are ordered by interrupting source, the ISR
would have to check the current priority of the interrupt request and perform a branch to
the appropriate code section, causing a delay in the response to the request. In the
TC1775, however, the extra check and branch in the ISR are not necessary, which
reduces the interrupt latency.

Because this approach may necessitate an increase in the range of interrupt priorities,
the system designer must trade off this advantage against any possible increase in the
number of arbitration cycles.
User’s Manual 13-22 V2.0, 2001-02

TC1775
System Units

Interrupt System
13.9.6 Software Initiated Interrupts

Software can set the service request bit in a SRN by writing to its Service Request
Control Register. Thus, software can initiate interrupts which are handled by the same
mechanism as hardware interrupts.

After the service request bit is set in an active SRN, there is no way to distinguish
between a software initiated interrupt request and a hardware interrupt request. For this
reason, software should only use SRNs and interrupt priority numbers that are not being
used for hardware interrupts.

The TC1775 architecture includes four Service Request Nodes which are intended
solely for the purpose of generating software interrupts. These SRNs are not connected
to any hardware that could generate a service request, and so are only able to be used
by software. Additionally, any otherwise unused SRN can be employed to generate
software interrupts.

13.9.7 Interrupt Priority 1

Interrupt Priority 1 is the first and lowest-priority entry in the Interrupt Vector Table. It is
generally reserved for ISRs which perform task management. ISRs whose actions cause
software-managed tasks to be created post a software interrupt request at priority level 1
to signal the event.

The ISR that triggers this event can then execute a normal return from interrupt. There
is no need for it to check whether the ISR is returning to the background-task priority level
(priority 0) or is returning to a lower-priority ISR that it interrupted. When there is a
pending interrupt at a priority higher than the return context for the current interrupt, this
interrupt will then be serviced. When a return to the background-task priority level
(level 0) is performed, the software-posted interrupt at priority level 1 will be serviced
automatically.
User’s Manual 13-23 V2.0, 2001-02

TC1775
System Units

Interrupt System
13.10 CPU Service Request Nodes

To support software initiated interrupts, the TC1775 contains four Service Request
Nodes which are not attached to triggering peripherals. These SRNs can only cause
interrupts when software sets the service request bit in one of their Service Request
Control Registers. These SRNs are called the CPU Service Request Nodes.

The PCP can also cause these SRNs to generate service requests. An external bus
master can also generate service requests this way.

Additionally, any otherwise unused SRN can be employed to generate software
interrupts.

Note: The CPU Service Request Control Registers are not bit-addressable.

CPU_SRC0
CPU Service Request Control Register 0
CPU_SRC1
CPU Service Request Control Register 1
CPU_SRC2
CPU Service Request Control Register 2
CPU_SRC3
CPU Service Request Control Register 3

Reset Values: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SET
R

CLR
R SRR SRE TOS 0 SRPN

w w rh rw rw r rw

Field Bits Type Description

SRPN [7:0] rw Service Request Priority Number

TOS [11:10] rw Type of Service Control

SRE 12 rw Service Request Enable

SRR 13 rh Service Request Flag

CLRR 14 w Request Clear Bit

SETR 15 w Request Set Bit
User’s Manual 13-24 V2.0, 2001-02

TC1775
System Units

Interrupt System
Note: See Section 13.3.1 for detailed register description.

0 [9:8],
[31:16]

r Reserved

Field Bits Type Description
User’s Manual 13-25 V2.0, 2001-02

TC1775
System Units

Interrupt System
13.11 Service Request Register Table

Table 13-2 shows all SRN register with its short and long name.

Table 13-2 Special Function Register Table of Service Request Control
Registers

Short Name Long Name

Real Time Clock (RTC)

RTC_SRC RTC Service Request Control Register

Bus Control Unit (BCU)

BCU_SRC BCU Service Request Control Register

General Purpose Timer Unit (GPTU)

GPTU_SRC7 GPTU Service Request Control Register 7

GPTU_SRC6 GPTU Service Request Control Register 6

GPTU_SRC5 GPTU Service Request Control Register 5

GPTU_SRC4 GPTU Service Request Control Register 4

GPTU_SRC3 GPTU Service Request Control Register 3

GPTU_SRC2 GPTU Service Request Control Register 2

GPTU_SRC1 GPTU Service Request Control Register 1

GPTU_SRC0 GPTU Service Request Control Register 0

Asynchronous Serial Channels (ASC0/ASC1)

ASC0_TSRC ASC0 Transmit Interrupt Service Request Control Register

ASC0_RSRC ASC0 Receive Interrupt Service Request Control Register

ASC0_ESRC ASC0 Error Interrupt Service Request Control Register

ASC0_TBSRC ASC0 Transmit Buffer Interrupt Service Req. Control Register

ASC1_TSRC ASC1 Transmit Interrupt Service Request Control Register

ASC1_RSRC ASC1 Receive Interrupt Service Request Control Register

ASC1_ESRC ASC1 Error Interrupt Service Request Control Register

ASC1_TBSRC ASC1 Transmit Buffer Interrupt Service Req. Control Register

Synchronous Serial Channels (SSC0/SSC1)

SSC0_TSRC SSC0 Transmit Interrupt Service Request Control Register

SSC0_RSRC SSC0 Receive Interrupt Service Request Control Register

SSC0_ESRC SSC0 Error Interrupt Service Request Control Register

SSC1_TSRC SSC1 Transmit Interrupt Service Request Control Register
User’s Manual 13-26 V2.0, 2001-02

TC1775
System Units

Interrupt System
SSC1_RSRC SSC1 Receive Interrupt Service Request Control Register

SSC1_ESRC SSC1 Error Interrupt Service Request Control Register

General Purpose Timer Array (GPTA)

GPTA_SRC53 GPTA Service Request Control Register 53

GPTA_SRC52 GPTA Service Request Control Register 52

GPTA_SRC51 GPTA Service Request Control Register 51

GPTA_SRC50 GPTA Service Request Control Register 50

GPTA_SRC49 GPTA Service Request Control Register 49

GPTA_SRC48 GPTA Service Request Control Register 48

GPTA_SRC47 GPTA Service Request Control Register 47

GPTA_SRC46 GPTA Service Request Control Register 46

GPTA_SRC45 GPTA Service Request Control Register 45

GPTA_SRC44 GPTA Service Request Control Register 44

GPTA_SRC43 GPTA Service Request Control Register 43

GPTA_SRC42 GPTA Service Request Control Register 42

GPTA_SRC41 GPTA Service Request Control Register 41

GPTA_SRC40 GPTA Service Request Control Register 40

GPTA_SRC39 GPTA Service Request Control Register 39

GPTA_SRC38 GPTA Service Request Control Register 38

GPTA_SRC37 GPTA Service Request Control Register 37

GPTA_SRC36 GPTA Service Request Control Register 36

GPTA_SRC35 GPTA Service Request Control Register 35

GPTA_SRC34 GPTA Service Request Control Register 34

GPTA_SRC33 GPTA Service Request Control Register 33

GPTA_SRC32 GPTA Service Request Control Register 32

GPTA_SRC31 GPTA Service Request Control Register 31

GPTA_SRC30 GPTA Service Request Control Register 30

GPTA_SRC29 GPTA Service Request Control Register 29

GPTA_SRC28 GPTA Service Request Control Register 28

GPTA_SRC27 GPTA Service Request Control Register 27

Table 13-2 Special Function Register Table of Service Request Control
Registers (cont’d)

Short Name Long Name
User’s Manual 13-27 V2.0, 2001-02

TC1775
System Units

Interrupt System
GPTA_SRC26 GPTA Service Request Control Register 26

GPTA_SRC25 GPTA Service Request Control Register 25

GPTA_SRC24 GPTA Service Request Control Register 24

GPTA_SRC23 GPTA Service Request Control Register 23

GPTA_SRC22 GPTA Service Request Control Register 22

GPTA_SRC21 GPTA Service Request Control Register 21

GPTA_SRC20 GPTA Service Request Control Register 20

GPTA_SRC19 GPTA Service Request Control Register 19

GPTA_SRC18 GPTA Service Request Control Register 18

GPTA_SRC17 GPTA Service Request Control Register 17

GPTA_SRC16 GPTA Service Request Control Register 16

GPTA_SRC15 GPTA Service Request Control Register 15

GPTA_SRC14 GPTA Service Request Control Register 14

GPTA_SRC13 GPTA Service Request Control Register 13

GPTA_SRC12 GPTA Service Request Control Register 12

GPTA_SRC11 GPTA Service Request Control Register 11

GPTA_SRC10 GPTA Service Request Control Register 10

GPTA_SRC09 GPTA Service Request Control Register 09

GPTA_SRC08 GPTA Service Request Control Register 08

GPTA_SRC07 GPTA Service Request Control Register 07

GPTA_SRC06 GPTA Service Request Control Register 06

GPTA_SRC05 GPTA Service Request Control Register 05

GPTA_SRC04 GPTA Service Request Control Register 04

GPTA_SRC03 GPTA Service Request Control Register 03

GPTA_SRC02 GPTA Service Request Control Register 02

GPTA_SRC01 GPTA Service Request Control Register 01

GPTA_SRC00 GPTA Service Request Control Register 00

Analog to Digital Converter (ADC0/ADC1)

ADC0_SRC3 ADC0 Service Request Control Register 3

ADC0_SRC2 ADC0 Service Request Control Register 2

Table 13-2 Special Function Register Table of Service Request Control
Registers (cont’d)

Short Name Long Name
User’s Manual 13-28 V2.0, 2001-02

TC1775
System Units

Interrupt System
ADC0_SRC1 ADC0 Service Request Control Register 1

ADC0_SRC0 ADC0 Service Request Control Register 0

ADC1_SRC3 ADC1 Service Request Control Register 3

ADC1_SRC2 ADC1 Service Request Control Register 2

ADC1_SRC1 ADC1 Service Request Control Register 1

ADC1_SRC0 ADC1 Service Request Control Register 0

SDLM Interface (J1850)

SDLM_SRC1 SDLM Service Request Control Register 1

SDLM_SRC0 SDLM Service Request Control Register 0

Peripheral Control Processor (PCP)

PCP_SRC3 PCP Service Request Control Register 3

PCP_SRC2 PCP Service Request Control Register 2

PCP_SRC1 PCP Service Request Control Register 1

PCP_SRC0 PCP Service Request Control Register 0

Controller Area Network Module (CAN)

CAN_SRC7 CAN Service Request Control Register 7

CAN_SRC6 CAN Service Request Control Register 6

CAN_SRC5 CAN Service Request Control Register 5

CAN_SRC4 CAN Service Request Control Register 4

CAN_SRC3 CAN Service Request Control Register 3

CAN_SRC2 CAN Service Request Control Register 2

CAN_SRC1 CAN Service Request Control Register 1

CAN_SRC0 CAN Service Request Control Register 0

OCDS

SBSRC0 Software Break Service Request Control Reg. 0

CPU

CPU_SRC3 CPU Service Request Control Register 3

CPU_SRC2 CPU Service Request Control Register 2

CPU_SRC1 CPU Service Request Control Register 1

CPU_SRC0 CPU Service Request Control Register 0

Table 13-2 Special Function Register Table of Service Request Control
Registers (cont’d)

Short Name Long Name
User’s Manual 13-29 V2.0, 2001-02

TC1775
System Units

Trap System
14 Trap System
The TC1775 trap system provides a means for the CPU to service conditions that are so
critical that they must not be postponed. Such conditions include both catastrophic
developments, such as an attempt by the CPU to execute an illegal instruction, as well
as routine developments such as system calls. This chapter describes the trap system
for the TC1775. Topics covered include trap types, trap handling, and non-maskable
interrupts (NMIs). Traps direct the processor to execute Trap Service Routines (TSR)
stored in a Trap Vector Table.

14.1 Trap System Overview

Traps break the normal execution of code, much like interrupts, but traps are different
from interrupts in these ways:

• TSRs reside in the Trap Vector Table, which is separate from the Interrupt Vector
Table.

• A trap does not change the CPU’s interrupt priority, so the ICR.CCPN field is not
changed.

• Traps cannot be disabled by software. Traps are always active.
• The return address saved when a Trap Service Routine is invoked is the address of

the instruction in progress at the moment the trap was raised, whereas the return
address of an interrupt is the address of the instruction that would have been executed
next if the interrupt had not occurred.

The CPU aborts the instruction in progress when a trap occurs, and forces execution to
the appropriate TSR. The TSR decides whether the situation is correctable or not. If not,
the TSR takes appropriate action, which may involve aborting the current task, or even
resetting the TC1775. If the situation is routine or correctable, the TSR performs
whatever action is necessary, then exits, whereupon the CPU re-executes the previously
aborted instruction.

Traps may arise within the CPU, for instance, as a side-effect of the execution of
instructions. These traps are typically synchronous with the processor instruction clock.
They may also be generated by events external to the CPU, such as a peripheral or
external NMI signal. Hardware-generated traps are typically asynchronous with the
processor instruction clock.

Traps can signal a variety of routine or serious events. For instance, traps can be used to

• Implement memory protection and virtual memory
• Provide unprivileged applications access to privileged system services
• Manage task-based context-switching
• Respond to urgent external conditions, such as an NMI
• Respond to urgent internal conditions, such as signals from the Watchdog Timer, the

FPI Bus, or the PLL
• Detect access to memory by other system components
User’s Manual 14-1 V2.0, 2001-02

TC1775
System Units

Trap System
• Signal events from task to task
• Administer overflow and underflow of hardware tables and lists
• Recover from catastrophic software errors

Many traps arise as a consequence of the execution of instructions:

• The SYSCALL instruction generates a trap that is usually intended to signal a request
for system services by an unprivileged application.

• An attempt to execute an illegal instruction opcode produces a trap as a side-effect.
The instruction is aborted, and a trap is invoked. This protects a system from poorly-
written or damaged programs.

• When an application attempts to execute an unimplemented instruction opcode, the
trap that results can invoke a TSR to emulate the operation of that instruction in
software, thereby extending the instruction set.

• If an application attempts to access protected memory, the resulting trap may be used
by the system to read in pages from memory that the application needs.

• If an arithmetic operation produces an invalid result, a trap is generated. In some
cases, the TSR may attempt to correct the result through software, or it may cause the
application to terminate.

Other uses of traps include:

• Context management
• Recovery from FPI Bus error signals
• Access to memory by a peripheral
• Handling the Non-Maskable “Interrupt” (actually trap) signal from the external NMI

input, from the Watchdog Timer, or from the PLL if it loses stable clock signals

When a hardware trap condition is detected, the processor’s trap control system supplies
a two-part number that identifies the cause of the trap. The first part of the number is a
three-bit Trap Class Number (TCN); the second part is an eight-bit Trap Identification
Number (TIN). The TCN is used to index the Trap Vector Table to identify the proper TSR
to handle the trap. The TIN is loaded into register D15 of the TSR’s context to further
identify the precise cause of the trap. The TSR must examine the TIN in software.
User’s Manual 14-2 V2.0, 2001-02

TC1775
System Units

Trap System
14.2 Trap Classes

The TC1775 has eight trap classes, as shown in Table 14-1. Each trap has a Trap
Identification Number (TIN), that identifies the number of the trap within its class. When
the CPU hardware goes to service a trap, the TIN is loaded into register D15 before the
first instruction of the trap handler is executed. A trap is completely identified by its Trap
Class Number (TCN) and its TIN.

Table 14-1 summarizes and classifies all TC1775-supported traps. In the column
“Type”, an “S” stands for a Synchronous trap, while “A” indicates an Asynchronous trap.
“SW” and “HW” indicate a Software trap or a Hardware trap, respectively. The column
“Saved PC” states which Program Counter value is saved during the trap entry. “ThisPC”
indicates that the PC value of the instruction causing the trap is saved, while “NextPC”
is the PC value pointing to the instruction which would have been executed next.

Table 14-1 TC1775 Supported Traps

Trap ID
(TIN)

Trap
Name

Trap
Type

Saved PC Description

Class 0 - Reset

0 – S, HW – Reserved

Class 1 - Internal Protection Traps (TCN = 1)

1 PRIV S, HW ThisPC Privileged Instruction

2 MPR S, HW ThisPC Memory Protection: Read Access

3 MPW S, HW ThisPC Memory Protection: Write Access

4 MPX S, HW ThisPC Memory Protection: Execution Access

5 MPP S, HW ThisPC Memory Protection: Peripheral Access

6 MPN S, HW ThisPC Memory Protection: Null Address

7 GRWP S, HW ThisPC Global Register Write Protection

Class 2 - Instruction Errors (TCN = 2)

1 IOPC S, HW ThisPC Illegal Opcode

4 ALN S, HW ThisPC Data Address Alignment Error

5 MEM S, HW ThisPC Invalid Memory Address

Class 3 - Context Management (TCN = 3)

1 FCD S, HW ThisPC Free Context List Depleted (FCX==LCX)

2 CDO S, HW ThisPC Call Depth Overflow

3 CDU S, HW ThisPC Call Depth Underflow

4 FCU S, HW see Note Free Context List Underflow (FCX==0)
User’s Manual 14-3 V2.0, 2001-02

TC1775
System Units

Trap System
Note: The normal trap entry mechanism is not used, instead, a jump to the FCU trap
handler is performed.

5 CSU S, HW ThisPC Context List Underflow (PCX==0)

6 CTYP S, HW ThisPC Context Type Error (PCXI.UL is wrong)

7 NEST S, HW ThisPC Nesting Error: RFE with non-zero call
depth

Class 4 - System Bus Errors (TCN = 4)

1 PSE S, HW ThisPC Bus Error on Program Fetch Operation

2 DSE S, HW ThisPC Bus Error on Data Load Operation

3 DAE A, HW ThisPC Bus Error on Data Store Operation

Class 5 - Assertion Traps (TCN = 5)

1 OVF S, SW ThisPC Arithmetic Overflow

2 SOVF S, SW ThisPC Sticky Arithmetic Overflow

Class 6 - System Call (TCN = 6)
1) SYS S, SW NextPC System Call

Class 7 - Non-Maskable Interrupt (TCN = 7)

0 NMI A, HW NextPC Non-Maskable Interrupt
1) For the system call trap via the SYSCALL instruction, the TIN is created from an immediate constant in the

SYSCALL instruction supplied by the calling software. The range of values for this constant is 0 to 255,
inclusive.

Table 14-1 TC1775 Supported Traps (cont’d)

Trap ID
(TIN)

Trap
Name

Trap
Type

Saved PC Description
User’s Manual 14-4 V2.0, 2001-02

TC1775
System Units

Trap System
14.2.1 Synchronous Traps

Synchronous traps are associated with the execution, or attempted execution, of
processor instructions. The trap is taken immediately and serviced before execution can
proceed beyond that instruction (except for the SYSCALL instruction).

14.2.2 Asynchronous Traps

Asynchronous traps are similar to interrupts, in that they are associated with hardware
conditions detected externally and signaled back to the processor. Some asynchronous
traps result indirectly from instructions that have been executed previously, but the direct
association with those instructions has been lost. Others such as the NMI arise strictly
from external events.

Note: Due to a missing trap queue in the TriCore architecture, it is possible to lose
asynchronous traps (e.g. caused by an FPI Bus write operation) if several traps
are generated within a very short time frame.

14.2.3 Hardware Traps

Hardware traps are generated as a result of problems encountered while executing
processor instructions. Examples include attempting to execute an illegal instruction
opcode, attempting to access protected memory, and attempting to access data memory
at a misaligned address.

14.2.4 Software Traps

Software traps are used to make system calls and test assertions in software. For
example, a client application can call a privileged system function by executing the
SYSCALL instruction, which invokes a TSR to begin executing in privileged mode.

There is a single entry in the Trap Vector Table for the SYSCALL trap. An application
executing the SYSCALL instruction must embed a system-defined eight-bit immediate
constant in the SYSCALL instruction, which becomes the TIN for the SYSCALL trap.
Thus the application can signal its need for specific privileged services.
User’s Manual 14-5 V2.0, 2001-02

TC1775
System Units

Trap System
14.2.5 Trap Descriptions

In this section, each of the traps listed in Table 14-1 is described in more detail.

RESET Trap

This trap is not used in the TC1775.

PRIV Trap

The PRIV trap is detected in the decode stage of the load/store pipeline. The PRIV trap
is generated whenever an attempt is made to execute a protected system instruction in
User Mode. The protected system instructions are:

– MTCR
– BISR

A PRIV trap is also taken whenever an attempt is made to execute one of the following
instructions in User Mode 0:

– ENABLE
– DISABLE

MPR Trap

Read memory protection violations are detected in the execute stage of the load/store
pipeline. The MPR trap is generated for LD/LDMST and SWAP instructions when the
memory protection system is enabled and the effective address does not lie within any
range with read permissions enabled.

MPW Trap

Write memory protection violations are detected in the execute stage of the load/store
pipeline. The MPW trap is generated for ST/LDMST and SWAP instructions when the
memory protection system is enabled and the effective address does not lie within any
range with read permissions enabled.

MPX Trap

The Execution Access Memory Protection Trap is detected in the fetch stage. The MPX
trap is generated when the memory protection system is enabled and the PC does not
lie within any range with execute permissions enabled.

MPP Trap

The Peripheral Access Memory Protection Trap is detected in the execute stage of the
load/store pipeline. It is generated when either segment 14 or 15 is targeted by any
memory operation while the machine is in User Mode 0.
User’s Manual 14-6 V2.0, 2001-02

TC1775
System Units

Trap System
MPN Trap

The Null Address Memory Protection Trap is detected in the execute stage of the load/
store pipeline. It is generated when any memory operation targets address 0.

GRWP Trap

The GRWP trap is detected in the decode stage of the load/store pipeline. The GRWP
trap is generated whenever an attempt is made to execute an instruction that modifies
one of the four global registers, A0, A1, A8 and A9, while the Global Write Enable
(PSW_GW) is 0.

IOPC Trap

The IOPC trap can be detected in either the integer or load/store decode stages. The
IOPC trap is raised when an invalid instruction is decoded, that is, the instruction in the
decode stage does not map onto a known opcode.

ALN Trap

The ALN trap is detected in the execute stage of the load/store pipeline. The trap is
raised whenever a memory operation does not conform to the expected memory
alignment constraints.

MEM Trap

The MEM trap is detected in the execute stage of the load/store pipeline. The trap is
raised whenever an attempt is made to access an invalid memory address such as:

– An effective address that lies in a different segment to the base address
– An address that crosses a segment boundary
– An address range in the DMU or PMU that does not map onto an implemented area

of memory
– An address in the Core SFRs (CSFRs)

FCD Trap

The FCD trap is detected in the decode stage of the load/store unit. An FCD trap is raised
whenever a save context operation is performed and the Free Context List Pointer (FCX)
equals the contents of the Free Context Limit Pointer (LCX).

CDO Trap

The CDO trap is detected in the decode stage of the load/store pipeline. The trap results
when a call is attempted and the call-depth limit has been reached (call-depth counter
overflow).
User’s Manual 14-7 V2.0, 2001-02

TC1775
System Units

Trap System
CDU Trap

The CDU trap is detected in the decode stage of the load/store pipeline. The trap results
when a RET instruction is attempted and the call-depth counter equals 0.

FCU Trap

The Free Context List Underflow Trap is one of the most serious error conditions in the
machine. The trap results when a save context operation is performed and the FCX
equals 0. This trap is also raised if any error occurs during a context save operation.

The normal trap entry mechanism is not taken, instead a jump to the FCU trap handler
is performed.

CSU Trap

The CSU trap is detected in the decode stage of the load/store pipeline. The trap results
when a restore-context operation is performed and Previous Context Pointer
(PCXI.PCX) equals 0.

CTYP Trap

The CTYP trap is detected in the decode stage of the load/store pipeline. The trap is
raised when a context-restore operation is performed on an incorrect context type. That
is if a restore lower context is performed when the PCXI.UL = 1, or a restore upper
context is performed when the PCXI.UL = 0.

NEST Trap

The Nesting Error Trap (is detected in the decode stage of the load/store pipeline. The
NEST trap results when an RFE instruction is attempted and the call depth counter does
not equal 0.

PSE Trap

The Program Fetch Synchronous Error Trap is detected in the integer or load/store
decode stage. The PSE trap is raised when the fetch of an instruction from the Program
Memory Unit (PMU) results in an error (e.g. fetch from a reserved address).

DSE Trap

The Data Load/Store Synchronous Error Trap is detected in the execute stage of the
load/store unit. The DSE trap is generated by the DMU on a cache management error,
DMU control register access error, FPI Bus access error, or a DMU memory range error.
The exact cause of the error can be read in the DMU Synchronous Trap Flag Register,
DMU_STR. DSE traps occur in general on load accesses to the DMU.
User’s Manual 14-8 V2.0, 2001-02

TC1775
System Units

Trap System
DAE Trap

The Data Load/Store Asynchronous Error Trap is an asynchronous trap. The DSE trap
is generated by the DMU on either a cache management error, DMU control register
access error, FPI Bus access error, or a DMU memory range error. The exact cause of
the error can be read via the DMU Asynchronous Trap Flag Register, DMU_ATR. DAE
traps occur in general on store accesses to the DMU.

OVF Trap

The OVF trap is detected in the execute stage of the load/store pipeline. The trap is
raised by the TRAPV instruction when the instruction is executed and the Overflow Flag,
PSW.V, is set.

SOVF Trap

The SOVF trap is detected in the execute stage of the load/store pipeline. The trap is
raised by the TRAPSV instruction when the instruction is executed and the Sticky
Overflow Flag, PSW.SV, is set.

SYS Trap

The SYS trap is detected in the decode stage of the load/store pipeline. The trap is raised
implicitly by the SYSCALL instruction. For the system call trap via the SYSCALL
instruction, the TIN is created from an immediate constant in the SYSCALL instruction
supplied by the calling software. The range of values for this constant is 0 through 255.

NMI Trap

The NMI is an asynchronous trap. The generation of the NMI is handled by the Power-
Watchdog-Reset (PWR) block in the system. The source can be the external NMI input,
a Watchdog Timer error condition, or a loss of stable clock signal in the PLL.
User’s Manual 14-9 V2.0, 2001-02

TC1775
System Units

Trap System
14.3 Trap Vector Table

The entry-points of all Trap Service Routines are stored in code memory in the Trap
Vector Table. The BTV register specifies the base address of the Trap Vector Table in
code memory. It can be assigned to any available code memory. Its default on power-up
is fixed at A000 0100H. However, the BTV register can be modified using the MTCR
instruction during the initialization phase of the system. With this arrangement, it is
possible to have multiple Trap Vector Tables and switch between them by changing the
contents of the BTV register.

Note: The BTV register is protected by the ENDINIT bit. An ISYNC instruction should be
issued after modifying BTV so as to avoid untoward pipeline behavior.

When a trap event occurs, a trap identifier is generated by the hardware detecting the
event. The trap identifier is made up of a Trap Class Number (TCN) and a Trap
Identification Number (TIN).

The TCN is left-shifted by five bits and ORed with the address in the BTV register to form
the entry address of the TSR. Due to this operation, it is recommended that bits [7:5] of
register BTV are set to 0 (see Figure 14-1). Note that bit 0 of the BTV register is always
0 and can not be written to (instructions have to be aligned on even byte boundaries).

Left-shifting the TCN by 5 bits creates entries into the Trap Vector Table which are
evenly spaced 8 words apart. If a trap handler (TSR) is very short, it may fit entirely within
the eight words available in the Trap Vector Table entry. Otherwise, the code at the entry
point must ultimately cause a jump to the rest of the TSR residing elsewhere in memory.

Unlike the Interrupt Vector Table, entries in the Trap Vector Table cannot be spanned.

Figure 14-1 Trap Vector Table Entry Address Calculation

MCA04783

0

0000

57831

BTV TCN

OR

Resulting Trap Vector Table Entry Address
User’s Manual 14-10 V2.0, 2001-02

TC1775
System Units

Trap System
14.3.1 Entering a Trap Service Routine

The following actions are performed to enter a TSR when a trap event is detected by the
hardware:

1. The upper context of the current task is saved1).
2. The interrupt system is globally disabled (ICR.IE = 0).
3. The current CPU priority number (CCPN) is not changed.
4. The PSW is set to a default value:

– All permissions are enabled: PSW.IO = 10B
– Memory protection is switched to PRS 0: PSW.PRS = 00B.
– The stack pointer bit is set for using the interrupt stack: PSW.IS = 1.
– The call-depth counter is cleared, the call depth limit is set for 64: PSW.CDC = 0.

5. The stack pointer, A10, is reloaded with the contents of the Interrupt Stack Pointer,
ISP, if the PSW.IS bit of the interrupted routine was set to 0 (using the user stack),
otherwise it is left unaltered.

6. The Trap Vector Table is accessed to fetch the first instruction of the TSR. The
effective address is the contents of the BTV register ORed with the Trap Class
Number (TCN) left-shifted by 5.

Although traps leave the ICR.CCPN unchanged, TSRs still begin execution with
interrupts disabled. They can therefore perform critical initial operations without
interruption, until they specifically re-enable interrupts.

Since entry into a trap handler is only determined by the TCN, software in the TSR must
determine the exact cause of the trap by evaluation of the TIN stored in register D15.

1) If a context-switch trap occurs while the CPU is in the process of saving the upper context of the current task,
the pending ISR will not be entered, the interrupt request will be left pending, and the CPU will enter the
appropriate trap handling routine instead.
User’s Manual 14-11 V2.0, 2001-02

TC1775
System Units

Trap System
14.4 Non-Maskable Interrupt

Although called an interrupt, the non-maskable interrupt (NMI) is actually serviced as a
trap, since it is not interruptible and does not follow the standards for regular interrupts.

In the TC1775, three different events can generate a NMI trap:

• A transition on the NMI input pin
• An error or wake-up signal from the Watchdog Timer
• The PLL upon loss of external clock stability

The type of an NMI trap is indicates in the NMI Status Register (NMISR).

14.4.1 NMI Status Register

The source of a NMI trap can be identified through three status bits in NMISR. The bits
in NMISR are read-only; writing to them has no effect.

The CPU detects a zero-to-one transition of the NMI input signal as indicating an NMI
trap event. It then sets NMISR.NMIEXT. If the Watchdog Timer times out, it sets
NMISR.NMIWDT. If the PLL loses its clock signal, it sets NMISR.PLL.

The bits in NMISR are ORed together to generate an NMI trap request to the CPU. If one
of the NMISR bits is newly asserted while another bit is set, no new NMI trap request is
generated. All flags are cleared automatically after a read of NMISR. Therefore, after
reading NMISR, the NMI TSR must check all bits in NMISR to determine whether there
have been multiple causes of an NMI trap.

Note: The NMISR register is located in the address range reserved for the System
Control Unit (SCU).

User’s Manual 14-12 V2.0, 2001-02

TC1775
System Units

Trap System
14.4.2 External NMI Input

An external NMI event is generated when a one-to-zero transition is detected at the
external NMI input pin. NMISR.NMIEXT is set in this case. The NMI pin is sampled at the
system clock frequency. A transition is recognized when one sample shows a 1 and the
next sample shows a 0. Subsequent 0-samples or a 0-to-1 transition do not trigger any
action.

14.4.3 Phase-Locked Loop NMI

The PLL clock generation unit sets the NMIPLL flag when it detects a loss in the
synchronization with the external oscillator clock input. This condition means that the
PLL clock frequency is no longer stable, and that the PLL will now decrease to its base
frequency.

NMISR
NMI Status Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 NMI
WDT

NMI
PLL

NMI
EXT

r rh rh rh

Field Bits Type Description

NMIEXT 0 rh External NMI Flag
0 No external NMI request has occurred
1 An external NMI request has been detected

NMIPLL 1 rh PLL NMI Flag
0 No PLL NMI has occurred
1 The PLL has lost the lock to the external crystal

NMIWDT 2 rh Watchdog Timer NMI Flag
0 No watchdog NMI occurred
1 The Watchdog Timer has entered the pre-

warning phase due to a watchdog error.

0 [31:3] r Reserved; read as 0.
User’s Manual 14-13 V2.0, 2001-02

TC1775
System Units

Trap System
14.4.4 Watchdog Timer NMI

The Watchdog Timer sets the NMIWDT flag for two conditions:

– A Watchdog Timer error has occurred
– Bit 15 of the Watchdog Timer is set while the CPU is in idle mode

A Watchdog Timer error can produce an NMI event because

– Access to register WDT_CON0 was attempted improperly, or
– The Watchdog Timer overflowed either in Time-Out Mode or in Normal Watchdog

Timer Mode.

When the CPU is in Idle Mode and the Watchdog Timer is not disabled, an increment of
the Watchdog Timer counter from 7FFFH to 8000H (that is, when bit 15 of the timer is set
to 1) sets the NMIWDT bit to wake up the CPU.
User’s Manual 14-14 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15 Peripheral Control Processor
This chapter describes the Peripheral Control Processor (PCP), its architecture,
programming model, registers, and instructions.

15.1 Peripheral Control Processor Overview

The Peripheral Control Processor (PCP) performs tasks that would normally be
performed by the combination of a DMA controller and its supporting CPU interrupt
service routines in a traditional computer system. It could easily be considered as the
host processor’s first line of defense as an interrupt-handling engine. The PCP can off-
load the CPU from having to service time-critical interrupts. This provides many benefits,
including:

• Avoiding large interrupt-driven task context-switching latencies in the host processor
• Lessening the cost of interrupts in terms of processor register and memory overhead
• Improving the responsiveness of interrupt service routines to data-capture and data-

transfer operations
• Easing the implementation of multitasking operating systems.

The PCP has an architecture that efficiently supports DMA type transactions to and from
arbitrary devices and memory addresses within the TC1775 and also has reasonable
stand alone computational capabilities.
User’s Manual 15-1 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.2 PCP Architecture

The PCP is made up of several modular blocks as follows. Please refer to Figure 15-1.

• PCP Processor Core
• Code Memory (PCODE)
• Parameter Memory (PRAM)
• PCP Interrupt Control Unit (PICU)
• PCP Service Request Nodes (PSRN)
• System bus interface to the Flexible Peripheral Interface (FPI Bus)

Figure 15-1 PCP Block Diagram

MCB04784

PCP
Processor

Core

PCP Service
Req. Nodes

PSRNs

PCP Interrupt
Control Unit

PICU

Parameter
Memory
PRAM

Code
Memory
PCODE

FPI-Interface

PCP Interrupt
Arbitration Bus

CPU Interrupt
Arbitration Bus

FPI Bus
User’s Manual 15-2 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.2.1 PCP Processor

The PCP Processor is the main engine of the PCP. It contains an instruction pipeline, a
set of general purpose registers, an arithmetic/logic unit (ALU), as well as control and
status registers and logic. Its instruction set is optimized especially for the tasks it has to
perform. Table 15-1 provides an overview of the PCP instruction set.

The PCP processor core receives service requests from peripherals or other modules in
the system via its Interrupt Control Unit (PICU) and executes a Channel Program (see
Section 15.3) selected via the priority number of each service request. It first restores
the channel program’s context from the PRAM and then starts to execute the channel
program’s instructions stored in the code memory (PCODE). Upon an exit condition, it
terminates the channel program and saves its context into PRAM. It is then ready to
receive the next service request.

The PCP is fully interrupt-driven, meaning it is only activated through service requests;
there is no main program running in the background as with a conventional processor.

Table 15-1 PCP Instruction Set Overview

Instruction Group Description

DMA primitives Efficient DMA channel implementation

Load/Store Transfer data between PRAM or FPI memory and the general
purpose registers, as well as move or exchange values
between registers

Arithmetic Add, subtract, compare and complement

Divide/Multiply Divide and multiply

Logical And, Or, Exclusive Or, Negate

Shift Shift right or left, rotate right or left, prioritize

Bit Manipulation Set, clear, insert and test bits

Flow Control Jump conditionally, jump long, exit

Miscellaneous No operation, Debug
User’s Manual 15-3 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.2.2 PCP Code Memory

The Code Memory (PCODE) of the PCP holds the channel programs, consisting of PCP
instructions. All instructions of the PCP are 16 bits long; thus, the PCP accesses its code
memory in 16-bit (half-word) quantities. With the 16-bit Program Counter (PC) of the
PCP, a maximum of 64 K instructions can be addressed. This results in a maximum size
of the PCP code memory of 128 KBytes. The actual type (Flash, ROM, SRAM, etc.) and
size of the code memory is implementation specific; see Section 15.14 for the
implemented type and size of the code memory in this derivative.

The PCP code memory is viewed from the FPI Bus as a 32-bit wide memory, that must
be accessed with 32-bit (word) accesses, and is addressed with byte addresses. Thus,
care has to be taken when calculating PCP instruction FPI addresses. See Section 15.8
for details.

Note: The PCP has a “Harvard” architecture and therefore cannot directly access code
memory other than reading instructions from it. It is recommended that the PCP
should not access PCODE via the FPI Bus.

15.2.3 PCP Parameter RAM

The PCP Parameter RAM (PRAM) is the local holding place for each Channel Program’s
context, and for general data storage. It is also an area that the PCP and the host
processor or other FPI Bus masters can use to communicate and share data.

While a portion of the PRAM is always implicitly used for the context save areas of the
channel programs, the remaining area can be used for channel-specific or general data
storage. A programmable 8-bit data pointer (DPTR), concatenated with a 6-bit offset, is
provided for arbitrary access to the PRAM. The effective address is a 14-bit word
address, allowing a PRAM size of up to 64 KBytes. The actual type (SRAM, DRAM, etc.)
and size of the parameter RAM is implementation specific; see Section 15.14 for the
implemented size of the PRAM in this derivative.

Both the PCP and FPI Bus masters address the PRAM as 32-bit words. There is no
concept of half-word or byte accesses to PRAM. FPI Bus masters must, however, use
byte addresses in order to access PRAM memory. As for the code memory, care has to
be taken when calculating PRAM FPI addresses. See Section 15.8 for details.

15.2.4 FPI Bus Interface

The PCP can access all peripheral units on the FPI Bus and other resources through the
FPI Bus interface. The PCP can become an FPI Bus slave, so that other FPI Bus master
may access code and PRAM memory and the control and status registers in the PCP.

The Code Memory and PRAM Memory blocks are visible to FPI Bus masters as a block
of memory on the FPI Bus. If an FPI Bus master accesses PCP Code or PRAM memory
concurrently with the PCP, the external FPI Bus master is given precedence over the
PCP to avoid deadlocks. The PCP access is stalled for several cycles until the FPI Bus
User’s Manual 15-4 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
master has completed its access. If an FPI Bus master performs an atomic read-modify-
write access to a PCP memory block, any concurrent PCP access to that block is stalled
for the duration of the atomic operation.

15.2.5 PCP Interrupt Control Unit and Service Request Nodes

The PCP is activated in response to an interrupt request programmed for PCP service
in one of the service request nodes of the system (nodes associated with a peripheral,
the CPU, external interrupts, etc.). The PCP Interrupt Control Unit (PICU) determines the
request with the currently highest priority and routes the request together with its priority
number to the PCP processor core. It also acknowledges the requesting source when
the PCP starts the service of this interrupt.

The PCP itself can generate service requests to either the CPU or itself through a
number of PCP Service Request Nodes (PSRNs). Please refer to Section 15.5.3 for
more detailed information on the operation of these nodes.
User’s Manual 15-5 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.3 PCP Programming Model

The PCP programming model can be viewed as a set of autonomous programs, or tasks,
called Channel Programs, that share the processing resources of the PCP. Channel
Programs may be short and simple, or very complex, but, they can coexist persistently
within the PCP.

From a programming point of view, the individual parts of a channel program are its
instruction sequence in the code memory and its context in the parameter RAM. It uses
the instruction set and the general purpose registers (R0 - R7) of the PCP processor core
to perform the necessary operations, and to communicate with the various resources of
the on-chip and off-chip system depending on its task in the application.

These parts of the programming model are discussed in the following sections (with the
obvious exception of the system environment outside of the scope of the PCP).

15.3.1 General Purpose Register Set of the PCP

The program-accessible register file of the PCP is composed of eight 32-bit General
Purpose Registers (GPRs). These registers are all accessible by PCP programs directly
as part of the PCP instruction set. Source and destination registers must be specified in
most instructions. These registers are referenced to in this document as Rn or R[n],
where n is in the range 0..7.

Table 15-2 Directly Accessible Registers

Register Implicit Use Description

R0 Accumulator Implicit target for some arithmetic and logical instructions

R1 – 32-bit general-use register

R2 Return
Address

32-bit general-use register

R3 – 32-bit general-use register

R4 SRC (Source) Source Pointer for COPY instruction

R5 DST
(Destination)

Destination Pointer for COPY instruction

R6 CPPN/SRPN/
TOS/CNT1

CNT1: Transfer Count for COPY.
TOS: Type of Service.
SRPN: 8-bit field used for posting interrupt on EXIT

instruction.
CPPN: Current PCP Priority Number

R7 DPTR/Flags PRAM Data Pointer (DPTR) and Status Flags
User’s Manual 15-6 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
R7 is the only one of the eight registers that may not be used as a full GPR. The most
significant 16 bits of R7 may not be written, and will always read back as 0. However, no
error will occur when writing to the most significant 16 bits.

Note: The general purpose registers of the PCP are not memory-mapped into the overall
address space. They can only be directly accessed through PCP instructions. The
contents of all or some of the registers are part of a channel program’s context
stored in the PRAM between executions of the channel program. This context is
then accessible from outside the PCP.

15.3.1.1 Register R0

R0 is used as an implicit operand destination for some instructions. These are detailed
in the individual instruction descriptions.

15.3.1.2 Registers R1, R2, and R3

R1, R2, and R3 are general-use registers. It is recommended that, by convention, R2
should be used as a return address register when call and return program structures are
used.

15.3.1.3 Registers R4 and R5

Registers R4 and R5 are also general-use registers. However, the COPY instruction
implicitly uses R5 and R6 as full 32-bit address pointers (R4 is used as the source
address and R5 as the destination address). As the COPY instruction uses these
registers to maintain the address pointers, either or both R5 and R6 values may or may
not be modified by the COPY instruction depending on the options used in the
instruction.

15.3.1.4 Register R6

Register R6 may also be used as a general-use register. Again however, there are some
instructions that use fields within R6. If the COPY or EXIT instructions are used, then the
field R6.CNT1 can be optionally implicitly used as a counter. If an EXIT instruction is
used that causes an interrupt, R6.SRPN and R6.TOS must be configured properly prior
to execution of the EXIT. If interrupt priority management is used, then R6.CPPN must
be set to the priority level at which the channel shall run at its next invocation, before the
EXIT is executed. The fields for R6 are shown below.

User’s Manual 15-7 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.3.1.5 Register R7

Register R7 is an exception with respect to the other registers in that not all bits within
the register can be written, and the implicit use of the remaining bits virtually excludes
the use of R7 as a general purpose register. R7 serves purposes similar to those of a
Program Status Word found in traditional processors.

R7 holds the flag bits, a channel enable/disable control bit, and the PRAM data pointer
(DPTR). The upper 16 bits of R7 are reserved.

Most instructions of the PCP update the flags (CN1Z, V, C, N, Z) in R7 according to the
result of their operation. See Table 15-13 for details on the flag updates of the individual
instructions. The values of the flag bits in R7 maintain their state until another instruction
that updates their state is executed.

Note: Implicit updates to the flags caused by instruction take precedence over any bits
that are explicitly moved to R7. For example, if a MOV instruction is used to place
0000FF07H in R7, then the bit positions for the C (carry), Z (zero) and N (negative)
flags are being written with 1. The MOV instruction, however, implicitly updates the

PCP Register R6 Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CPPN SRPN

rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TOS - - CNT1

rw rw rw

Field Bits Type Description

CNT1 [11:0] rw General-use/Outer Loop count for COPY
Instruction or EXIT Instruction

TOS [15:14] rw General-use/Type Of Service for EXIT Interrupt
Upper bit of TOS is always forced to 0 when
transferred into the PCP SRNs, regardless of the
value specified in R6[15].

SRPN [23:16] rw General-use/Service Request Priority Number for
EXIT Interrupt

CPPN [31:24] rw General-use/PCP Priority Number Posted to PICU

– 13, 12 rw General-use
User’s Manual 15-8 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
Z and N flag bits in R7 as a result of its operation. Because the number is not
negative, and not zero, it will update the Z and N flags to 0. As a result, the value
left in R7 after the MOV is complete will be 0000FF04H (i.e C = 1, Z = 0, N = 0).
It is recommended that only SET and CLR instructions should be used to explicitly
modify flags in R7.

The data pointer, R7.DPTR, is the means of accessing PRAM variables
programmatically. It points to a 64-word PRAM segment that may be addressed by
instructions which can use the PRAM for source or destination operands (xx.P and xx.PI
instructions). The 8 bits of the DPTR are concatenated with a 6-bit offset value (either
specified in the instruction as an immediate value or contained in one of the registers) to
give a 14 bit (word) address. A program is able to update the DPTR value dynamically,
in order to index more than 64 words of PRAM.

The channel enable control bit, R7.CEN, allows the enabling or disabling of specific
channel programs. If an interrupt request is received for a channel which is disabled an
error exit is forced, and an error interrupt to the CPU is activated.

PCP Register R7 Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DPTR - CEN - CNZ V C N Z

rw rw rw rw rw rw rw rw rw

Field Bits Type Description

Z 0 rw Zero

N 1 rw Negative

C 2 rw Carry

V 3 rw Overflow

CNZ 4 rw Outer Loop Counter 1 Zero Flag

CEN 6 rw Channel Enable Control Bit

DPTR [15:8] rw Data Pointer Segment Address for PRAM
accesses

– 7, 5 rw Reserved; should always be written with 0.

0 [31:16] r Reserved ; read as 0; should be written with 0.
User’s Manual 15-9 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.3.2 Contexts and Context Models

After initialization, the instruction sequence of a PCP channel program is, permanently
stored (i.e. usually at least as long as the application is running) in the code memory, and
data parameters are held in the parameter RAM. These will remain stored regardless of
whether a particular channel program is currently idle or is executing (although, of
course, the value of data variables in the PRAM might be modified by the PCP or
external FPI Bus masters). The contents of the general purpose registers of the PCP
(used as address pointers, data variables, intermediate results, etc.) however, is usually
only valid for a given channel program as long as it is executing. If another channel
program is executed, it will re-use the general purpose register according to its needs.

Thus, the state of the general purpose registers of a channel program (termed the
“Context” of the channel) needs to be preserved while a channel program is not being
executed. The content of the registers needs to be saved when execution of a channel
program finishes, and needs to be restored before execution starts again.

The PCP implements automatic handling of these context save and restore operations.
On termination of a channel program, the state of all or some of the general purpose
registers is automatically copied to a defined area in the PRAM (Context Save). If the
same channel program is re-activated, the contents of the registers are restored by
copying the values from the same defined PRAM area into the appropriate registers
(Context Restore).

The defined area in the PRAM for the context save and restore operations is called the
Context Save Area (CSA). Each channel program has its own individual, predefined
region in the CSA. When a service request is accepted by the PCP, the service request
priority number (SRPN) associated with the request is used to select the channel
program and its respective CSA region.

15.3.2.1 Context Models

A Context Model is a means of selecting whether some or all of the registers are saved
and restored when a context switch occurs. In order to serve different application needs
in terms of PRAM space usage, the PCP offers a choice between three different context
models:

• Full Context: Eight Registers (8 × 32-bit words) are saved/restored per channel.
• Small Context: Four Registers (4 × 32-bit words) are saved/restored per channel.
• Minimum Context Model: Two Registers (2 × 32-bit words) are saved/restored.

As illustrated in Figure 15-2, the contents of R0 through R7 constitute the Full Context
of a channel program. A Small Context consists of R4 through R7. Use of the small
context model allows for correct operation of DMA channels, as well as channels which
are not required to save large amounts of data in their contexts between invocations. A
Minimum Context saves and restores only R6 and R7.
User’s Manual 15-10 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
To distinguish the actual register contents from the copies stored in the PRAM context
regions, the term CRx is used throughout the rest of this document to refer to the register
values in the context regions. Registers R6 and R7 are always handled in a special way
during context save and restore operations, this is described in detail in
Section 15.3.2.3.

The context model is selected via a bit field (PCP_CS.CS) in the global PCP control
register PCP_CS, this is a global setting (i.e. the selected context model is used for all
channels). Once a context model has been selected (during PCP configuration) and the
PCP has been started the PCP must continue to use that context model. Attempting to
change the context model in use during PCP operation will lead to invalid context restore
operations which will in turn lead to invalid PCP operation.

In the case of small and minimum context models, the unsaved and unrestored registers
(shaded in Figure 15-2) can be thought of as global registers that any Channel Program
can use or change, or reference as constants — for example as base address pointers
(see Section 15.12.2 for more detail).
User’s Manual 15-11 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
Figure 15-2 PCP Context Models

MCA04785

R0

R1

R2

R3

R4

R5

R6

R7

Stored Context in PRAM

R0

R1

R2

R3

R4

R5

R6

R7

PCP Register Set

Restore

Save

8 WordsFull Context

R0

R1

R2

R3

R4

R5

R6

R7

R4

R5

R6

R7

Small Context
Restore

Save

4 Words

R0

R1

R2

R3

R4

R5

R6

R7

R6

R7

Minimum Context

Restore

Save

2 Words
User’s Manual 15-12 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.3.2.2 Context Save Area

The Context Save Area (CSA) is a region in PRAM reserved for storing the contexts for
all channel programs (while any particular channel is not executing). Each channel’s
context is stored in a region of the CSA based on the channel number. The channel
number is equal to the priority number (SRPN) of the service request. The PCP uses this
number to calculate the start address of the context of the associated channel program.
The size of a context is determined by the context model that the PCP has been
initialized to use. As all channels use the same context size, the PRAM address (word
address) of the context for a particular channel is simply calculated by multiplying the
channel number by the number of registers in the context (8 for full context, 4 for small
context and 2 for minimum context). Figure 15-3 shows the resulting PRAM layout, and
from this it can be seen that changing the context model also changes the base address
for all regions within the CSA. Thus, the chosen context model may only be set when the
PCP is initialized, and may not be changed during operation.

The context save area in the PRAM starts at address 00H and grows upward. It is
partitioned into equally sized regions, where the size of these regions is determined by
the selected context model. The priority number (SRPN) of a service request is used to
access the appropriate context region for the associated channel program. Since a
request with an SRPN of 00H is not considered as valid request in the TriCore
Architecture, the bottom region (context region 0) of the CSA is never used for an actual
context.

The total size of the CSA depends on the context model and the number of service
request numbers used in a given system. Each priority number used in a service request
node which can activate interrupts to the PCP must be represented through a dedicated
context region in the PRAM. The highest address range in the PRAM used for a context
region is determined by the highest priority number presented to the PCP with a service
request.

The range of usable priority numbers is further determined by the size of the
implemented PRAM and by the space required for other variables and global data
located in the PRAM. See Section 15.14 for the implemented size of the PRAM in this
derivative. As an example, a PRAM memory of 2 KBytes, solely used for the CSA, can
store up to 255 minimum contexts, allowing the highest SRPN used for a PCP service
request to be 255 (remember, an SRPN of 0 and an associated context region is never
used; the valid SRPNs and the context and channel numbers range from 1 to 255). With
a small context model, 127 contexts can be stored, resulting in 127 being the highest
usable SRPN in this configuration. Finally, a full context model allows 63 context areas,
with 63 being the highest usable SRPN. Interrupt requests to the PCP with priority
numbers that would cause loading of a context from outside the available PRAM area
must not be generated. Invalid PCP operation will result should this situation be allowed
to occur. The PCP can be optionally configured such that if an interrupt request is
received that would cause loading of a context from outside the available PRAM area
User’s Manual 15-13 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
then an error exit is forced, and an error interrupt to the CPU is activated (see
Section 15.6.1).

If portions of the PRAM are used for other variables and global data, the space available
for the CSA and the range of valid SRPNs is reduced by the memory space required for
this data. For best utilization of PRAM it is advisable to have the CSA grow upwards as
a contiguous area without any ‘holes’, meaning that all SRPNs in the range 1..max. are
actually used to place interrupt requests on the PCP. Unused regions within the CSA
(that is, the unused region at the base of the CSA and any context regions associated
with unused channels) cannot be used for general variable storage.
User’s Manual 15-14 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
Figure 15-3 Context Storage in PRAM

When choosing the context model for a given application, the following considerations
can be helpful. When choosing the small or the minimum context models, save and
restore operations for registers not handled in the automatic context operations can still
be handled through explicit load and store instructions under control of the user. This
may be advantageous for applications where the majority of the channels don’t need the

4 Words
not used

Context
#1

PRAM
Memory

8 Words
not used

Context
#1

Context
#2

MCA04786

Full Context

SRPN = 1CR7
CR6
CR5
CR4
CR3
CR2
CR1
CR0

00H

08H

10H
SRPN = 2CR7

CR6
CR5
CR4
CR3
CR2
CR1
CR0

n1×8H
SRPN = n1

Context
#n1

31 0

SRPN = 1

00H

04H

0CH

CR7
CR6
CR5
CR4
CR7
CR6
CR5
CR4

08H

Context
#2

SRPN = 2

Context
#3

SRPN = 3

Context
#n2

SRPN = n2

Small Context

31 0

Minimum Context

31 0

00H

2 Words
not used

SRPN = 1
Context

#1CR7
CR6

02H

04H
SRPN = 2

Context
#2CR7

CR6
06H

Context
#3

08H

SRPN = 3

n3×2H

Context
#n3 SRPN = n3

PRAM
Memory

PRAM
Memory

Note: All addresses in this figure are word addresses.

n2×4H
User’s Manual 15-15 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
full context, and only some would require more context to be saved. In this case, a
smaller context model can be used, and the channels which would require more register
to be saved/restored would do this via explicit load and store instructions. This is
especially advantageous if the channel program can be designed such that the initial real
time response operations can be executed using only the registers which have been
automatically restored. Then, as the timing requirements of the service are relaxed,
further register contents can be restored from PRAM through regular load instructions.
Of course, the contents of these registers needs to be explicitly saved, through regular
store instructions, before the exit of the channel program.

The criteria for choosing the context model are listed in the following:

• Size of PRAM memory implemented in a given derivative
• Amount of channels (= SRPNs) which need to be used in a system
• Amount of PRAM used for general variables and globals
• Amount of context (register content) which need to be saved and restored quickly by

most of the most important channels

15.3.2.3 Context Save and Restore Operation for CR6 and CR7

While registers R0 through R5 are saved and restored in a normal manner, registers R6
and R7 merit discussion regarding context save and restore operations.

The memory location CR7 in a context region is used to hold two different pieces of
information: namely the lower part of register R7, and the PC value of the channel.
During context save, the lower 16 bits of register R7 are transferred to the lower 16 bit
of CR7, while the contents of the current PC of the channel is transferred to the upper
16 bits of CR7. In turn, on context restore, the lower half of CR7 is loaded into the lower
half (bits [15:0]) of R7. The treatment of the upper 16 bits of CR7 depends on the
Channel Start mode that has been selected (see Section 15.3.3). In Channel Resume
Mode, the upper half of CR7 is written into the PC, thus determining the start address for
that channel. In Channel Restart Mode, the start value for the PC is determined from the
SRPN of the channel request; in this case data from the upper 16 bits of CR7 is simply
discarded.

The only deviation from normal save/restore operation regarding register R6 occurs
during the context restore operation. During context restore the complete content of CR6
(32 bits) is written to register R6 and in addition the upper 8 bits of CR6 (CCPPN) are
written to the CPPN bit field in the PCP interrupt control register PCP_PICR (see
Section 15.10.3). In this way, the priority level on which the requested channel is
running is set prior to the execution of the channel program.

Figure 15-4 illustrates these special operations.
User’s Manual 15-16 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
Figure 15-4 Context Save and Restore for CR6 and CR7

15.3.2.4 Initialization of the Contexts

The programmer is responsible for configuring each Channel Program’s context before
commencing operation. Because this must be done by writing to the PCP across the FPI
Bus, it is important to understand exactly where each Channel Program’s context is from
the FPI Bus perspective (see Page 15-40 for details).

MCA04787

31 16 0

CPPN
PCP Interrupt
Control Reg.
PCP_ICR

0 ARB
CTL PIPN 0 IE

31 16 0

CNT1CPPN SRPN TOS

31 16 0

CNT1CPPN SRPN TOS
SRPN = n2

PCP
Register R6

31 16 0

CPC CFLAGS Stored Content
CR7 in PRAMCDPTR

31 16 0

0 FLAGSCDPTR
PCP
Register R7

16

PC

0
PCP Program
Counter

Note: PC Restore operation only
 in Channel Resume Mode

Stored Content
CR6 in PRAM
User’s Manual 15-17 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.3.3 Channel Programs

The PCP code memory (PCODE) is used to store the instruction sequences, the
Channel Programs, for each of the PCP channels. The individual channel programs for
the individual PCP service requests can be usually viewed as independent and separate
programs. There is no background program defined and running for the PCP in TC1775
as there would be with traditional processors.

When the PCP receives a service request for a specific channel program, it needs to
exactly determine which channel program to activate and where to start its execution. To
accommodate different application needs, the PCP architecture allows the selection of
two different entry methods into the channel programs:

• Channel Restart Mode
• Channel Resume Mode

Channel Restart Mode forces the PCP to begin each Channel Program from a known
fixed point in code memory that is related to the interrupt number. At the entry point
related to the interrupt number in question there will typically be a jump instruction which
vectors the PCP to the main body of the channel program. This is identical to the
traditional interrupt vector jump table. In Channel Restart Mode, channel code execution
will always start at the same address in the interrupt entry table each time the channel is
requested.

Channel Resume Mode allows the PCP to begin execution at the PC address restored
as part of the channel program context. This mode allows for code to be contiguous and
start at any arbitrary address. It also allows for the implementation of interrupt-driven
state machines, and even the sharing of code across multiple programs with different
context.

The selection of one of the two modes is a global PCP setting, that is, it applies to all
channels. Selection is made via the PCP_CS.RCB bit in the PCP configuration register
PCP_CS (see Section 15.10.1).

15.3.3.1 Channel Restart Mode

Channel Restart Mode is selected with PCP_CS.RCB = 1. In this mode, the PCP views
the code memory as being partitioned into an interrupt entry table at the beginning of the
code memory, and a general code storage area above this table.

The interrupt entry table consists of two instruction slots (2 × 16-bit) for each channel.
When a PCP service request is received, the PCP calculates the start PC for the
requested channel by a simple equation based on the service request priority number
(SRPN) of that request (PC = 2 × SRPN). It then executes the instruction found on that
address. If more than two instructions are required for the operation of the channel
program, then one of the instructions within the interrupt entry table must be a jump to
the remainder of the channel’s code. The PCP executes the channel’s code until an exit
condition is detected.
User’s Manual 15-18 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
It is recommended that all EXIT instructions for all channels should use the EP = 0
setting when the PCP is operated in Channel Restart Mode (see Section 15.11.14).

Note that when Channel Restart Mode is in use a Channel Entry Table must be provided
with a valid entry for every channel being used. Figure 15-5 shows an example of Code
Memory organization when Channel Restart Mode has been selected. Failure to provide
a valid entry for all channels that are in use will lead to invalid PCP operation.

15.3.3.2 Channel Resume Mode

Channel Resume Mode is selected with PCP_CS.RCB = 0. In this mode, the user can
arbitrarily determine the address at which the channel program will be started the next
time it is invoked. For this purpose, the PC is saved and restored as part of the context
of a PCP channel.

Additional flexibility is available when Channel Resume Mode is globally selected by
configuring each EXIT instruction to determine the channel start address to be used on
the next invocation of a channel (see Section 15.11.14). When the EP = 0 setting is
used the PC value saved in the channel’s context (saved in CPC) is the address of the
appropriate location in the channel entry table. This forces the channel to start at the
appropriate location in the interrupt entry table at next invocation. When the EP = 1
setting is used the PC value saved in the channel’s context is the address of the
instruction immediately following the EXIT instruction. The use of the EP = x setting with
the EXIT instruction allows the mixture of channels that use a Channel Restart strategy
with others using a Channel Resume strategy, and also allows individual channels to use
either strategy as appropriate on different invocations.

Note: A valid entry within a Channel Entry Table must be provided for every channel that
uses an EXIT instruction with the EP = 0 setting when Channel Resume Mode has
been selected. Failure to provide a valid entry for such channels will lead to invalid
PCP operation.
User’s Manual 15-19 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
Figure 15-5 Examples of Code Memory Organization for Channel Restart and
Channel Resume Modes

Note: The Code Memory address offsets in the above figure are shown as PCP
instruction (half-word) offsets. To obtain FPI address offsets (byte offset) multiply
each offset by two.

Code Memory
PCODE

Instruction #1
2 Half-words

not used

Instruction #2

MCA04788
00H

02H

SRPN = 1
Channel

#1

04H

Instruction #2
Instruction #1

Channel
#2 SRPN = 2

SRPN = 3
06H

Instruction #2
Instruction #1

Channel
#3

SRPN = n1n1×2H
Instruction #1
Instruction #2Channel

#1

Channel #1
Main Code

Channel #3
Main Code

Channel #n1
Main Code

Channel #2
Main Code

Channel Restart Mode

16 0

Channel
Entry
Table

Channel Resume Mode

16 0

Channel #1
Main Code

00H

Channel #3
Main Code

Channel #n1
Main Code

Channel #2
Main Code

Code Memory
PCODE
User’s Manual 15-20 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.4 PCP Operation

This section describes how to initialize the PCP, how to invoke a Channel Program, and
the general operation of the PCP.

15.4.1 PCP Initialization

The PCP is placed in a quiescent state when the TC1775 is first powered-on or reset.
Before a Channel Program can be enabled, the PCP as a whole must be initialized by
some other FPI Bus master, typically the CPU. Initialization steps include:

• Configure global PCP registers
– Initialize PCP Control and Status Register (with PCP_CS.EN = 0)
– Configure interrupt system via PCP_ICR

• Load Channel Programs into the code memory PCODE.
• Load initial context (if/as required) of Channel Programs in PRAM (R0–R7 for

Maximum context, R4–R7 for Small context, R6–R7 for Minimum context). Only those
registers in each channel whose initial content is required on first invocation of the
channel need to be loaded. This may need to include the initial PC, depending on the
value of PCP_CS.RCB.

• Enable PCP operation PCP_CS.EN = 1.

Now, the PCP is able to begin accepting interrupts and executing Channel Programs.

15.4.2 Channel Invocation and Context Restore Operation

A Channel Program is started when the current round of PCP interrupt arbitration results
in a winning interrupt number (SRPN) and the PCP is currently quiescent (has exited the
previous channel and stored the context for that channel). When this happens the
winning SRPN becomes the current interrupt and a context restore operation occurs
before the new Channel Program can begin operation, as follows.

• The context of the Channel (= winning SRPN) is restored from PRAM into the general
purpose registers from the appropriate address within the CSA. Depending on the
value of PCP_CS.CS a Full, Small, or Minimum Context restore is performed.

• The new priority level of the PCP is taken from R6.CPPN field and is written to
PCP_ICR.CPPN. This value can be useful during debugging, as the CPPN of the
currently executing or last-executed Channel Program can be read from PCP_ICR.
After the Channel Program starts, the value of R6 may be changed without altering
the value of the effective CPPN, because updates to the value of R6.CPPN have no
effect until the next invocation of the Channel Program.

• If the R7.CEN bit is clear (0), then an error has occurred because a disabled Channel
Program has been invoked, the PCP_ES.DCR bit is set to flag the error, and the
Channel Program performs an error exit (see Section 15.4.3).
User’s Manual 15-21 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
• If the R7.CEN bit is set (1), then code execution begins at the value of the restored PC
or at the address of the interrupt routine in the Channel Entry Table, depending on the
value of PCP_CS.RCB.

15.4.3 Channel Exit and Context Save Operation

The context of a channel program must be saved when it terminates. Three events can
cause the termination of a channel program:

• Execution of the EXIT instruction (normal termination)
• Occurrence of an error
• Execution of the DEBUG instruction (channel termination is optional)

These channel termination possibilities are described in the next sections.

15.4.3.1 Normal Exit

Under normal circumstances, a channel program finishes by executing an EXIT
instruction. This instruction has several setting fields which allow the user to specify a
number of optional actions to be performed during the channel exit sequence (see
Section 15.11.14). These optional actions are:

• Decrement counter CNT1
• Set the start PC for the next channel invocation to the next instruction address

(Channel Resume) or to the channel entry address (Channel Restart)
• Disable further invocations of this channel
• Generate an interrupt request to the CPU or to the PCP itself

When the EXIT instruction is executed, the following sequence occurs:

• If EC = 1 is specified Counter R6.CNT1 is decremented and the CN1Z flag is updated.
• If ST = 1 is specified bit R7.CEN (Channel Enable) is cleared (i.e. the channel is

disabled).
• If EP = 0 is specified or PCP_CS.RCB = 1 (Channel Restart Mode has been selected)

the PCP program counter to be saved to context location CR7.PC is set to the
appropriate channel entry table address. If EP = 1 is specified and PCP_CS.RCB = 1
(Channel Resume Mode has been selected) the PCP program counter to be saved to
context location CR7.PC is set to the address of the instruction immediately following
the EXIT instruction.

• If INT = 1 is specified and the specified condition cc_B is True, then an interrupt
request is raised according to the SRPN value held in R6.SRPN. The interrupt is
asserted via one of the PCP_SRCx registers, where x is determined by the
combination of the value of R6.TOS and the list of free entries. This allows the
conditional creation of a service request to the CPU or PCP with the SRPN value
indicated in register R6.SRPN.

• The channel program’s context (including all register modifications caused within this
EXIT sequence) is saved to the appropriate region in the PRAM Context Save Area.
User’s Manual 15-22 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
Depending on the value of PCP_CS.CS, either a Full, Small, or Minimum Context
save is used.

Note: Particular attention must be paid to the values of R6 and R7 prior to execution of
the EXIT instruction. When posting an interrupt request the user must ensure that
R6.SRPN and R6.TOS contain the correct values to generate the required
interrupt request. When using the Outer Loop Counter (CNT1) the user must
ensure that the value in R6.CNT1 will provide the required function. When using
interrupt priority management the user must ensure that R6.CPPN contains the
interrupt priority with which the channel is to run on next invocation. If the channel
is to be subsequently re-invoked the user must ensure that the Channel Enable
Bit (R7.CEN) is set.

15.4.3.2 Error Condition Channel Exit

PCP error conditions can occur for a variety of reasons (e.g. an invalid operation code
was executed by a Channel Program, or an FPI Bus error occurred). When an error
condition occurs, the PCP Error Status register (PCP_ES) is updated to reflect the error
and the Channel Program is aborted. The error exit sequence is as follows:

• The channel enable bit R7.CEN is cleared. This means the channel program will be
unable to restart until another FPI Bus master has re-configured the channel
program’s stored context to set CR7.CEN to 1 again.

• The PC of the instruction which was executing when the error occurred is stored in
PCP_ES.EPC.

• The number of the channel program which was executing when the error occurred is
stored in PCP_ES.EPN.

• The error type is set in the appropriate field of register PCP_ES.
• The context is saved back to the PRAM Context Save Area. Depending on the chosen

context size (PCP_ES.CS) a Full, Small, or Minimum Context save is performed.
• If the error condition was not due to an FPI Bus error or a DEBUG instruction then an

interrupt request to the CPU is generated with the priority number stored in register
PCP_CS.ESR.

The repetitive posting of PCP Error Interrupts will not cause an overwhelming number of
interrupts to the CPU. In this situation the PCP’s CPU Service request queue (see
Section 15.5.3) will quickly fill, and force the PCP to stall until the CPU can resolve the
situation.

Note: An error condition (other than an FPI Bus error) will result in an interrupt being sent
to the CPU. The interrupt routine which responds to this interrupt must be capable
of dealing with the cause as recorded in PCP_ES, and it must be able to restore
the channel program to operation. The minimum required to restart the channel
program is to set the context value of CR7.CEN = 1.
User’s Manual 15-23 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.4.3.3 Debug Exit

If the DEBUG instruction is programmed to stop the channel program execution
(SDB = 1 has been specified), the PCP performs an exit sequence which is very similar
to the error exit sequence, with the exception that no interrupt request to the CPU is
generated. This sequence is:

• The channel enable bit R7.CEN is cleared. This means the channel program will be
unable to restart until another FPI Bus master has reconfigured the channel program’s
stored context to set CR7.CEN to 1 again.

• The address of the DEBUG instruction (i.e. the current PC) is stored in register
PCP_ES.PC

• The current channel number is stored in register PCP_ES.PN

The execution of the current channel program is stopped at the point of the DEBUG
instruction. This instruction only disables the current channel, the PCP will continue to
operate, accepting service requests for other channels as they arise.
User’s Manual 15-24 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.5 PCP Interrupt Operation

The PCP Interrupt Control Unit (PICU) and the PCP’s Service Request Nodes
(PCP_SRC0..3) are similar to the CPU’s ICU and all other SRNs in the system. They do,
however, have some special characteristics, which are described in the following
sections. Figure 15-6 shows an overview of the PCP interrupt scheme.

Figure 15-6 PCP Interrupt Block Diagram

15.5.1 Issuing Service Requests to CPU or PCP

The PCP may use one of two mechanisms to raise an interrupt request to the CPU or
itself. The first, and most inefficient, method is where a PCP channel program issues
service requests by performing an FPI Bus write operation to an external service request
node (SRN). Alternately the PCP can raise a Service Request using one of its own
internal SRN’s. An interrupt can only be generated by the PCP via an internal SRN when
executing an EXIT instruction or when an error condition occurs. In the following
descriptions, PCP service requests triggered through an EXIT instruction or the
occurrence of an error are called “implicit” PCP service requests to distinguish them from
the “explicit” way of generating a service request through an FPI Bus write to a service
request node external to the PCP.

MCB04789

PCP_SRC0

PCP_SRC1

PCP_SRC2

PCP_SRC3

CPU
Queue

PCP
Queue

Queue Management

& Queue Full

Highest

PCP Interrupt
Control Uniit

PICU

Interrupt
Request SRPN Stall PIPN

Interrupt
Request

Hand-
shake

PCP Kernel

CPU Arbitration Bus

PCP Arbitration Bus
User’s Manual 15-25 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.5.2 PCP Interrupt Control Unit

The Interrupt Control Unit of the PCP, PICU, operates in a similar manner to the Interrupt
Control Unit, ICU, of the CPU. The PICU manages the PCP service request arbitration
bus and handles the communication of service requests and priority numbers to and
from the PCP kernel. The PCP_ICR register is provided to control and monitor the
arbitration process.

When one or more service requests to the PCP are activated, the PICU performs an
arbitration round to determine the request with the highest priority. It then places the
priority number of this “winning” service request into the PIPN field of register PCP_ICR
and generates a service request to the PCP kernel.

If the PCP kernel is currently busy processing a channel program, the new request is left
pending until the current channel program has finished. The TC1775 PCP does not
provide channel interruption, any channel program that is currently being executed must
be completed before a new channel program can be started.

When the PCP kernel is ready to accept a new service request, it calculates the context
start address from the Pending Interrupt Priority Number, PIPN, stored in register ICR
and begins with the context restore. It notifies the PICU of the acceptance of this request,
and in turn the PICU acknowledges the winner of the last arbitration round. This service
request node then resets its Service Request Flag, SRR.

There is one special condition where the PICU operates differently to the CPU Interrupt
Control Unit. This special operation is described in Section 15.5.4.3.

The PCP interrupt arbitration can be adapted to the application’s needs and
characteristics through controls in register PCP_ICR. Bit field PCP_ICR.ARBCYC
controls the number of arbitration cycles per arbitration round (one through four cycles),
while bit PCP_ICR.ONECYC controls whether one arbitration cycle equals one or two
system clock cycles.

15.5.3 PCP Service Request Nodes

Four service request nodes including four service request control registers,
PCP_SRC0..3, are provided for implicit PCP service requests. The service request
control registers differ from standard SRC registers in that they are fully controlled by the
PCP kernel; they are read-only registers, the user cannot write to them.

The four service request nodes are split into two groups of two nodes each. The first
group, containing registers PCP_SRC0 and PCP_SRC1, handles implicit PCP service
requests targeted to the CPU, while the second group, registers PCP_SRC2 and
PCP_SRC3, handles the service requests targeted to the PCP itself.

The service request enable bits, SRE, of the PCP_SRCx registers are hard-wired to 1,
meaning these service requests are always enabled.
User’s Manual 15-26 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
The Type of Service control fields, TOS, of registers PCP_SRC0 and PCP_SRC1 are
hard-wired to 00B, directing the requests to the CPU. The respective TOS field of
registers PCP_SRC2 and PCP_SRC3 is hard-wired to 01B, directing the requests to the
PCP.

The actual service request flag, SRR, and the service request priority number, SRPN, of
the PCP_SRCx registers is updated by the PCP when it generates an implicit service
request. The way this is performed is described in the following section.

The two service request nodes in each of the two groups described above are
implemented as a queue with two entries. When the PCP generates an implicit service
request, it places the request into the next available free entry of the appropriate queue
rather than writing it into a specific register. Queue management logic automatically
ensures proper handling of the queue. In the case where both entries of a queue are
filled with pending service requests, the queue management reports this condition to the
PCP kernel via a ‘queue full’ signal.

In the following descriptions, the terms “CPU Queue” and “PCP Queue” are used to refer
to the queues in the two groups of PCP service request nodes.

15.5.4 Issuing PCP Service Requests

The PCP can issue implicit service requests on the execution of an EXIT instruction or
when an error occurs during a channel program execution. While the service request
generation for the EXIT instruction is optional, a service request is always generated
when an error occurs. Further differences between these two mechanisms are detailed
in the following sections.

15.5.4.1 Service Request on EXIT Instruction

An implicit PCP service request is issued when the INT field of the EXIT instruction is set
to 1 and the specified condition code, cc_B, of this instruction is true. Such a service
request can be issued to either the CPU or to the PCP itself, depending on the
programmed value in the TOS field of register R6. The PCP examines the TOS field in
register R6 and issues a service request to the appropriate queue of the service request
nodes. Along with this request, it passes the service request priority number stored in the
SRPN field of register R6 to the queue. If the queue has a free entry left, the service
request flag, SRR, of the associated service request register, PCP_SRCx, will be set,
and the service request priority number will be written to the SRPN field of the SRC
register. Please see Section 15.5.4.3 for the case there is no free entry in the queue.

Because the desired service request is programmed through the TOS and SRPN fields
in register R6, each channel program can issue its individual service request. Note that
this register needs to be programmed properly if a service request is to be generated by
the EXIT instruction.
User’s Manual 15-27 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.5.4.2 Service Request on Error

While a service request triggered through an EXIT instruction is optional and can be
issued either to the CPU or to the PCP itself, a service request due to an error condition
will always be automatically issued and will always be directed to the CPU. The PCP
issues a service request to the CPU queue of the service request nodes. Along with this
request, it passes the service request priority number stored in the ESR field of register
PCP_CS to the queue. If the queue has a free entry left, the service request flag, SRR,
of the associated service request register, PCP_SRCx, will be set, and the service
request priority number will be written to the SRPN field of the SRC register. See
Section 15.5.4.3 for the case when there is no free entry in the queue.

Due to the fact that the priority number is stored in the global control register PCP_CS,
all channel programs share the same service request routine in case of an error. The
exact cause of the error and the channel number of the program which was executed
when the error occurred can be determined through examination of the contents of the
Error/Debug Status Register, PCP_ES.

15.5.4.3 Queue Full Operation

Queuing the implicit service requests typically allows the PCP to continue with the next
service request without stalling. The depth of the queue and the number of channel
programs using them determines the stall rate. Depending on the selected service
provider (via R6.TOS in case of an EXIT interrupt or always to the CPU in case of an
error interrupt) the request is routed to a free entry in the appropriate queue.

If no free entries are available in a queue at the time the PCP wants to post a request to
that queue, the PCP is forced to stall until an entry becomes clear. This ensures that the
PCP does not lose any interrupts. An entry in a queue becomes free when its service
request flag, SRR, is cleared through an acknowledge from the PICU (that is, the CPU
or PCP, as appropriate, has started to service this request).

One special case needs to be resolved for the PCP related queue through special
operation of the PICU. Consider the case where the PCP queue is full, meaning both
registers PCP_SRC2 and PCP_SRC3 are already loaded with pending service requests
to the PCP. If the PCP kernel now needed to post an additional service request into that
queue, a deadlock situation would be generated: The PCP would stall, since there is not
a free entry in the PCP queue in which to place the request. In turn, as the PCP is stalled,
it cannot accept new service requests and so the PCP service request queue cannot be
emptied. This would result in a deadlock of the PCP.

To avoid such a deadlock, the PICU performs a special arbitration round as soon as the
PCP queue becomes full. In this arbitration round, only the two service request nodes of
the PCP queue are allowed to participate; all service requests from nodes external to the
PCP are excluded, regardless of whether their priorities are higher or lower than those
of the PCP queue. In this way, it is guaranteed that one entry in the PCP queue gets
serviced, freeing one slot in the queue.
User’s Manual 15-28 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
The PCP programmer needs to carefully consider this special operation. It ensures that
deadlocks are avoided, but it implies that if too many PCP channel programs post
service requests to the PCP (self-interrupt), the PCP will have to service these rather
than outside interrupt sources. Depending on the priority given to these requests, this
could undermine an otherwise appropriate use of the interrupt priority scheme. It is
recommended to design the system such that in most cases, high priority numbers can
be assigned to these self-interrupts, such that they can win normal arbitration rounds,
avoiding the situation where the PCP queue becomes full.

Note: If the CPU queue is full, the PCP can continue to operate until it needs to post
another service request to the CPU queue.
User’s Manual 15-29 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.6 PCP Error Handling

The PCP contains a number of fail-safe mechanisms to ensure that error conditions are
handled gracefully and predictably. In addition to providing an extra level of system
robustness suitable for high integrity and safety critical systems these mechanisms can
often ease the task of finding programming errors during the development process.
Whenever an error is detected the channel program that was executing exits and the
PCP_ES register is updated with information to allow determination of the error that
occurred, the instruction address and the channel program that was executing when the
error occurred (see Section 15.4.3.2).

15.6.1 Enforced PRAM Partitioning

As previously discussed PRAM can be considered as being split into two distinct areas.
The lower of these two areas is the Context Save Area (see Section 15.3.2.2) used for
storing context information for each active channel while the channel program is not
actually executing. The remainder of PRAM is available for general use and is typically
used to hold variables and global data.

The default configuration of the PCP allows the PCP to use PRAM as a single area.
While this default configuration allows complete flexibility regarding the use of PRAM,
this flexibility also introduces the possibility of invalid PCP operation as a result of the
following issues:

• Any channel program is allowed to write to any PRAM location (including any location
in the CSA). This means that a channel program may be inadvertently programmed
to corrupt the context save region belonging to another channel causing invalid
operation of the corrupted channel when it next executes.

• Generation of an interrupt request to the PCP with a priority number that would cause
loading of a context from outside the CSA will cause the spurious execution of a
channel program with an invalid context loaded from outside the CSA.

To avoid spurious PCP operation as a result of either of these programming errors, the
PCP can be optionally configured via the global PCP control register (PCP_CSA) to
enforce strict partitioning of PRAM. PRAM partitioning is selected by programming
PCP_CS.PPE = 1 and the size of the CSA in use is selected via the PCP_CS.PPS bit
field (see Section 15.10.1). When PRAM partitioning has been enabled a PCP Error will
be generated on either of the following events:

• A channel program executes a PRAM write instruction with a target area within the
CSA. This prevents a channel corrupting the context save region of any other channel.

• An incoming interrupt request causes the PCP to attempt to load a context from
outside the CSA. This prevents the PCP from running an invalid channel program as
a result of an invalid interrupt request.

Note: Enabling PRAM partitioning (PCP_CS.PPE = 1) with a CSA size of zero
(PCP_CS.PPS = 0) is an invalid setting and will cause a PCP Error Event
whenever any interrupt request is received by the PCP.
User’s Manual 15-30 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.6.2 Channel Watchdog

The Channel Watchdog is a PCP internal watchdog which optionally allows the user to
ensure that the PCP will not become locked into executing a single channel due to an
endless loop or unexpected software sequence. As each channel executes the PCP
maintains an internal count of the number of instructions that have been read from
CMEM since the channel started. If the watchdog function is enabled (by programming
PCP_CS.CWE = 1) and the internal instruction fetch counter reaches the threshold
programmed by the user (programmed via PCP_CS.CWT) then a PCP Error is
generated. The threshold setting (PCP_CS.CWT) is global to all channels. From this it
follows that the threshold must be selected to be greater than the maximum number of
instructions that can be fetched by any channel program, taking all channels into
consideration. It should be noted that the instruction width of the PCP is 16 bits and that
therefore execution of an instruction that is encoded into 32 bits (e.g. LDL.IL) will
generate two CMEM instruction reads, and therefore will cause the internal watchdog
counter to be incremented twice.

Note: Enabling the Channel Watchdog function (PCP_CS.CWE = 1) with a threshold of
zero (PCP_CS.CWT = 0) is an invalid setting and will cause a PCP Error Event
whenever any interrupt request is received by the PCP.

15.6.3 Invalid Opcode

The PCP includes the Invalid Opcode mechanism to check that each instruction fetched
from CMEM represents a legal instruction. If the PCP attempts to execute an illegal
instruction, then a PCP Error is generated.

15.6.4 Instruction Address Error

An Instruction Address Error is generated if the PCP attempts to execute an instruction
from an illegal address. An address is considered to be illegal if:

• The address is outside the available CMEM area (see Section 15.14 for the CMEM
size implemented in this derivative)

and/or

• The specified address could not be contained in the 16 bit PC (i.e. an address
calculation yielded a 16 bit unsigned overflow).

The second of these cases can result from an address calculation either from the
execution of a PC relative jump instruction (either a JC, JC.I, or JL instruction) or the PC
being incremented following execution of the previous instruction.
User’s Manual 15-31 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.7 Instruction Set Overview

The following subsections present an overview of the instruction set and the available
addressing modes of the PCP in the TC1775.

15.7.1 DMA Primitives

Table 15-3 DMA Transfer Instructions

DMA
Transfer

COPY Move value from FPI Bus source address location to FPI Bus
destination address location. Optionally increment or
decrement source and destination pointer registers. Optionally
repeat instruction until counter CNT1 reaches 0.
User’s Manual 15-32 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.7.2 Load and Store

Note: If a conditional instruction’s condition code is false, the operation will be treated as
a “No Operation”. Register values will not be changed and the flags will not be
updated.

Table 15-4 Load and Store Instructions

Load LD.F Load value from FPI Bus address location into register (FPI
Bus address = register content)

LD.I Load immediate value into register

LD.IF Load value from FPI Bus address location into register (FPI
Bus address = register content + immediate offset)

LD.P Load value from PRAM address location into register (PRAM
address = DPTR + register offset)

LD.PI Load value from PRAM address location into register (PRAM
address = DPTR + immediate offset)

LDL.IL Load 16-bit immediate value into lower bits [15:0] of register

LDL.IU Load 16-bit immediate value into upper bits [31:16] of register

Store ST.F Store register value to FPI Bus address location
(FPI Bus address = register content)

ST.IF Store register value to FPI Bus address location
(FPI Bus address = register content + immediate offset)

ST.P Store register value to PRAM address location
(PRAM address = DPTR + register offset)

ST.PI Store register value to PRAM address location
(PRAM address = DPTR + immediate offset)

Move MOV Conditionally move register value to register
User’s Manual 15-33 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.7.3 Arithmetic and Logical Instructions

Arithmetic instructions that are fully register-based execute conditionally depending on
the specified Condition Code A. All other arithmetic instructions such as PRAM (.PI),
indirect (.I), and FPI (.F and .IF) execute unconditionally.

Note: If a conditional instruction’s condition code is false, the operation will be treated as
a “No Operation”. Register values will not be changed and the flags will not be
updated.

Logical instructions that are fully register-based execute conditionally as determined by
the specified Condition Code A. All other logical instructions, such as PRAM (.PI),
indirect (.I), and FPI (.F and .IF) execute unconditionally.

Table 15-5 Arithmetic Instructions

Add ADD Add register to register (conditionally)

ADD.I Add immediate value to register

ADD.F Add content of FPI Bus address location to register
(Byte, Half-word or Word)

ADD.PI Add content of PRAM address location to register

Subtract SUB Subtract register from register (conditionally)

SUB.I Subtract immediate value from register

SUB.F Subtract content of FPI Bus address location from register
(Byte, Half-word or Word)

SUB.PI Subtract content of PRAM address location from register

Compare COMP Compare register to register (conditionally)

COMP.I Compare immediate value to register

COMP.F Compare content of FPI Bus address location to register
(Byte, Half-word or Word)

COMP.PI Compare content of PRAM address location to register

Negate NEG Negate register (2’s complement, conditionally)
User’s Manual 15-34 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
Note: If a conditional instruction’s condition code is false, the operation will be treated as
a “No Operation”. Register values will not be changed and the flags will not be
updated.

Table 15-6 Logical Instructions

Logical
And

AND Register AND register (conditionally)

AND.F Content of FPI Bus address location AND register (Byte,
Half-word or Word)

AND.PI Content of PRAM address location AND register

Logical Or OR Register OR register (conditionally)

OR.F Content of FPI Bus address location OR register (Byte,
Half-word or Word)

OR.PI Content of PRAM address location OR register

Logical
Exclusive-
Or

XOR Register XOR register (conditionally)

XOR.F Content of FPI Bus address location XOR register (Byte,
Half-word or Word)

XOR.PI Content of PRAM address location XOR register

Logical Not NOT Invert register (1’s complement, conditionally)

Shift SHL Shift left register

SHR Shift right register

Rotate RL Rotate left register

RR Rotate right register

Prioritize PRI Calculate position of first set bit (1-bit) in register, from left
User’s Manual 15-35 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.7.4 Bit Manipulation

All bit manipulation instructions except INB are executed unconditionally. If conditional
bit handling is required, INB should be used.

15.7.5 Flow Control

Table 15-7 Bit Manipulation Instructions

Set Bit SET Set bit in register

SET.F Set bit in FPI Bus address location

Clear Bit CLR Clear bit in register

CLR.F Clear bit in FPI Bus address location

Insert Bit INB Insert carry flag into register
(position given by content of a register)

INB.I Insert carry flag into register
(position given by immediate value)

Check Bit CHKB Set carry flag depending on value of specified register bit

Table 15-8 Flow Control Instructions

Jump JC Jump conditionally to PC + short immediate offset address

JC.A Jump conditionally to immediate absolute address

JC.I Jump conditionally to PC + register offset address

JC.IA Jump conditionally to register absolute address

JL Jump unconditionally to PC + long immediate offset address

Exit
Channel

EXIT Unconditionally exit channel program execution (optionally
generate interrupt request and/or inhibit channel)

No
Operation

NOP Low-power No-Operation

Debug DEBUG Conditionally generate debug event (optionally stop channel
program execution)
User’s Manual 15-36 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.7.6 Addressing Modes

The PCP needs to address locations in memory in different ways, as determined by the
type of memory being accessed and the type of action being performed on that location.

15.7.6.1 FPI Bus Addressing

All FPI Bus accesses from the PCP are indirect to some extent. The main indirect
addressing on the FPI Bus uses a 32-bit absolute address located in the general purpose
register indicated in the instruction. This address must be properly aligned for the type
of data access — byte, half-word or word. If it is not aligned, the results are undefined.

– Effective Target Address [31:0] = <R[a]>

where a is the number of the register, for instance, R2. Instructions using this address
mode are indicated through the “.F” suffix.

For indirect-plus-immediate addressing on the FPI Bus, the 32-bit absolute address
located in the general purpose register indicated in the instruction is added to the
immediate 5-bit offset value encoded in the instruction. This address must be properly
aligned for the type of data access (byte, half-word or word). If it is not aligned, the results
are undefined.

– Effective Target Address [31:0] = <R[a]> + #offset5

where a is the number of the register and #offset5 is a 5-bit immediate offset value.
Instructions using this addressing mode are indicated through the “.IF” suffix (only
available for load and store, LD.IF and ST.IF).

This addressing mode is particularly useful for managing peripherals, where the
peripheral base address is held in R[a], and the offset can index directly into a specific
control register.

The COPY instruction uses the indirect absolute addressing with predefined PCP
registers. Register R4 is used as the source address pointer, while R5 represents the
destination address pointer.

– Effective Source Address [31:0] = <R4>
– Effective Destination Address [31:0] = <R5>

Note: All FPI Bus accesses by the PCP are performed in Supervisor mode.

Note: The PCP is not allowed to access its own registers via instructions executed in the
PCP.
User’s Manual 15-37 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.7.6.2 PRAM Addressing

The PRAM is always addressed indirectly by the PCP. The normal address used is the
value of the R7.DPTR field (8 bits) concatenated with an immediate 6-bit offset value
encoded in the instruction, yielding a 14-bit word address. This enables access to
16 KWords (64 KBytes). Because R7.DPTR is part of a channel program’s context, a
channel program may alter the DPTR value at any time.

– Effective PRAM Address[13:0] = <R7.DPTR> << 6 + #offset6

Instructions using this addressing mode are indicated through the “.PI” suffix.

To provide effective indexing into large tables or stores of data, an alternate form of
indirect addressing can also be used on load and store operations to PRAM. The value
of the DPTR field (8 bits) is concatenated with the least significant 6 bits of R[a], again
yielding a 14-bit word address. The most significant bits [31..6] of R[a] are ignored.

– Effective PRAM Address[13:0] = <R7.DPTR> << 6 + <R[a][5:0]>

Instructions using this addressing mode are indicated through the “.P” suffix (load and
store only, LD.P and ST.P).

15.7.6.3 Bit Addressing

Single bits can be addressed in the PCP general purpose registers or in FPI Bus address
locations. A 5-bit value indicates the location of a bit in the register specified in the
instruction. This bit location is either given through an immediate value in the instruction
or through the lower five bits of a second register (indirect addressing).

– Effective Bit Position[0..31] = #imm5
– Effective Bit Position[0..31] = <R[a][5:0]>

The immediate bit addressing is used by instructions SET and CLR and their variants as
well as by INB.I and CHKB. Indirect bit addressing is used by the INB instruction only.

15.7.6.4 Flow Control Destination Addressing

The Jump instructions are split into two groups: PC-relative jumps and jumps to an
absolute address.

For PC-relative jumps, the destination address is a positive or negative offset from the
PC of the next instruction. The offset is either contained in the lower 16 bits of a register
(the upper 16 bits are ignored), or is given as immediate value of the instruction. The
immediate values are sign-extended to 16 bits. If the effective jump address is outside
the available CMEM area (or the jump address calculation caused an overflow), then a
PCP Error Condition has occurred.

– Effective JUMP Address[15:0] = NextPC + Signed(R[a][15:0]); +/- 32K instructions
– Effective JUMP Address[15:0] = NextPC + Sign-Extend(#offset10);

+/- 512 instructions
User’s Manual 15-38 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
– Effective JUMP Address[15:0] = NextPC + Sign-Extend(#offset6);
+/- 32 instructions

The function NextPC indicates the instruction that would be fetched next by the program
counter. Instructions using this addressing are JL, JC and JC.I.

For absolute addressing, the actual address in code memory where program flow is to
resume is either an immediate value #imm16 in the code memory location immediately
following the Jump instruction, or it is contained in the lower 16 bits of a register. If the
value is greater than the PC size implemented, an error condition has occurred.

– Effective JUMP Address[15:0] = #imm16
– Effective JUMP Address[15:0] = <R[a]>

Instructions using these addressing modes are JC.A (immediate absolute address) and
JC.IA (indirect absolute address).
User’s Manual 15-39 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.8 Accessing PCP Resources from the FPI Bus

Any FPI Bus master can access the three distinct PCP address ranges from the FPI Bus
side. Accesses to the PCP control register, the parameter RAM (PRAM), and the code
memory (PCODE) are detailed in the following sections. Note that the PCP itself is not
allowed to access its control registers through PCP instructions.

15.8.1 Access to the PCP Control Registers

FPI Bus accesses to the PCP control registers must always be performed in Supervisor
Mode with word accesses; byte or half-word accesses will result in a bus error.

All PCP control registers can be read at any time. Write operations are only possible to
the PCP_CS register, all other register are read-only. Register PCP_CS can be
optionally ENDINIT protected via bit PCP_CS.EIE (see Section 15.10.1).

15.8.2 Access to the PRAM

FPI Bus accesses to the PRAM must always be performed with word accesses; byte or
half-word accesses will result in a bus error.

Attention needs to be paid when accessing the context save areas and data sections of
the PCP channel programs. The location of a specific channel’s context save area is
dependent on the chosen context model, full, small or minimum context. Table 15-9
shows these addresses.

Note: Since channel #0 is not defined (no service request with SRPN = 0), the first area
is not an actual context save area. It is recommended that this area should not be
used by PCP channel programs.

Table 15-9 FPI Bus Access to Context Save Areas

Channel # Full Context Small Context Minimum Context

0 (see
note)

PRAM Base Address +
00H

PRAM Base Address +
00H

PRAM Base Address +
00H

1 PRAM Base Address +
20H

PRAM Base Address +
10H

PRAM Base Address +
08H

2 PRAM Base Address +
40H

PRAM Base Address +
20H

PRAM Base Address +
10H

3 PRAM Base Address +
60H

PRAM Base Address +
30H

PRAM Base Address +
18H

n PRAM Base Address +
n × 20H

PRAM Base Address +
n × 10H

PRAM Base Address +
n × 08H
User’s Manual 15-40 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
The FPI Bus address of a word location pointed to by the data pointer R7_DPTR is
calculated by the following formula:

– Effective FPI Bus address[31:0] = (PRAM Base Address) + (<DPTR> << 6)

15.8.3 Access to the PCODE

FPI Bus accesses to the code memory PCODE must always be performed with word
accesses; byte or half-word accesses will result in a bus error.

When using a channel entry table, the FPI Bus address of a specific channel’s entry
location is given by the following formula:

– Effective FPI Bus address[31:0] = (PCODE Base Address) + 04H × Channel Numb.

The FPI Bus address of an instruction pointed to by the PCP program counter, PC, is
calculated by the following formula:

– Effective FPI Bus address[31:0] = (PCODE Base Address) + <PC> << 1
User’s Manual 15-41 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.9 Debugging the PCP

For debugging the PCP a special instruction, DEBUG, is provided. It can be placed at
important locations inside the code to track and trace program execution. The execution
of the instruction depends on a condition code specified with the instruction. The actions
programmed for this instruction will only take place if the specified condition is true.

The following actions are performed when the DEBUG instruction is executed and the
condition code is true:

– store the current PC, i.e. the address of the DEBUG instruction, in register
PCP_ES.EPC

– store the current channel number in register PCP_ES.EPN

In addition, the following operations can be programmed through fields in the DEBUG
instruction:

– optionally stop the channel program execution (instruction field SDB)
– optionally generate an external debug event at pin BRKOUT (instruction field EDA)

If the DEBUG instruction is programmed to stop the channel program execution, the
PCP disables further invocations of the current channel through clearing bit R7.CEN,
and then performs a context save. The execution of this channel is stopped at the point
of the DEBUG instruction. The PCP will continue to operate, accepting service requests
for other channels as they arise.

Since the stopped channel was disabled before saving its context, service requests for
this channel will result in an error exit (see Section 15.4.3.2). When re-enabling the
channel its enable bit CEN in the saved context location CR7 must be set.

Note: When a channel is stopped by DEBUG the context of the stopped channel will be
saved to the appropriate region of the CSA before the channel terminates. Where
a Small or Minimum Context model is being used the values of the general
purpose registers not included in the context will not be saved, and indeed these
register values may be changed by the operation on another active channel. In this
case, the required registers should be explicitly saved to PRAM by store
instructions prior to execution of the DEBUG instruction.

Note: If PCP_CS.RCB = 0 (Channel Resume Mode), then the channel program will
begin executing at whatever PC is restored from the context location CR7.PC
which will allow a channel program to resume from the instruction following the
DEBUG instruction. If PCP_CS.RCB = 1 (Channel Restart Mode), then the
channel program is forced to always start at its channel entry table location no
matter what the restored context value is for the PC. This means that in Channel
Restart Mode it is not possible to restart the channel program from where it was
halted by the debug event. It is recommended that when using Channel Restart
Mode the user should also program all EXIT instructions with the “EP = 0” setting
to allow selection of Channel Resume Mode for debugging without changing
operation of the channel programs.
User’s Manual 15-42 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.10 PCP Registers

The PCP can be viewed as being a peripheral on the FPI Bus. As with any other
peripheral, there are control registers, normally set by the CPU acting as an external FPI
Bus master to the PCP during initialization. Control registers select the operating modes
of the PCP, and status registers provide information about the current state of the PCP
to the external FPI Bus master. Figure 15-7 gives an overview of the PCP registers.

Figure 15-7 PCP Registers

The control registers are accessible by any master via the FPI Bus. The control registers
must be configured at initialization and then left unaltered. This is typically done by the
CPU.

The PCP control and status registers are accessible only to the CPU when it is operating
in Supervisor mode. PCP control and status registers must be accessed with 32-bit read
and write operations only.

Table 15-10 PCP Registers

Register
Short Name

Register Long Name Offset
Address

Description
see

PCP_CS PCP Control/Status Register 0010H Page 15-44

PCP_ES PCP Error/Debug Status Register 0014H Page 15-47

PCP_ICR PCP Interrupt Control Register 0020H Page 15-49

PCP_SRC3 PCP Service Request Control Register 3 00F0H Page 15-54

PCP_SRC2 PCP Service Request Control Register 2 00F4H Page 15-53

PCP_SRC1 PCP Service Request Control Register 1 00F8H Page 15-52

PCP_SRC0 PCP Service Request Control Register 0 00FCH Page 15-51

MCA04790

PCP_CS PCP_SRC0

Control Registers Interrupt Registers

PCP_SRC1

PCP_SRC2

PCP_ES

PCP_ICR

PCP_SRC3
User’s Manual 15-43 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.10.1 PCP Control and Status Register, PCP_CS

This register can be ENDINIT-protected via bit EIE.

PCP_CS
PCP Control/Status Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ESR CWT CWE

rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PPS - PPE CS EIE RCB 0 RS RST EN

rw - rw rw rw rw r rh rwh rw

Field Bits Type Description

EN 0 rw PCP Enable
0 PCP is disabled for operation (default)
1 PCP is enabled for operation

Note: This bit does not enable/disable clocks for
power saving. It stops the PCP from accepting
new service requests.

RST 1 rwh PCP Reset Request
0 No PCP reset operation is requested
1 PCP reset is requested. Halt any operating

channel. Reset all control registers to default
values. Reset PCP state to default value.

RST is always read as 0, but is written with 1 in order
to initiate a reset.

RS 2 rh PCP Run/Stop Status Flag
0 PCP is stopped or idle (default)
1 PCP is currently running
User’s Manual 15-44 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
RCB 4 rw Channel Start Mode Control
0 Channel resume operation mode selected;

channel start PC is taken from restored context
1 Channel restart operation mode selected;

channel start PC is derived from the requested
channel number (= priority number of service
request)

Note: This is a global control bit and applies to all
channels.

EIE 5 rw ENDINIT Enable
0 Writes to PCP_CS are disabled if ENDINIT-

protection is generally enabled (see note)
1 Writes to PCP_CS are enabled if ENDINIT-

protection is generally enabled (see note)

CS [7:6] rw Context Size Selection
00 Use Full Context for all channels
01 Use Small Context for all channels
10 Use Minimum Context for all channels
11 Reserved

PPE 8 rw PRAM Partitioning Enable
0 PRAM is not partitioned
1 PRAM is partitioned

Note: When partitioned the PRAM is divided into two
areas (CSA and remainder). A PCP error will be
generated on an inappropriate action in either
region (PCP write operation with a target
address in the CSA or context restore from
outside the CSA).

Field Bits Type Description
User’s Manual 15-45 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
PPS [15:11] rw PRAM Partition Size
0 Reserved
1 CSA contains 9 context save regions
.. ..
n CSA contains 1 + 8 × ‘n’ context save regions

Note: The actual size of the CSA (in words) is given by
the formula (8 × ‘n’ + 1) × ‘x’, where ‘n’ is the PPS
value and ‘x’ is the number of registers in the
selected context model. This setting also
controls the number of channels that can be
invoked, e.g. setting this field to 1 will give a
CSA containing 9 context save regions,
channel 0 cannot be used so this setting allows
the use of 8 channels (channels 1 to 8). Do not
set this field to 0 when PPE = 1 as this will
disable all channels.

CWE 16 rw Channel Watchdog Enable
0 Disable Channel Watchdog
1 Enable Channel Watchdog

Note: When enabled the Channel Watchdog counts
the number of instructions executed since the
channel started. If this number exceeds the
Channel Watchdog Threshold then a PCP error
is generated.

CWT [23:17] rw Channel Watchdog Threshold
0 Reserved
1 Threshold = 16 instructions
.. ..
n Threshold = 16 × ‘n’ instructions

ESR [31:24] rw Error Service Request Number
SRPN for interrupt to CPU on an error condition.
00H No interrupt request posted (default)
value n Post n as SRNP interrupt to CPU on an

error condition (n not equal 00H)

– [10:9] – Reserved; should be written with 0.

0 3 r Reserved; read as 0; should be written with 0.

Field Bits Type Description
User’s Manual 15-46 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.10.2 PCP Error/Debug Status Register, PCP_ES

This is a read-only register, providing state information about error and debug conditions.

PCP_ES
PCP Error/Debug Status Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

EPC

rh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EPN PPC CWD 0 DBE IAE DCR IOP BER

rh rh rh r rh rh rh rh rh

Field Bits Type Description

BER 0 rh Bus Error Flag
Set if the last error/debug event was an error
generated by an FPI Bus error or an invalid address
access, otherwise clear.

Note: An FPI Bus error event does not cause the PCP
to post an error interrupt to the CPU. An FPI Bus
error interrupt is however generated by the FPI
control logic.

IOP 1 rh Invalid Opcode
Set if the last error/debug event was an error
generated by the PCP attempting to execute an Invalid
Opcode (i.e. the value fetched from CMEM for
execution by the PCP did not represent a valid
instruction), otherwise clear.

DCR 2 rh Disabled Channel Request Flag
Set if the last error/debug event was an error
generated by receipt of an interrupt request with an
SRPN that attempted to start a disabled PCP channel,
otherwise clear.
User’s Manual 15-47 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
Note: An interrupt request with the SRPN held in PCP_CS.ESR is posted to the CPU
whenever a PCP error event, other than an FPI Bus error, occurs. FPI Bus error
interrupt generation is automatically handled by the FPI Bus control logic rather
than by the PCP. The execution of a DEBUG instruction is not classed as an error
event and does not therefore generate an interrupt request to the CPU. The entire
contents of the register are updated whenever there is a debug or an error event

IAE 3 rh Instruction Address Error
Set if the last error/debug event was an error
generated by the PCP attempting to fetch an
instruction from an address outside the implemented
CMEM range as a result of a jump or branch
instruction, otherwise clear.

DBE 4 rh Debug Event Flag
Set if the last error/debug event was a debug event.

Note: A debug event does not cause the posting of an
interrupt to the CPU.

CWD 6 rh Channel Watchdog Triggered
Set if the last error/debug event was an error
generated by a channel program attempting to
execute more instructions than allowed by
PCP_CS.CWT.

PPC 7 rh PRAM Partitioning Check
Set if the last error/debug event was an error
generated by a channel program attempting to
perform a write to a PRAM address within the Context
Save Area or receipt of an interrupt request that would
have caused a context restore from outside the CSA.

EPN [15:8] rh Error Service Request Priority Number
Channel number of the channel that was operating
when the last error/debug event occurred. The value
stored is the service request priority number which
invoked this channel (= channel number), NOT the
current PCP priority number stored in field CPPN in
register PICR. Default = 00H

EPC [31:16] rh Error PC
PC value of the instruction that was executing when an
error or debug event occurred. Default = 0000H.

0 5 r Reserved; read as 0.

Field Bits Type Description
User’s Manual 15-48 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
detected (i.e. all status/error bits, other than the bit representing the last PCP
error/debug event, are cleared). This register therefore only provides a record of
the last error/debug event encountered. The only way to clear this register is to
reset the PCP.

15.10.3 PCP Interrupt Control Register, PCP_ICR

This register controls the operation of the PCP Interrupt Control Unit (PICU).

PCP_ICR
PCP Interrupt Control Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0
P

ONE
CYC

PARBCYC PIPN

r rw rw rh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 IE CPPN

r rh rh

Field Bits Type Description

CPPN [7:0] rh Current PCP Priority Number
This field indicates the current priority level of the PCP
and is automatically updated by hardware on entry into
an Interrupt Service Routine.

IE 8 rh Reserved

PIPN [23:16] rh Pending Interrupt Priority Number
This read-only field is updated by the PICU at the end
of each arbitration process and indicates the priority
number of a pending request. PIPN is set to 00H when
no request is pending and at the beginning of a new
arbitration process.
User’s Manual 15-49 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
PARBCYC [25:24] rw Number of Arbitration Cycles Control
This bit field controls the number of arbitration cycles
used to determine the request with the highest priority.
It follows the same coding scheme as described for the
CPU interrupt arbitration.
00 Four arbitration cycles (default)
01 Three arbitration cycles
10 Two arbitration cycles
11 One arbitration cycle

PONECYC 26 rw Clocks per Arbitration Cycle Control
This bit determines the number of clocks per arbitration
cycle.
0 Two clocks per arbitration cycle (default)
1 One clock per arbitration cycle

0 [15:9],
[31:27]

r Reserved; read as 0; should be written with 0.

Field Bits Type Description
User’s Manual 15-50 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.10.4 PCP Service Request Control Register 0 (TOS = 0)

PCP_SRC0
PCP Service Request Control Register 0 (TOS = 0) Reset Value: 0000 1000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SRR SRE TOS 0 SRPN

r rh r r r r

Field Bits Type Description

SRPN [7:0] r PCP Node 0 Service Request Priority Number
This number is automatically set by the PCP if it
needs to place a service request to the CPU.

TOS [11:10] r PCP Node 0 Type of Service Control
Always read as 00B (CPU service request)

SRE 12 r PCP Node 0 Service Request Enable
Always read as 1 (enabled)

SRR 13 rh PCP Node 0 Service Request Flag
0 No service request (Default)
1 Valid active service request

0 [9:8],
[15:14],
[31:16]

r Reserved; read as 0; should be written with 0.
User’s Manual 15-51 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.10.5 PCP Service Request Control Register 1 (TOS = 0)

PCP_SRC1
PCP Service Request Control Register 1 (TOS = 0) Reset Value: 0000 1000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SRR SRE TOS 0 SRPN

r rh r r r r

Field Bits Type Description

SRPN [7:0] r PCP Node 1 Service Request Priority Number
This number is automatically set by the PCP if it
needs to place a service request to the CPU.

TOS [11:10] r PCP Node 1 Type of Service Control
Always read as 00B (CPU service request)

SRE 12 r PCP Node 1 Service Request Enable
Always read as 1 (enabled)

SRR 13 rh PCP Node 1 Service Request Flag
0 No service request (Default)
1 Valid active service request

0 [9:8],
[15:14],
[31:16]

r Reserved; read as 0.
User’s Manual 15-52 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.10.6 PCP Service Request Control Register 2 (TOS = 1)

PCP_SRC2
PCP Service Request Control Register 2 (TOS = 1) Reset Value: 0000 1400H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SRR SRE TOS 0 SRPN

r rh r r r r

Field Bits Type Description

SRPN [7:0] r PCP Node 2 Service Request Priority Number
This number is automatically set by the PCP if it
needs to place a service request to itself.

TOS [11:10] r PCP Node 2 Type of Service Control
Always read as 01B (PCP service request)

SRE 12 r PCP Node 2 Service Request Enable
Always read as 1 (enabled)

SRR 13 rh PCP Node 2 Service Request Flag
0 No service request (Default)
1 Valid active service request

0 [9:8],
[15:14],
[31:16]

r Reserved; read as 0.
User’s Manual 15-53 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.10.7 PCP Service Request Control Register 3 (TOS = 1)

PCP_SRC3
PCP Service Request Control Register 3 (TOS = 1) Reset Value: 0000 1400H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SRR SRE TOS 0 SRPN

r rh r r r r

Field Bits Type Description

SRPN [7:0] r PCP Node 3 Service Request Priority Number
This number is automatically set by the PCP if it
needs to place a service request to itself.

TOS [11:10] r PCP Node 3 Type of Service Control
Always read as 01B (PCP service request)

SRE 12 r PCP Node 3 Service Request Enable
Always read as 1 (enabled)

SRR 13 rh PCP Node 3 Service Request Flag
0 No service request (Default)
1 Valid active service request

0 [9:8],
[15:14],
[31:16]

r Reserved; read as 0.
User’s Manual 15-54 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.11 PCP Instruction Set Details

This section describes the instruction set architecture of the PCP in detail.

15.11.1 Instruction Codes and Fields

All PCP instructions use a common set of fields to describe such things as the source
register, and the state of flags. Additionally, many instructions (including arithmetic and
many flow control instructions), are conditionally executed.

The descriptions of the PCP instructions are based on the following conventions.

>>, << Shift left or right, respectively.

[] Indirect access based on contents of brackets (de-reference).

#immNN Immediate value encoded into an instruction with width NN.

#offsetNN Address offset immediate value with width NN.

NextPC The current executing instruction’s address + 1.
(The next instruction to be fetched.)

cc_A, cc_B Condition Code CONDCA/CONDCB.
User’s Manual 15-55 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.11.1.1 Conditional Codes

Many PCP instructions have the option of being executed conditionally. The condition
code of an instruction is the field that specifies the condition to be tested before the
instruction is executed. Depending on the type of instruction there are 8 or 16 condition
codes available. The set of 8-condition codes is referred to as CONDCA, while the set
of 16-condition codes is referred to as CONDCB. The condition codes are based on an
equation of the Flags held in R7. See Table 15-11.

Table 15-11 Condition Codes

Description CONDCA/B Test (Flag Bits) Code Mnemonic

Unconditional A / B – 0H cc_UC

Zero/Equal A / B Z = 1 1H cc_Z

Not Zero/Not Equal A / B Z = 0 2H cc_NZ

Overflow A / B V = 1 3H cc_V

Carry/Unsigned Less Than/
Check Bit True

A / B C = 1 4H cc_C,
cc_ULT

Unsigned Greater Than A / B C OR Z = 0 5H cc_UGT

Signed Less Than A / B N XOR V = 1 6H cc_SLT

Signed Greater Than A / B (N XOR V) OR Z = 0 7H cc_SGT

Negative B N = 1 8H cc_N

Not Negative B N = 0 9H cc_NN

Not Overflow B V = 0 AH cc_NV

No Carry/Unsigned Greater
than or Equal

B C = 0 BH cc_NC,
cc_UGE

Signed Greater Than or
Equal

B N XOR V = 0 CH cc_SGE

Signed Less than or Equal B (N XOR V) OR Z = 1 DH cc_SLE

CNT1 Equal Zero B CNZ1 = 1 EH cc_CNZ

CNT1 Not Equal Zero B CNZ1 = 0 FH cc_CNN
User’s Manual 15-56 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.11.1.2 Instruction Fields

Table 15-12 lists the instruction field definitions of the PCP instruction set architecture.

Note: The exact syntax for these fields may be different depending on which tool (e.g.
assembler) is used. Please refer to the respective tool descriptions.

Table 15-12 Instruction Field Definitions

Symbol Syntax Description

CNC

CNC = 00

CNC = 01

CNC = 10

CNC = 11

Counter Control
This field is used by the COPY instruction to control the number
of repetitions of the data transfer. See also Figure 15-8.
Decrement CNT0 after each transfer. Continue until CNT0 = 0,
and proceed to next instruction.
Post Decrement CNT0 after each transfer. Continue until
CNT0 = 0, then decrement CNT1 and proceed to next
instruction.
Post Decrement CNT0 after each transfer. Continue until
CNT0 = 0, then decrement CNT1. Reload CNT0 value and
continue. Continue until CNT1 = 0, then proceed to next
instruction.
Reserved.

RC0

RC0 =
001..111
RC0 = 000

Counter CNT0 Reload Value.
Counter CNT0 is an implicit counter used by the COPY
instruction. The reload value given in the instruction specifies
how many data transfers are to be performed by the instruction.
See also Figure 15-8.
Perform 1..7 data transfers

Perform 8 data transfers

cc_A,
cc_B

see
Table 15-
11

Condition Code
Specifies conditional execution of instruction according to
CONDCA or CONDCB.

DST+-
DST (00)
DST+ (01)
DST- (10)
(11)

Destination Address Pointer Control
No Change (DST)
Post Increment by Size (DST+)
Post Decrement by Size (DST-)
Reserved.

EC
EC = 0
EC = 1

Exit Count Control
No action
Decrement CNT1
User’s Manual 15-57 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
EDA
EDA = 0
EDA = 1

External Debug Action
No External Debug Action caused
Cause an External Debug Action (breakpoint pin etc.)

EP
EP = 0

EP = 1

Entry Point Control
Set the PC to Channel Program Start. EP = 0 assumes that a
Channel Entry Table exists in the base of Code Memory. Failure
to provide one will cause improper operation.
Set the PC to the address contained in NextPC (next instruction)
address.

INT
INT = 0
INT = 1

Interrupt Control
No Interrupt
INT = 1 AND (cc_B = True) means Issue Interrupt

SIZE
SIZE = 00
SIZE = 01
SIZE = 10
SIZE = 11

Data Size Control
Byte (8-bit)
Half-word (16-bit)
Word (32-bit)
Reserved

SRC+-
SRC (00)
SRC+ (01)
SRC- (10)
(11)

Source Address Pointer Control
No Change (SRC)
Post Increment by Size (SRC+)
Post Decrement by Size (SRC-)
Reserved

S/C
S/C = 0
S/C = 1

Test Bit Control
Check for Clear (0)
Check for Set (1)

SDB
SDB = 0
SDB = 1

Stop on Debug
Continue running if debug event triggered
Stop PCP if debug event triggered

ST
ST = 0
ST = 1

Stop Channel
Leave Channel Program enabled
Stop Channel Program from accepting new Service Requests
(clear R7_CEN)

Table 15-12 Instruction Field Definitions (cont’d)

Symbol Syntax Description
User’s Manual 15-58 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.11.2 Counter Operation for COPY Instruction

Figure 15-8 Counter Operation for COPY Instruction

MCA04791

DATA Transfer

COPY
Instruction

CNT0 = 0 ?

Next
Instruction

CNT0 := RC0

CNT0 := CNT0 - 1

CNC = ?

CNT1 := CNT1 - 1 CNT1 := CNT1 - 1

CNT1 = 0 ?

no

yes

00 10

01

yes

no
User’s Manual 15-59 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.11.3 Divide and Multiply Instructions

The PCP provides Multiply and Divide capabilities (unsigned values only). All Multiply
and Divide instructions operate on 8 bits of data (taken from the dividend for divide, from
the multiplicand for multiply). This strategy allows the user to implement the appropriate
number of instructions (“steps”) as required for his data format.

Each execution of a divide instruction (DSTEP) performs a division which generates
8 bits of result, and also manipulates the registers being used to allow the execution of
consecutive divide (DSTEP) instructions to build divide algorithms in multiples of 8 bits
(see Section 15.13.3 for more details).

Each execution of a multiply instruction (MSTEP32 and MSTEP64) performs a
multiplication on 8 bits of data (taken from the multiplicand) and also manipulates the
registers to allow execution of consecutive multiply instructions to build multiply
algorithms in multiples of 8 bits (see Section 15.13.4 for more details).

The following restrictions apply to the use of Divide and Multiply instructions:

– The first instruction of any divide sequence must be the DINIT (initialization)
instruction. Any additional instructions, other than MINIT, MSTEP32 or MSTEP64,
may also be used within the sequence as long as they do not modify any of the
registers used for division (R0, Ra and Rb). All subsequent divide instructions within
the sequence (DSTEP) must use the same register for dividend and the same register
for divisor as was used in the preceding DINIT instruction.

– The first instruction of any multiply sequence must be the MINIT (initialization)
instruction. Any additional instructions, other than DINIT or DSTEP, may also be used
within the sequence as long as they do not modify any of the registers used for
multiplication (R0, Ra and Rb). All subsequent multiply instructions within the
sequence (MSTEP32 and MSTEP64) must use the same register for multiplicand and
the same register for multiplier as was used in the preceding MINIT instruction.

– Neither of the operand registers (Ra or Rb) may be R0 (which is used implicitly within
all the instructions) and the same register may not be supplied as both operand
registers of an instruction (e.g. DSTEP R3, R3 is invalid).

Note: Failure to adhere to these restrictions will yield undefined results.

In the descriptions attached to each Multiply/Divide instruction a “Pseudo Code Model”
is supplied to provide an unambiguous definition of the function of the instruction. The
Models supplied for the DSTEP and MSTEP32 instructions use 32 bit unsigned integer
arithmetic, ignoring any possible overflows. The model supplied for the MSTEP64 uses
a 40-bit unsigned multiply and then shifts this result right by 8 bits (discards the least
significant 8 bits of the 40-bit result).

The DSTEP instruction also has some conditions stipulated regarding input values to the
instruction. Use of the Pseudo Code Model for the DSTEP instruction with invalid input
values will yield an invalid result.
User’s Manual 15-60 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.11.4 ADD, 32-Bit Addition

ADD Syntax ADD Rb, Ra, cc_A

Description If the condition CONDCA is true, then add the contents of
register Ra to the contents of register Rb; place the result in
Rb. If CONDCA is false, no operation is performed.

Operation if (CONDCA = True) then R[b] = R[b] + R[a] else NOP

Flags N, Z, V, C

ADD.I Syntax ADD.I Ra, #imm6

Description Add the zero-extended immediate value imm6 to the
contents of register Ra; place the result in Ra.

Operation R[a] = R[a] + zero_ext(imm6)

Flags N, Z, V, C

ADD.F Syntax ADD.F Rb, [Ra], Size

Description Add the contents of the address location specified by the
contents of register Ra to the contents of register Rb; place
the result in Rb.

Note: Byte and Half-word values are zero-extended.

Operation R[b] = R[b] + zero_ext(FPI[R[a]])

Flags N, Z, V, C

ADD.PI Syntax ADD.PI Ra, [#offset6]

Description Add the contents of the PRAM location specified by the
addition of contents of the PRAM Data Pointer, shifted left by
six bits, and the zero-extended 6-bit value offset6 to the
contents of register Ra; place the result in Ra.

Operation R[a] = R[a] + PRAM[(DPTR<<6) + zero_ext(#offset6)]

Flags N, Z, V, C
User’s Manual 15-61 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.11.5 AND, 32-Bit Logical AND

AND Syntax AND Rb, Ra, cc_A

Description If the condition CONDCA is true, then perform a bitwise
logical AND of the contents of register Ra and the contents of
register Rb; place the result in Rb. If CONDCA is false, no
operation is performed.

Operation if (CONDCA = True) then R[b] = R[b] AND R[a] else NOP

Flags N, Z

AND.F Syntax AND.F Rb, [Ra], Size

Description Perform a bitwise logical AND of the contents of the address
location, specified by the contents of register Ra, and the
contents of register Rb; place the result in Rb.

Operation R[b] = R[b] AND zero_ext(FPI[R[a]])

Flags N, Z

AND.PI Syntax AND.PI Ra, [#offset6]

Description Perform a bitwise logical AND of the contents of the PRAM
location specified by the addition of contents of the PRAM
Data Pointer, shifted left by six bits, and the zero-extended
6-bit value offset6, and the contents of register Ra; place the
result in Ra.

Operation R[a] = R[a] AND PRAM[(DPTR<<6) + zero_ext(#offset6)]

Flags N, Z
User’s Manual 15-62 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.11.6 CHKB, Check Bit

15.11.7 CLR, Clear Bit

CHKB Syntax CHKB Ra, #imm5, S/C

Description If bit imm5 of register Ra is equal to the specified test value
S/C then set the carry flag R7.C, else clear the carry flag.

Operation if (R[a][imm5] = S/C) then R7_C = 1 else R7_C = 0

Flags C

CLR Syntax CLR Ra, #imm5

Description Clear bit imm5 of register Ra to 0.

Operation R[a][imm5] = 0

Flags None

CLR.F Syntax CLR.F [Ra], #imm5, Size

Description Clear bit imm5 of the address location specified through the
contents of register Ra to 0. This instruction is executed
using a locked read-modify-write FPI Bus transaction.

Operation FPI[(R[a])][imm5] = 0

Flags None
User’s Manual 15-63 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.11.8 COMP, 32-Bit Compare

COMP Syntax COMP Rb, Ra, cc_A

Description If the condition CONDCA is true, then subtract the contents
of register Ra from the contents of register Rb; set the flags
in register R7 according to the result of the subtraction;
discard the subtraction result. If CONDCA is false, no
operation is performed.

Operation if (CONDCA = True) then R7_FLAGS = Flags(R[b] - R[a])

Flags N, Z, V, C

COMP.I Syntax COMP.I Ra, #imm6

Description Subtract the sign-extended immediate value imm6 from the
contents of register Ra; set the flags in register R7 according
to the result of the subtraction; discard the subtraction result.

Operation R7_FLAGS = Flags(R[a] - sign_ext(imm6))

Flags N, Z, V, C

COMP.F Syntax COMP.F Rb, [Ra], Size

Description Subtract the contents of the address location specified by the
contents of register Ra from the contents of register Rb; set
the flags in register R7 according to the result of the
subtraction; discard the subtraction result.

Operation R7_FLAGS = Flags(R[b] - sign_ext(FPI[R[a]]))

Flags N, Z, V, C

COMP.PI Syntax COMP.PI Ra, [#offset6]

Description Subtract the contents of the PRAM location specified by the
addition of contents of the PRAM Data Pointer, shifted left by
six bits, and the zero-extended 6-bit value offset6, from the
contents of register Ra; set the flags in register R7 according
to the result of the subtraction; discard the subtraction result.

Operation R7_FLAGS = Flags(R[a] - PRAM[(DPTR<<6) +
zero_ext(#offset6)])

Flags N, Z, V, C
User’s Manual 15-64 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.11.9 COPY, DMA Instruction

COPY Syntax COPY DST+-, SRC+-, CNC, RC0, SIZE

Description Moves the contents of FPI Bus source location to FPI Bus
destination location. Source location is pointed to by the
contents of register R4; destination location is pointed to by
the contents of register R5. Options (see alsoTable 15-12):
Source pointer (SRC+-): Increment, decrement or
unchanged;
Destination pointer (SRC+-): Increment, decrement or
unchanged;
Counter control (CNC): see Table 15-12.
Counter 0 reload value (CNT0): see Table 15-12.
Data transfer width (SIZE): byte, half-word, word (pointers
are incremented/decremented based upon SIZE).

Operation temp = zero_ext(FPI[R[4]]); value loaded and extended
depending on SIZE
FPI(R[5]) = temp
R4 = R4 +/- n; n depending on SRC+- and SIZE
R5 = R5 +/- n; n depending on DST+- and SIZE
for counter operation see Figure 15-8 and Table 15-12.

Flags CN1Z
User’s Manual 15-65 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.11.10 DEBUG, Debug Instruction

15.11.11 DINIT, Divide Initialization Instruction

DEBUG Syntax DEBUG EDA, SDB, cc_B

Description Conditionally cause a debug event if condition CONDCB is
true. Optionally stop channel execution (SDB = 1) and/or
generate an external debug event (EDA = 1).

Operation if (CONDCB = True) then
 if (EDA = 1) then activate BRK_OUT pin
 if (SDB = 1) then
 R7_CEN = 0; disable further channel invocation
 save_context
 idle
 endif
 set ES.DBE; indicate debug event
 ES.PC = NextPC
 ES.PN = channel_number
endif

Flags none

DINIT Syntax DINIT <R0>, Rb, Ra

Description Initialize Divide logic ready for divide sequence (Rb / Ra) and
Clear R0. If value of Ra is 0 then set V (to flag divide by 0
error) otherwise clear V. If value of Rb is 0 and value of Ra is
not 0 then set Z (to flag a zero result) otherwise clear Z.

Operation R0 = 0

Flags Z, V
User’s Manual 15-66 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.11.12 DSTEP, Divide Instruction

Note: The value in Ra must always be greater than the value in R0 prior to execution of
the DSTEP instruction. If the rules specified in Section 15.11.3 are followed then
the above description and operation are correct. Failure to adhere to these rules
will yield undefined results.

15.11.13 INB, Insert Bit

DSTEP Syntax DSTEP <R0>, Rb, Ra

Description Perform 1 step (eight bits) of an unsigned 32- by 32-bit divide
(Rb / Ra). Shift R0 left by 8 bits, copy the most significant byte
of Rb into LS byte of R0. Shift Rb left by 8 bits and add (R0
divided by Ra). Load R0 with (the remainder of R0 divided by
Ra).

Operation R0 = (R0 << 8) + (Rb >> 24)
Rb = (Rb << 8) + R0 / Ra
R0 = R0 % Ra

Flags Z

INB Syntax INB Rb, Ra, cc_A

Description If CONDCA is true, then insert the carry flag R7.C into
register Rb at the bit position specified through bits [4..0] of
register Ra. If CONDCA is false, no operation is performed.

Operation if (CONDCA = True) then R[b][R[a][4:0]] = R7_C else NOP

Flags None

INB.I Syntax INB.I Ra, #imm5

Description Insert the carry flag R7.C into register Ra at the bit position
specified through the immediate value imm5.

Operation R[a][imm5] = R7_C

Flags None
User’s Manual 15-67 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.11.14 EXIT, Exit Instruction

EXIT Syntax EXIT EC, ST, INT, EP, cc_B

Description Unconditionally exit channel program execution. Optionally
decrement counter CNT1 (EC = 1), disable further channel
invocation (ST = 1), generate an interrupt request (INT = 1)
if condition CONDCB is true. Field EP is used to set the
channel code entry point in Channel Resume Mode to either
the address of the next instruction (EP = 1) or to the start
address of the channel (EP = 0). The EXIT instruction is
finished with a context save operation.

Note: The EP option is only in effect when Channel Resume
operation is globally selected through
PCP_CS.RCB = 0. If PCP_CS.RCB = 1, Channel
restart mode is selected for all channels, and the EP
field of the EXIT instruction is disregarded.

Operation if (EC = 1) then CNT1 = CNT1 - 1
if (ST = 1) then R7_CEN = 0
if ((INT = 1) AND (cc_B = True)) then
activate_interrupt_request
if (EP = 1) then R7_PC = NextPC else R7_PC =
channel_entry_point
save_context

Flags CN1Z
User’s Manual 15-68 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.11.15 JC, Jump Conditionally

JC Syntax JC offset6, cc_B

Description If CONDCB is true, then add the sign-extended value
specified by offset6 to the contents of the PC, and jump to
that address. If CONDCB is false, no operation is performed.

Operation if (CONDCB = True) then (PC = PC + sign_ext(offset6)) else
NOP

Flags None

JC.A Syntax JC.A #address16, cc_B

Description If CONDCB is true, then load the value specified by
address16 into the PC, and jump to that address. If
CONDCB is false, no operation is performed.

Operation if (CONDCB = True) then (PC = address16) else NOP

Flags None

JC.I Syntax JC.I Ra, cc_B

Description If CONDCB is true, then add the value specified by Ra[15:0]
to the contents of the PC, and jump to that address. Value
Ra[15:0] is treated as a signed 16-bit number. If CONDCB is
false, no operation is performed.

Operation if (CONDCB = True) then (PC = PC + (R[a][15:0])) else NOP

Flags None

JC.IA Syntax JC.IA Ra, cc_B

Description If CONDCB is true, then load the value specified by Ra[15:0]
into the PC, and jump to that address. Value Ra[15:0] is
treated as an unsigned 16-bit number. If CONDCB is false,
no operation is performed.

Operation if (CONDCB = True) then (PC = (R[a][15:0])) else NOP

Flags None
User’s Manual 15-69 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.11.16 JL, Jump Long Unconditional

15.11.17 LD, Load

JL Syntax JL offset10

Description Add the sign-extended value specified by offset10 to the
contents of the PC, and jump to that address.

Operation PC = PC + sign_ext(offset10)

Flags None

LD.F Syntax LD.F Rb, [Ra], Size

Description Load the zero-extended contents of the address location
specified by the contents of register Ra into register Rb.

Operation R[b] = zero_ext(FPI[R[a]])

Flags N, Z

LD.I Syntax LD.I Ra, #imm6

Description Load the zero-extended value specified by imm6 into register
Ra.

Operation R[a] = zero_ext(imm6)

Flags N, Z

LD.IF Syntax LD.IF [Ra], #offset5, Size

Description Load the zero-extended contents of the address location,
specified by the addition of the contents of register Ra and
the value specified by imm5, into register R0.

Operation R[0] = zero_ext(FPI[R[a] + zero_ext(imm5)])

Flags N, Z

LD.P Syntax LD.P Rb, [Ra], cc_A

Description If condition CONDCA is true, then load the contents of the
PRAM address location, specified by the addition of contents
of the PRAM Data Pointer, shifted left by six bits, and the
zero-extended 6-bit value Ra[5:0] into register Rb. If
condition CONDCA is false, no operation is performed.

Operation if (CONDCA = True) then R[b] = PRAM[(DPTR<<6) +
zero_ext(R[a][5:0])] else NOP

Flags N, Z
User’s Manual 15-70 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
LD.PI Syntax LD.PI Ra, [#offset6]

Description Load the contents of the PRAM location specified by the
addition of contents of the PRAM Data Pointer, shifted left by
six bits, and the zero-extended 6-bit value offset6 into
register Ra.

Operation R[a] = PRAM[(DPTR<<6) + zero_ext(offset6)]

Flags N, Z
User’s Manual 15-71 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.11.18 LDL, Load 16-bit Value

15.11.19 Multiply Initialization Instruction

15.11.20 MOV, Move Register to Register

LDL.IL Syntax LDL.IL Ra, #imm16

Description Load the immediate value imm16 into the lower bits of
register Ra (bits [15:0]). Bits [31:16] of register Ra are
unaffected. Value imm16 is treated as an unsigned 16-bit
number.

Operation R[a][15:0] = imm16

Flags N, Z

LDL.IU Syntax LDL.IU Ra, #imm16

Description Load the immediate value imm16 into the upper bits of
register Ra (bits [31:16]). Bits [15:0] of register Ra are
unaffected.

Operation R[a][31:16] = imm16

Flags N, Z

MINIT Syntax MINIT <R0>, Rb, Ra

Description Initialize Multiply logic ready for multiply sequence. Clear R0.
If value of Ra is zero or value of Rb is zero then set Z (to flag
zero result) else clear Z.

Operation R0 = 0

Flags Z

MOV Syntax MOV Rb, Ra, cc_A

Description If condition CONDCA is true, then move the contents of
register Ra into register Rb. If CONDCA is false, no operation
is performed.

Operation if (CONDCA = True) then R[b] = R[a] else NOP

Flags N, Z
User’s Manual 15-72 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.11.21 Multiply Instructions

Note: In the case of the MSTEP64 instruction above the “temp” variable is a 40 bit
variable and all calculations are performed using 40 bit unsigned arithmetic. All
other calculations use 32 bit unsigned arithmetic.

MSTEP32 Syntax MSTEP32 <R0>, Rb, Ra

Description Perform an unsigned multiply step, using eight bits of data
taken from Rb, keeping the least significant 32 bits of a
potential 64 bit result.
Left rotate Rb by 8 bits. Shift R0 left by 8 bits. Add (Ra
multiplied by the least significant 8 bits of Rb) to R0. If value
of R0 is zero then set Z (to signal zero result) else clear Z.

Operation Rb = (Rb << 8) + (Rb >> 24)
R0 = (R0 << 8) + (Rb & 0xff) × Ra

Flags Z

MSTEP64 Syntax MSTEP64 <R0>, Rb, Ra

Description Perform an unsigned multiply step, using eight bits of data
taken from Rb, keeping 40 bits of a potential 64 bit result.
Add (Ra multiplied by the least significant 8 bits of Rb) to R0
and retain the 40 bit result (shown as temp below). Store the
most significant 32 bits of the result (temp) in R0. Shift Rb
right by 8 bits. Store the least significant 8 bits of the first
result (temp) in the most significant 8 bits of Rb.
If value of R0 is zero then set Z (to signal zero result) else
clear Z.

Operation temp = R0 + Ra × (Rb & 0xff)
R0 = temp >> 8
Rb = (Rb >> 8) + ((temp & 0xff) << 24)

Flags Z
User’s Manual 15-73 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.11.22 NEG, Negate

15.11.23 NOP, No Operation

15.11.24 NOT, Logical NOT

NEG Syntax NEG Rb, Ra, cc_A

Description If condition CONDCA is true, then move the 2’s complement
of the contents of register Ra into register Rb. If CONDCA is
false, no operation is performed.

Operation if (CONDCA = True) then R[b] = (- R[a]) else NOP

Flags N, Z, V, C

NOP Syntax NOP

Description No operation. The NOP instruction puts the PCP in low-
power operation.

Operation no operation

Flags None

NOT Syntax NOT Rb, Ra, cc_A

Description If condition CONDCA is true, then move the 1’s complement
of the contents of register Ra into register Rb. If CONDCA is
false, no operation is performed.

Operation if (CONDCA = True) then R[b] = NOT(R[a]) else NOP

Flags N, Z
User’s Manual 15-74 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.11.25 OR, Logical OR

OR Syntax OR Rb, Ra, cc_A

Description If the condition CONDCA is true, then perform a bitwise
logical OR of the contents of register Ra and the contents of
register Rb; place the result in Rb. If CONDCA is false, no
operation is performed.

Operation if (CONDCA = True) then R[b] = R[b] OR R[a] else NOP

Flags N, Z

OR.F Syntax OR.F Rb, [Ra], Size

Description Perform a bitwise logical OR of the contents of the address
location, specified by the contents of register Ra, and the
contents of register Rb; place the result in Rb.

Operation R[b] = R[b] OR zero_ext(FPI[R[a]])

Flags N, Z

OR.PI Syntax OR.PI Ra, [#offset6]

Description Perform a bitwise logical OR of the contents of the PRAM
location specified by the addition of contents of the PRAM
Data Pointer, shifted left by six bits, and the zero-extended
6-bit value offset6, and the contents of register Ra; place the
result in Ra.

Operation R[a] = R[a] OR PRAM[(DPTR<<6) + zero_ext(#offset6)]

Flags N, Z
User’s Manual 15-75 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.11.26 PRI, Prioritize

15.11.27 RL, Rotate Left

PRI Syntax PRI Rb, Ra, cc_A

Description If condition CONDCA is true, then find the bit position of the
most significant 1 in register Ra and put the number into
register Rb. The bit location, 31..0, is encoded as a 5-bit
number stored in Rb[4:0]. If the contents of Ra is zero, bit
Rb[5] is set, while all other bits in Rb are cleared. If CONDCA
is false, no operation is performed.

Operation if (CONDCA = False) then
 NOP
else
 if (R[a] = 0) then
 R[b] = 0x20
 else
 R[b] = bit_pos(most_significant_1(R[a]))

Flags N, Z

RL Syntax RL Ra, #imm5

Description Rotate the contents of register Ra to the left by the number of
bit positions specified through the 5-bit value imm5. The
values defined for imm5 are 1, 2, 4 and 8. The carry flag,
R7.C, is set to the last bit shifted out of bit 31 of register Ra.

Operation tmp = R[a]
R[a] = R[a] << imm5; imm5 = 1, 2, 4, 8
R7_C = last bit shifted out of R[a]
tmp = tmp >> 32 - imm5
R[a] = tmp OR R[a]

Flags N, Z
User’s Manual 15-76 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.11.28 RR, Rotate Right

15.11.29 SET, Set Bit

RR Syntax RR Ra, #imm5

Description Rotate the contents of register Ra to the right by the number
of bit positions specified through the 5-bit value imm5. The
values allowed for imm5 are 1, 2, 4 and 8.

Operation tmp = R[a]
R[a] = R[a] >> imm5; imm5 = 1, 2, 4, 8
tmp = tmp << 32 - imm5
R[a] = tmp OR R[a]

Flags N, Z

SET Syntax SET Ra, #imm5

Description Set bit imm5 of register Ra to 1.

Operation R[a][imm5] = 1

Flags None

SET.F Syntax SET.F [Ra], #imm5, Size

Description Set bit imm5 of the address location specified through the
contents of register Ra to 1. This instruction is executed using
a locked read-modify-write FPI Bus transaction.

Operation FPI[(R[a])][imm5] = 1

Flags None
User’s Manual 15-77 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.11.30 SHL, Shift Left

15.11.31 SHR, Shift Right

SHL Syntax SHL Ra, #imm5

Description Shift the contents of register Ra to the left by the number of
bit positions specified through the 5-bit value imm5. The
values allowed for imm5 are 1, 2, 4 and 8. The carry flag,
R7.C, is set to the last bit shifted out of bit 31 of register Ra.
Zeros are shifted in from right.

Operation R[a] = R[a] << imm5; imm5 = 1, 2, 4, 8
R7_C = last bit shifted out of R[a]

Flags N, Z, C

SHR Syntax SHR Ra, #imm5

Description Shift the contents of register Ra to the right by the number of
bit positions specified through the 5-bit value imm5. The
values allowed for imm5 are 1, 2, 4 and 8. Zeros are shifted
in from left.

Operation R[a] = R[a] >> imm5; imm5 = 1, 2, 4, 8

Flags N, Z
User’s Manual 15-78 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.11.32 ST, Store

ST.F Syntax ST.F Rb, [Ra], Size

Description Store the contents of register Rb to the address location
specified by the contents of register Ra. When the Size is byte
or half-word, the data is stored with the internal LSB (bit 0)
properly aligned to the correct FPI Bus byte or half-word lane.

Operation FPI[R[a]] = R[b]

Flags None

ST.IF Syntax ST.IF [Ra], #offset5, Size

Description Store the contents of R0 to the address location specified by
the addition of the contents of register Ra and the value
specified by imm5. When the Size is byte or half-word, the
data is stored with the internal LSB (bit 0) properly aligned to
the correct FPI Bus byte or half-word lane.

Operation FPI[R[a] + zero_ext(imm5)] = R[0]

Flags None

ST.P Syntax ST.P Rb, [Ra], cc_A

Description If condition CONDCA is true, then store the contents of Rb to
the PRAM address location specified by the addition of the
contents of the PRAM Data Pointer, shifted left by six bits, and
the zero-extended 6-bit value Ra[5:0]. If condition CONDCA
is false, no operation is performed.

Operation if (CONDCA = True) then PRAM[(DPTR<<6) +
zero_ext(R[a][5:0])] = R[b] else NOP

Flags None

ST.PI Syntax ST.PI Ra, [#offset6]

Description Store the contents of register Rb to the PRAM location
specified by the addition of the contents of the PRAM Data
Pointer, shifted left by six bits, and the zero-extended 6-bit
value offset6.

Operation PRAM[(DPTR<<6) + zero_ext(offset6)] = R[b]

Flags None
User’s Manual 15-79 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.11.33 SUB, 32-Bit Subtract

SUB Syntax SUB Rb, Ra, cc_A

Description If the condition CONDCA is true, then subtract the contents of
register Ra from the contents of register Rb; place the result
in Rb. If CONDCA is false, no operation is performed.

Operation if (CONDCA = True) then R[b] = R[b] - R[a] else NOP

Flags N, Z, V, C

SUB.I Syntax SUB.I Ra, #imm6

Description Subtract the zero-extended immediate value imm6 from the
contents of register Ra; place the result in Ra.

Operation R[a] = R[a] - zero_ext(imm6)

Flags N, Z, V, C

SUB.F Syntax SUB.F Rb, [Ra], Size

Description Subtract the sign-extended contents of the address location
specified by the contents of register Ra from the contents of
register Rb; place the result in Rb.

Operation R[b] = R[b] - sign_ext(FPI[R[a]])

Flags N, Z, V, C

SUB.PI Syntax SUB.PI Ra, [#offset6]

Description Subtract the contents of the PRAM location specified by the
addition of contents of the PRAM Data Pointer, shifted left by
six bits, and the zero-extended 6-bit value offset6 from the
contents of register Ra; place the result in Ra.

Operation R[a] = R[a] - PRAM[(DPTR<<6) + zero_ext(#offset6)]

Flags N, Z, V, C
User’s Manual 15-80 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.11.34 XOR, 32-Bit Logical Exclusive OR

XOR Syntax XOR Rb, Ra, cc_A

Description If the condition CONDCA is true, then perform a bitwise
logical Exclusive-OR of the contents of register Ra and the
contents of register Rb; place the result in Rb. If CONDCA is
false, no operation is performed.

Operation if (CONDCA = True) then R[b] = R[b] XOR R[a] else NOP

Flags N, Z

XOR.F Syntax XOR.F Rb, [Ra], Size

Description Perform a bitwise logical Exclusive-OR of the contents of the
address location, specified by the contents of register Ra, and
the contents of register Rb; place the result in Rb.

Operation R[b] = R[b] XOR zero_ext(FPI[R[a]])

Flags N, Z

XOR.PI Syntax XOR.PI Ra, [#offset6]

Description Perform a bitwise logical Exclusive-OR of the contents of the
PRAM location specified by the addition of contents of the
PRAM Data Pointer, shifted left by six bits, and the zero-
extended 6-bit value offset6, and the contents of register Ra;
place the result in Ra.

Operation R[a] = R[a] XOR PRAM[(DPTR<<6) + zero_ext(#offset6)]

Flags N, Z
User’s Manual 15-81 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.11.35 Flag Updates of Instructions

Most instructions update the state flags in R7. In Table 15-13, each instruction is shown
with the flags that it updates.

Table 15-13 Flag Updates

Instruction CN1Z V C N Z

ADD – yes yes yes yes

AND – – – yes yes

CHKB – – yes – –

CLR – – – – –

COMP – yes yes yes yes

COPY yes – – – –

DEBUG – – – – –

EXIT yes – – – –

INB – – – – –

JC – – – – –

JL – – – – –

LD – – – yes yes

LDL – – – yes yes

MOV – – – yes yes

NEG – yes yes yes yes

NOP – – – – –

NOT – – – yes yes

OR – – – yes yes

PRI – – – yes yes

RR – – – yes yes

RL – – yes yes yes

SET – – – – –

SHR – – – yes yes

SHL – – yes yes yes

ST – – – – –

SUB – yes yes yes yes

XOR – – – yes yes
User’s Manual 15-82 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.12 Programming of the PCP

In this section, several techniques are outlined to help design Channel Programs. There
are also examples on configuring a Channel Program’s context.

15.12.1 Initial PC of a Channel Program

A Channel Program can begin operation at the Channel Entry Table location
corresponding to the priority of the interrupt. This is much like an interrupt vector location
for that channel in a traditional processor architecture. When the Channel Program is
started, the PC is set to 2 times the Channel Number (SRPN). Since the base of the
Channel Entry Table is the bottom of the code memory (PCODE) address range, and
since each entry in the table is two instructions long, this address computation results in
the first instruction of the Channel Program for that SRPN being fetched from memory
for execution.

Alternately, the Channel Program can be made to begin executing at whatever address
its restored context holds in R7.PC.

If PCP_CS.RCB = 1, then the Channel Program is forced to always start at its Channel
Entry Table location regardless of the PC value stored in the CSA. If PCP_CS.RCB = 0,
then the Channel Program will simply begin executing at whatever PC value is restored
in the context R7.PC.

It is important to be aware of the implications of these two approaches on how code
memory should be configured, and what the initial value of the PC should be in the
Channel Program’s context that is loaded in the PRAM Context Save Area at boot time.

15.12.1.1 Channel Entry Table

When PCP_CS.RCB = 1, the program counter of the PCP is vectored to the appropriate
channel entry table each time a channel program is invoked by the receipt of an interrupt.
The PCP is forced to start executing from its channel entry table location regardless of
its previous context or PC state.

If the EXIT instruction is executed with EP = 0, the PC saved during the context save
operation will be the channel entry table location for that channel. That means that the
next time the Channel Program is started, it will begin operation at the appropriate
location in the Channel Entry Table.

Note: If EP = 0 is set in any Channel Program, or if PCP_CS.RCB = 1, a Channel Entry
Table must be provided at the base of Code Memory. Otherwise this table is not
needed.
User’s Manual 15-83 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.12.1.2 Channel Resume

When PCP_CS.RCB = 0, the program counter of the PCP is vectored to the address that
is restored from the Channel Program’s context. This means that before exiting, a
Channel Program must itself arrange for where it will resume execution by configuring
the value of its PC in its saved context so that it restarts at the desired location.

In this way, arbitrarily complex interrupt-driven state machines can be created as
individual Channel Programs. Channel Programs that always start at their beginning,
that pick up where they left off, or pick up elsewhere, or that have a mix of these
approaches can be constructed.

An example of a restarting Channel Program is shown below. Before exiting, the channel
branches back to the address of the START label minus 1 (note that START – 1 = CH16)
and then exits. This will leave the next value of the PC in the Channel Program’s context
as the address of the START label.

CH16: ;Channel Program 16
EXIT EC=1 ST=0 INT=0 EP=1 cc_UC ;exit, no intr., leave PC @ next

START: ;nominal channel start address
ST.IF base #0x8 SIZE=32 ;output note from R0
JC CH16, cc_UC ;loop back before exit

Note that when the Channel Program is originally configured by the programmer, the PC
field in the R7 context of this Channel Program should also be set to the address of the
START label.

Similarly, an interrupt-driven state machine can be created by exiting with the next PC
value pointing to the start of the next state in a state machine implemented by the
Channel Program. The next example (see below) shows a program starting at the
address to the STATE0 label. It proceeds after the first interrupt to STATE1 – 1, where
the Channel Program is left ready for the next state, STATE1 in the state machine. After
the next interrupt it executes to address STATE2 – 1 and the Channel Program is left
ready for the next state, STATE2. After another interrupt, it proceeds through STATE2.
The Channel Program jumps back to START, which is STATE0 – 1. The state machine
has gone through one cycle and it is ready to restart in STATE0.

;This program is intended to test the sequence of exit/operate just
;as if you were implementing an interrupt driven state machine.
;It requires a periodic sequence of interrupts.

START:
EXIT EC=1,ST=0,INT=0,EP=1,cc_UC ;begin exit

STATE0:
COMP.I R5,#0x0 ;compare to interrupt number it should be
JC ERROR,cc_NZ ;jump to error routine if not correct
ADD.I R5,#0x1 ;increment state number
EXIT EC=1,ST=0,INT=0,EP=1,cc_UC ;begin exit
User’s Manual 15-84 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
STATE1:
COMP.I R5,#0x1 ;compare to interrupt number it should be
JC ERROR,cc_NZ ;jump to error routine if not correct
ADD.I R5,#0x1 ;increment state number
EXIT EC=1,ST=0,INT=0,EP=1,cc_UC ;begin exit

STATE2:
COMP.I R5,#0x2 ;compare to interrupt number it should be
JC ERROR,cc_NZ ;jump to error routine if not correct
LD.I R5,#0x0 ;reset state number
JC START,cc_UC ;jump back to start of state machine

The last state could just as easily have ended with an EXIT that resets the PC to the
Channel Entry Table (EP = 0) rather than jumping back to START.

15.12.2 Channel Management for Small and Minimum Contexts

If Small or Minimum Contexts are being used, only some of the registers are saved and
restored. The integrity of the general purpose registers that are not included in the
context must be handled explicitly by Channel Programs, since these are not saved and
restored with the context of the interrupted Channel Program.

Channel Programs may still use all registers reliably. Channel Programs can be so
designed that they either ignore the values in unsaved registers, or those registers are
used to store constants that no Channel Program changes. Hence they never need to
be saved and restored. Alternately, Channel Programs can use these unused general
purpose registers as temporary variables.

15.12.3 Unused Registers as Globals or Constants

Registers R0 through R3 (for the Small Context model), or R0 through R5 (for the
Minimum Context Model) can be used to store constants such as addresses that are
available to all Channel Programs. Hence, these registers hold global data, and no
Channel Program is allowed to change them.

Since the general purpose registers of the PCP are not directly accessible from the FPI
Bus, there does need to be an initial Channel Program that sets these values at or near
boot time. There are two choices here. A boot-time interrupt Channel Program can be
invoked once to perform initialization, or there can be a program that routinely loads
these values as a matter of course, and is invoked at boot time or as upon receipt of the
very first interrupt.

15.12.4 Dispatch of Low Priority Tasks

A higher-priority Channel Program may wish to start a low-priority background task, or
periodically pause and re-start itself later when there is no other action required at the
moment. This can be accomplished in several ways, as follows.
User’s Manual 15-85 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
– Post an SRPN to a free SRN on the FPI Bus, then EXIT.
– Perform an EXIT, posting the interrupt to the PCP, and indicating the Channel

Number to be started.
– Use a single Channel Program as a list-driven or state-driven task dispatcher.

The first approach is straightforward to program, but uses a system SRN resource. It’s
advantage is that it allows continuous channel operation without using the interrupt
queue or risk blocking other uses of the PCP.

The second approach can be implemented by having a looping Channel Program
continue operation in the background. It will also always be superseded by any higher
priority tasks.

The third approach uses a Channel Program to dispatch other non-interrupt-driven
Channel Programs in an arbitrary order determined by the Channel Program dispatcher.
In this way, multiple tasks could be continuously operated without over-using the PCP
service-request queue. This approach would be useful when the aim is to poll for Service
Requests in the peripheral SRN’s rather than having them started by PCP hardware.

15.12.5 Code Reuse Across Channels (Call and Return)

A special Jump instruction is included in the PCP instruction set to allow subroutines to
be called from multiple Channel Programs. A routine may be jumped to directly, and then
returned from using the JC.IA instruction. JC.IA allows a calling Channel Program to set
aside a register for its return address, which will typically be the value of the next PC.
The called subprogram can then execute a JC.IA, to the address stored in the register
specified, causing a return-from-subroutine operation. The programmer must adopt and
enforce a calling convention to determine which register holds the return address.
Register R2 is conventionally used for this purpose.

For example:

Main Routine: Subroutine:
 LD.IL R2,#RETURN SUB: MOV...
 JC.A #SUB ADD...
RETURN: MOV
 ... JC.IA R2

15.12.6 Case-like Code Switches (Computed Go-To)

The JC.I instruction can be used to implement a multi-way branch for branch-on-bit or
branch-on-state conditional branches. This instruction allows a conditional relative jump
based on an index held in a register. If this instruction is combined with a table of jump
addresses, a switch-type statement can be implemented. The default case, that is when
the condition code = False, is the next instruction, as is the jump with register index = 0.
The table can be any arbitrary length. The index register should be checked for range
before the jump into the table is performed.
User’s Manual 15-86 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
For Example:

 COMP R3,#5 ;compare R3 to #5 - the number of entries
 ;in the table
 JC.I R3,cc_ULE
DEFAULT: JL #case_0 ;destination if R3 = 0 or condition = false
 JL #case_1 ;destination if R3 = 1
 JL #case_2 ;destination if R3 = 2
 JL #case_3 ;destination if R3 = 3
 JL #case_4 ;destination if R3 = 4
 JL #case_5 ;destination if R3 = 5

15.12.7 Simple DMA operation

A simple interrupt-driven DMA requires at least the Small Context model to operate
properly. Its operation is comprised of three stages, as follows:

– The device interrupts the PCP to indicate it can receive or provide data.
– The PCP moves the amount of data it is programmed to move.
– The PCP eventually finishes and interrupts the CPU to notify it that the DMA is

complete.

There are two program building-blocks for this process. A simple DMA Channel Program
can consist of just two instructions. In the example below, a device interrupts the PCP to
notify it that it has data in its output buffer, which is 4 words deep. The COPY instruction
copies 4 words to memory at a time. It decrements CNT1 (which is initialized by the CPU
in CR6_CNT1 context) after each 4 word transfer. The EXIT command then executes,
and if CNT1 was decremented to 0, the condition code causes it to issue an interrupt with
the value held R6_SRPN.

COPY DST+,SRC,CNC=1,BRST=4,SIZE=32 ;do peripheral -> memory DMA
EXIT EC=0,ST=0,INT=1,EP=0,cc_CNZ ;transfer done, so exit

In the example above, the COPY instruction increments the destination held in R5
(DST+), and the source address is left constant in R4 (SRC). All permutations of
decrement, increment or do not modify can be applied to either pointer register (R4 and
R5) by use of the SRC and DST fields (SRC-, SRC+ or SRC and DST-, DST+ or DST).

Building on this basic DMA method, scatter-gather DMA channels can be created.
User’s Manual 15-87 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.13 PCP Programming Notes and Tips

This section discusses constraints on the use of the PCP and points out some non-
obvious issues.

15.13.1 Notes on PCP Configuration

• Only one context model may be used at a time for all channels, and the PCP must
remain in that context model once started and configured.

• In order for a specific Channel Program to be enabled, its context must have
R7.CEN = 1. If R7.CEN = 0 then the Channel Program will terminate when invoked,
and cause a Disabled Channel Request error.

• The Channel Context Address from the FPI Bus as viewed during channel
configuration is as follows:
– Full Context Model: PRAM Base + 20H × n
– Small Context Model: PRAM Base + 10H × n
– Minimum Context Model: PRAM Base + 08H × n

where n is the Channel Number.
• PCP_CS.RCB and context must be consistent. If RCB is configured to 0, then each

Channel Program will start at the PC restored from its context. If the wrong address is
pre-configured in the context, the Channel Program will not operate properly.

• The programmer of the PCP may lock PCP_CS by setting PCP_CS.EIE = 1. When
the global ENDINIT bit is set, the PCP_CS register will no longer be writable, and
attempting to do so will cause an FPI Bus error.

• An error condition will result in an interrupt being sent to the local FPI Bus master. The
targeted interrupt service routine must be capable of dealing with the cause as
recorded in PCP_ES, and, if required, it must be able to return the halted Channel
Program to operation. The minimum required to do that is to set the context value of
R7.CEN = 1.

15.13.2 General Purpose Register Use

• The most significant 16 bits of R7 may not be written, and will always read back as 0.
However, no error will occur if a write to the most significant 16 bits occurs.

• Care must be taken with the use of R6 as a general-use register to ensure that R6
contains the correct value prior to execution of the EXIT command. As R6 contains
the CNT1 (counter used in COPY and optionally in EXIT instructions), SRPN and TOS
(Service Request number to use during optional interrupt at Channel Program EXIT)
fields it is recommended that R6 should not be used to pass values from one
invocation of a channel program to the next invocation.

• If PRAM is to be accessed programmatically, then R7.DPTR must be configured
properly as a pointer into the PRAM. This points to the 64-word segment that may be
addressed by the xx.P instructions and the xx.PI instructions. It is not recommended
User’s Manual 15-88 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
to set R7.DTPR to point into the Context Save Area. Special care must be taken that
the Context PRAM is not overwritten.

• The programmer must be careful, when updating R7.DTPR (or any other field in R7),
not to inadvertently clear R7.CEN. This would cause the Channel Program to
generate a disabled channel interrupt to the CPU when the next interrupt request to
the channel occurs.

• Any update to the Flags that is caused by an instruction (e.g. MOV R7, R0 which
updates Z and N) takes precedence over any explicit bits that are moved to R7. See
Section 15.3.1.5.

• The interrupt system assumes SRPN 0 is not a request. Full Context packing leaves
the least significant 8 × 32-bit entries where channel 0 would normally be un-used.
That is, PRAM Base -> PRAM Base + 1 channel. In addition, for Small Context, the
least significant 4 × 32-bit entries are un-used, and for Minimum Context the least
significant 2 × 32-bit entries are un-used. These “un-used” entries should not be used
by channel programs.

• If EP = 0 is used, or if PCP_CS.RCB = 1, a Channel Entry Table must be provided at
the base of Code Memory.

• If there is a plan to use the Small or Minimum Context model, and the lower registers
are to hold global values, then there needs to be an initial Channel Program that sets
these values at or near boot time. There are at least two choices for how to implement
this. For instance, a boot interrupt Channel Program can be invoked once to perform
initialization, or there can be a program that routinely loads these values as a matter
of course, and it is invoked at boot time, or at the very first interrupt. See
Section 15.12.3.

15.13.3 Implementing Divide Algorithms

As discussed in Section 15.11.3, a divide algorithm must always start with a DINIT
instruction followed by a number of DSTEP instructions (up to four depending on the
data width that is required). Prior to execution of any DSTEP instruction R0 always
contains either 0 (if this is the first DSTEP instruction in a divide sequence R0 contains
0 due to the preceding DINIT instruction), or the remainder from the previous DSTEP
instruction). The dividend to be used in this step is generated in R0 by taking 256 × the
remainder of the last DSTEP instruction (R0 << 8) and adding the most significant byte
of Rb (Rb >> 24) as the least significant byte of the new dividend.

Since the remainder of the last DSTEP instruction is by definition always less than the
divisor (Ra) it can be guaranteed that the result of the division of the dividend (calculated
as above) by the divisor (Ra) can always be contained within an 8 bit result. The
description given in Section 15.11.12 only holds true under this condition. If the
restrictions on the use of the DSTEP instruction (specified within Section 15.11.3) are
adhered to then the above condition is always met and this description of the instruction
is correct. Failure to adhere to these conditions will lead to invalid results which are
outside the scope of this document.
User’s Manual 15-89 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
During execution of a divide sequence Rb is used both to compile the final divide result
and to hold the remnants of the original dividend. For example in a 32-/32-bit divide
sequence (which consists of 4 DSTEP instructions - see below) Rb will have the
following content:

– After the 1st DSTEP instruction:
The least significant 3 bytes (24 bits) of the original 32-bit dividend (held in the most
significant 3 bytes of Rb) and the most significant byte of the final result (held in the
least significant byte of Rb).

– After the 2nd DSTEP instruction:
The least significant 2 bytes (16 bits) of the original 32-bit dividend (held in the most
significant 2 bytes of Rb) and the most significant 2 bytes of the final result (held in
the least significant 2 bytes of Rb).

– After the 3rd DSTEP instruction:
The least significant byte of the original 32-bit dividend (held in the most significant
byte of Rb) and the most significant 3 bytes of the final result (held in the least
significant 3 bytes of Rb).

– After the final DSTEP instruction:
The 32 bit final result.

Note that the DSTEP instruction always uses the divisor as a 32 bit value. In any divide
sequence the dividend can be 8, 16, 24 or 32 bits (according to the number of DSTEP
instructions in the sequence) but the divisor is always 32 bits. Prior to the DINIT
instruction the dividend must always occupy the appropriate most significant bits within
the 32 bit dividend register (Rb).

Divide Examples

Example of a 32/32 bit divide (R5 / R3):

 DINIT R5, R3 ;Initialize ready for the divide
 JC HANDLE_DIVIDE_BY_ZERO, cc_V ;V flag was set so jump to divide
 ;by zero error handler
 DSTEP R5, R3 ;4 DSTEP instructions
 ;(4 * 8 = 32 bit
 DSTEP R5, R3 ; divide)
 DSTEP R5, R3
 DSTEP R5, R3

After this sequence R5 holds the result, R0 the remainder and R3 is unchanged.

Example of a 8/32 bit divide (R4 / R2):

 RR R4, 8 ;Rotate R4 right by 8 to move
 ;least significant byte into
 ;most significant byte
 DINIT R4, R2 ;Initialize ready for the divide
 JC HANDLE_DIVIDE_BY_ZERO, cc_V ;V flag was set so jump to divide
 ;by zero error handler
User’s Manual 15-90 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
 DSTEP R4, R2 ;DSTEP instruction
 ;(1 * 8 = 8 bit divide)

After this sequence R4 holds the result, R0 the remainder and R2 is unchanged.

Note that the above example is specified as being a 8/32 bit divide rather than an 8/8 bit
divide (see comments above).

15.13.4 Implementing Multiply Algorithms

As discussed in Section 15.11.3, a multiply algorithm must always start with a MINIT
instruction followed by a number of MSTEP32 or MSTEP64 instructions. The MSTEP32
instruction is used to compile a multiplication result contained in 32 bits, discarding any
overflows. The MSTEP64 instruction is used to compile a 64-bit multiplication result with
the least significant 32 bits of the result contained in Rb and the most significant 32 bits
of the result contained in R0.

Multiply Examples

Example of a 32 × 8 bit multiply (R4 × R1) yielding a 32 bit result (R4 = 32 bit, R1 = 8 bit):

 RR R1, 8 ;Rotate least significant byte of R1 to most
 ;significant byte
 MINIT R1, R4 ;Initialize ready for multiply
 MSTEP32 R1, R4 ;Perform one MSTEP32 instruction
 ;(8 bit multiply)

After this sequence, R0 holds the result, R1 is left unchanged (right rotated by RR
instruction then left rotated by MSTEP32 instruction), R4 is unchanged. The result is only
valid if there is no overflow (i.e. the product of the 8-bit number in R1 multiplied by the
32-bit number in R4 can be contained within 32 bits). It is the users responsibility to
ensure that this is the case. The overflow condition cannot be detected after execution
of the multiply sequence.

Example of a 32 × 16 bit multiply (R3 × R2) yielding a 32 bit result
(R3 = 32 bit, R2 = 16 bit):

 RR R2, 8 ;Perform two 8 bit rotations (RR instructions)
 ;to get original least significant 16 bits into
 ;most significant 16 bits
 RR R2, 8
 MINIT R2, R3 ;Initialize ready for multiply
 MSTEP32 R2, R3 ;Perform two MSTEP32 instructions
 ;(16 bit multiply)
 MSTEP32 R2, R3

After this sequence R0 holds the result, R2 is left unchanged (right rotated by two RR
instructions then left rotated by two MSTEP32 instructions), R3 is unchanged. The
comment above regarding overflow also applies to this sequence.
User’s Manual 15-91 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
Example of a 32 × 32 bit multiply (R5 × R2) yielding a 64 bit result
(R5 = 32 bit, R2 = 32 bit):

 MINIT R2, R5 ;Initialize ready for multiply
 MSTEP64 R2, R5 ;Perform 4 MSTEP64 instructions(64 bit multiply)
 MSTEP64 R2, R5
 MSTEP64 R2, R5
 MSTEP64 R2, R5

After this sequence R0 and R2 hold the result (most significant word in R0, least
significant word in R2), R5 is unchanged. There is no possibility of overflow as the result
of 32 × 32 bits can always be contained in 64 bits.
User’s Manual 15-92 V2.0, 2001-02

TC1775
System Units

Peripheral Control Processor
15.14 PCP Implementation in TC1775

The addresses of the PCP registers and memories in the TC1775 are given in the
following subsections:

15.14.1 PCP Memories

In the TC1775, the location of the registers and the memories sizes of the PRAM and the
PCODE are given in Table 15-14.

Note: “BE” means that in case of an access to this address region a bus error is
generated.

15.14.2 PCP Register Address Range

In the TC1775 the registers of the PCP are located in the following address range:

– Module Base Address: F000 3F00H
Module End Address: F000 3FFFH.

– Absolute Register Address = Module Base Address + Offset Address
(offset addresses see Table 15-10)

Table 15-14 General Block Address Map

Unit Address
Range

Access Mode Size

Read Write

PCP PCP Registers F000 3F00H -
F000 3FFFH

see
Table 15-10

256 Bytes

Reserved F000 4000H -
F000 FFFFH

BE BE –

PCP Data Memory (PRAM)
(static RAM)

F001 0000H -
F001 0FFFH

nE, 32 nE, 32 4 KBytes

Reserved F001 1000H -
F001 FFFFH

BE BE –

PCP Code Memory (PCODE)
(static RAM)

F002 0000H -
F002 3FFFH

nE, 32 nE, 32 16 KBytes
User’s Manual 15-93 V2.0, 2001-02

TC1775
System Units

FPI Bus and Bus Control
16 FPI Bus and Bus Control
This chapter gives an overview on the internal Flexible Peripheral Interconnect (FPI)
Bus, and describes the Bus Control Unit (BCU) for the TC1775. Topics covered include
the FPI Bus characteristics, BCU, bus arbitration, scheduling, prioritizing, error
conditions, and debugging support.

16.1 FPI Bus Overview

The FPI Bus interconnects the functional units of the TC1775, such as the CPU and on-
chip peripheral components. The FPI Bus also interconnects the TC1775 to external
components by way of the External Bus Controller Unit (EBU). Figure 16-1 gives an
overview of the FPI Bus and the modules connected with it.

The FPI Bus is designed to be quick to acquire by on-chip functional units, and quick to
transfer data. The low setup overhead of the FPI Bus access protocol guarantees fast
FPI Bus acquisition, which is required for time-critical applications.

The FPI Bus is designed to sustain high transfer rates. For example, a peak transfer rate
of up to 160 MBytes/s can be achieved with a 40 MHz bus clock and 32-bit data bus.
Multiple data transfers per bus arbitration cycle allow the FPI Bus to operate at close to
its peak bandwidth.

Additional features of the FPI Bus include:

• Supports multiple bus masters
• Supports demultiplexed address/data operation
• Address and data buses are 32 bits wide
• Data transfer types include 8-, 16-, and 32-bit sizes
• Single- and multiple-data transfers per bus acquisition cycle
• Designed to minimize EMI and power consumption

Functional units of the TC1775 are connected to the FPI Bus via FPI Bus interfaces. FPI
Bus interfaces act as bus agents, requesting bus transactions on behalf of their
functional unit, or responding to transaction requests.

There are two types of bus agents:

• Master agents can initiate FPI Bus transaction requests
• Slave agents respond to FPI Bus transaction requests to read or write internal

registers and memories

When an FPI Bus master seeks to initiate a transfer on the FPI Bus, it first signals a
request for bus ownership. When bus ownership is granted, it initiates an FPI Bus read
or write transaction. The unit targeted by the transaction becomes the FPI Bus slave, and
responds with the requested action.

Some functional units operate only as slaves, while others can operate as either masters
or slaves. The CPU (via the DMU or the PMU) and Peripheral Control Processor (PCP)
typically operate as FPI Bus masters. On-chip peripheral units are typically FPI Bus
User’s Manual 16-1 V2.0, 2001-02

TC1775
System Units

FPI Bus and Bus Control
slaves. In Figure 16-1, the type of interface of the various modules in the TC1775 can
be seen (M/S = Master/Slave interface).

FPI Bus arbitration is performed by the on-chip FPI Bus Control Unit. In case of bus
errors, the BCU generates an interrupt request to the CPU, and can provide debugging
information about the error to the CPU.

For fast external Burst Flash instruction memory operation, the EBU of the TC1775 has
a direct path to the PMU. Therefore, external Burst Flash instruction memory accesses
can be executed without using the FPI Bus.
User’s Manual 16-2 V2.0, 2001-02

TC1775
System Units

FPI Bus and Bus Control
Figure 16-1 TC1775 FPI Bus Block Diagram

STM

GPTU

GPTA

ASC0

ASC1

SSC0

PMU

TriCore
CPU

DMU

MCB04792

S
la

ve
S

la
ve

S
la

ve
S

la
ve

S
la

ve
S

la
ve

SSC1

S
la

ve

CAN

S
la

ve

SDLM

S
la

ve

S
la

ve ADC0

S
la

ve ADC1

S
la

ve Ports
S

la
ve SCU

S
la

ve RTC

M
/S Debug

S
la

ve BCU

M
/S PCP

M
/S

M
/S

External Bus Unit (EBU)

Master / Slave

External
Bus

FPI
Bus
User’s Manual 16-3 V2.0, 2001-02

TC1775
System Units

FPI Bus and Bus Control
16.2 Bus Control Unit

The on-chip FPI Bus Control Unit provides bus arbitration, bus error handling, and debug
information for error cases. Its design optimizes the speed of bus arbitration.
Additionally, it is designed for low power consumption and low EMI.

The BCU arbitrates among the FPI Bus agents to determine the next FPI Bus master. It
drives the bus if no other FPI Bus agent is assigned bus ownership to prevent the FPI
Bus from electrically floating. It acts as a bus slave when its registers are targeted by an
FPI Bus transaction.

Figure 16-2 is a block diagram of the BCU.

Figure 16-2 FPI Bus Control Unit Block Diagram

The Error Processing Unit is responsible for gathering information and loading the debug
registers in the event of a bus error. The default FPI driver becomes active only when no
other bus master is able to drive the bus. The clock control unit, if enabled, awakens the
BCU only as needed. The “Request_FPI_Bus” lines signal a request to the BCU from a
bus master and the “Grant_FPI_Bus” lines are used to grant bus ownership. The control
registers control the general operation of the BCU.

BCU

MCB04793

C
on

tr
ol

 &
 D

eb
ug

 R
eg

is
te

rs
Default FPI

Driver

Clock
Control

Arbitration
Unit

Error
Processing

Unit

Interrupt Request

Grant_FPI_Bus

Request_FPI_Bus

FPI Bus
User’s Manual 16-4 V2.0, 2001-02

TC1775
System Units

FPI Bus and Bus Control
16.2.1 FPI Bus Arbitration

The arbitration unit (AB) of the BCU determines whether it is necessary to arbitrate for
FPI Bus ownership, and, if so, which available bus requestor gets the FPI Bus for the
next data transfer. During arbitration, the bus is granted to the requesting agent with the
highest priority. If no request is pending, the bus is granted to a default master. If no bus
master takes the bus, the BCU itself will drive the FPI Bus to prevent it from floating
electrically.

16.2.1.1 Arbitration Priority

The TC1775 has six bus agents that can become bus master. Each agent is supplied a
pre-specified arbitration priority, as shown in Table 16-1.

In normal operation, either the PCP or the DMU automatically serves as default master.
The bus is granted to this default master which has been at least the default master,
whenever there is no request from any other bus master. In this way, the bus is always
driven by one of the masters. In some exceptional circumstances, however, the BCU
must drive the FPI Bus. These conditions include:

• After reset
• A non-existing module is accessed (error)
• A time-out condition occurs (error)
• No other master can be granted the FPI Bus because of special conditions

Table 16-1 Priority of TC1775 FPI Bus Agents

Priority Agent Comment

highest

lowest

Any bus requestor meeting the starvation
protection criteria is assigned this priority

Highest priority, used only
for starvation protection

On-Chip Debug System –

External Bus Controller –

Peripheral Control Processor Default master 1

Data Memory Unit Default master 2

Program Memory Unit –

On-Chip Debug System –
User’s Manual 16-5 V2.0, 2001-02

TC1775
System Units

FPI Bus and Bus Control
16.2.1.2 Bus Starvation Protection

Because assignment of priorities to these six bus agents is fixed, it is possible that a
lower-priority requestor may never be granted the bus if a higher-priority requestor
continuously asks for, and receives, bus ownership. To protect against bus starvation of
lower-priority masters, an optional feature of the TC1775 will detect such cases and
momentarily raise the priority of the lower-priority requestor to the highest priority (above
all other priorities), thereby guaranteeing it access.

Starvation protection employs a counter which is incremented each time an arbitration is
performed by the BCU. When this counter reaches a user-programmable threshold
value, all the bus request lines are sampled, and for each active bus request, a request
flag is set in an internal BCU register. This flag is reset automatically when a master is
granted the bus.

When the counter reaches the threshold value, it is automatically reset to zero and starts
counting up again. When the next period is finished, the request lines are sampled again.
If an active request is detected, for which the request flag set during the last sample is
still set, this means that this master was not granted the bus during the previous period.
This master will now be set to the highest priority and will be granted service. If there are
several masters for which this starvation condition applies, they are served in the order
of their hardwired priority ranking.

Starvation protection can be enabled and disabled through the BCU_CON.SPE bit. The
sample period of the counter is programmed through the BCU_CON.SPC bit field. This
bit field should be set to a value at least greater than or equal to the number of masters.
Its reset value is 40H.

16.2.2 Error Handling

Two classes of error condition can arise on the FPI Bus:

1. A slave indicates a severe problem such as an unaligned data access request, by
returning an error code instead of an acknowledge.

2. A time-out is detected for the current bus operation, indicating a non-responding
slave.

A bus error condition causes the BCU to issue an interrupt request to the CPU, and if
enabled, causes the BCU to capture information about the bus error condition for
debugging.

Bus error information gathering is enabled by default. It can be disabled by setting bit
CON.DBG to 0. If a bus error occurs when enabled, the status of the bus, including
address, data, and the control information, is captured into registers BCU_EADD,
BCU_EDAT and BCU_ECON, respectively. Kernel software must read the debug
information in response to the interrupt to examine and resolve the problem.
User’s Manual 16-6 V2.0, 2001-02

TC1775
System Units

FPI Bus and Bus Control
Note: If the CPU itself caused the bus error either through a load/store operation via the
DMU or an instruction fetch operation via the PMU, a bus trap is issued to the CPU
in addition to the interrupt issued by the BCU. To handle this condition, the trap
routine in the kernel software must read the BCU error status registers and then
clear the interrupt request from the BCU.

Interpreting the BCU Error Information

Some knowledge about the operation of the internal FPI Bus is required in order to
interpret the captured information in case of a bus error. Although the captured address
and data values captured in registers BCU_EADD and BCU_EDAT, respectively, are
self-explanatory, the captured FPI Bus control information needs some more
explanation.

Register BCU_ECON captures the state of the read (RDN), write (WRN), Supervisor
Mode (SVM), acknowledge (ACK), ready (RDY), abort (ABT), time-out (TOUT),
identification (TAG) and operation code (OPC) lines of the FPI Bus.

The read and write signals are active-low. For regular read or write accesses, only one
of these lines is activated (set to 0). There is one special case defined for the FPI Bus.
If a master performs a read-modify-write transaction (for example, to modify a bit in a
peripheral register), this transaction is indicated by both lines, read and write, being
activated in the first access (read access).

The supervisor mode signal is set to 1 for an access in Supervisor Mode, and set to 0 for
an access in User Mode.

The ready signal indicates the end of a transfer. It is normally driven to 1 in the (last) data
cycle. During wait state insertion, ready is driven to 0.

Under certain conditions, a master can abort a transfer that has already started. This is
indicated with the abort signal set to 0.

The time-out signal indicates if there was no response on the bus to an access, and the
programmed time (via BCU_CON.TOUT) has elapsed. TOUT is set to one in this case.

An acknowledge code has to be driven by the selected slave during each data cycle of
an access.These codes are listed in Table 16-2.

Table 16-2 FPI Bus Acknowledge Codes

Code (ACK) Description

00B NSC: No Special Condition.

01B ERR: Bus Error, last data cycle is aborted.

10B SPT: Split Transaction (not used in the TC1775)

11B RTY: Retry. Slave can currently not respond to the access. Master
needs to repeat the access later.
User’s Manual 16-7 V2.0, 2001-02

TC1775
System Units

FPI Bus and Bus Control
Each master on the FPI Bus is assigned a 4-bit identification number, the TAG (see
Table 16-3). This allows to distinguish which master has performed the current
transaction.

Transactions on the FPI Bus are classified via a 4-bit operation code, listed in
Table 16-4. Note that the split transactions (OPC = 1000B to 1110B) are not used in
the TC1775.

Table 16-3 FPI Bus TAG Assignments in the TC1775

TAG-Number Module Description

0 TCU Test Control Unit

1 EBU Master part of External Bus Controller

2 PCP Peripheral Control Processor

3 DMU Data Memory Unit

4 PMU Program Memory Unit

5..15 --- Reserved

Table 16-4 FPI Bus Operation Codes (OPC)

OPC Description OPC Description

0000B Single Byte Transfer (8-bit) 1000B Split Block Transfer Request
(1 transfer)

0001B Single Half-Word Transfer (16-bit) 1001B Split Block Transfer Request
(2 transfers)

0010B Single Word Transfer (32-bit) 1010B Split Block Transfer Request
(4 transfers)

0011B Single Double-Word Transfer
(64-bit)

1011B Split Block Transfer Request
(8 transfers)

0100B 2-Word Block Transfer 1100B Split Block Response

0101B 4-Word Block Transfer 1101B Split Block Failure

0110B 8-Word Block Transfer 1110B Split Block End

0111B Reserved 1111 No operation
User’s Manual 16-8 V2.0, 2001-02

TC1775
System Units

FPI Bus and Bus Control
16.2.3 BCU Power Saving Mode

The BCU can be configured so that it shuts down automatically when not needed by
disabling its internal clock. When it is needed again, for instance when a bus request
signal is received from a master, the BCU will enable its clock and perform the
arbitration. If no further bus activity is required after the transfer has completed, the BCU
will automatically shut off its clock and return to idle mode.

Automatic power management is controlled through the BCU_CON.PSE bit. When
cleared to 0, power management is disabled, and the BCU clock is always active. This
might be required, for instance, to debug both the active and idle FPI Bus states of an
application via an external emulator or other debugging hardware.
User’s Manual 16-9 V2.0, 2001-02

TC1775
System Units

FPI Bus and Bus Control
16.2.4 BCU Registers

The five BCU registers can be divided into three types, as shown in Figure 16-3.

Figure 16-3 BCU Registers

In the TC1775, the registers of the BCU are located in the address range:

– Module Base Address: F000 0200H
Module End Address: F000 02FFH

– Absolute Register Address = Module Base Address + Offset Address
(see Table 16-5)

Note: The BCU allows word accesses only (32-bit) to its control and data registers. Byte
and half-word accesses will result in a bus error.

Table 16-5 BCU Registers

Register
Short Name

Register Long Name Offset
Address

Description
see

BCU_CON BCU Control Register 0010H Page 16-11

BCU_ECON BCU Error Control Capture Register 0020H Page 16-13

BCU_EADD BCU Error Address Capture Register 0024H Page 16-14

BCU_EDAT BCU Error Data Capture Register 0028H Page 16-14

BCU_SRC BCU Service Request Control Register 00FCH Page 16-15

MCA04794

BCU_CON BCU_SRCBCU_ECON

Control Register Interrupt RegisterData Registers

BCU_EADD

BCU_EDAT
User’s Manual 16-10 V2.0, 2001-02

TC1775
System Units

FPI Bus and Bus Control
16.2.4.1 BCU Control Register

The BCU Control Register controls the overall operation of the BCU, including setting the
starvation sample period, the bus time-out period, enabling starvation-protection mode,
and error handling.

BCU_CON
BCU Control Register Reset Value: 4009 FFFFH

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SPC 0 SPE PSE 0 DBG

rw r rw rw r rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TOUT

rw

Field Bits Type Description

TOUT [15:0] rw BCU Bus Time-Out Value
The bit field defines the number of FPI Bus time-out
cycles. Default after reset is FFFFH (= 65536 bus
cycles).

DBG 16 rw BCU Debug Trace Enable
0 BCU debug trace disabled. No error

information captured.
1 BCU debug trace enabled. Error information is

captured in registers BCU_EADD, BCU_EDAT,
and BCU_ECON (default after reset).

PSE 18 rw BCU Power Saving (Automatic Clock Control)
Enable
0 BCU power saving disabled (default after reset)
1 BCU power saving enabled

SPE 19 rw BCU Starvation Protection Enable
0 BCU protection disabled
1 BCU protection enabled (default after reset)
User’s Manual 16-11 V2.0, 2001-02

TC1775
System Units

FPI Bus and Bus Control
16.2.4.2 BCU Debug Registers

The capture of bus error conditions is enabled by setting BCU_CON.DBG to 1. In case
of a bus error, information about the condition will then be stored in the BCU debug
registers. The BCU debug registers can then be examined by software to help determine
the cause of the error.

If enabled, and a bus error occurs, the BCU Error Control Capture Register,
BCU_ECON, will hold the captured FPI Bus control information, and a count of the
number of bus errors. The BCU Error Address Capture Register, BCU_EADD, will store
the captured FPI Bus address, and the BCU Error Data Capture Register, BCU_EDAT,
will store the captured FPI Bus data.

If the capture of bus error conditions is disabled (BCU_CON.DBG = 0), these registers
remain untouched.

Note: These registers store only for the first error. In case of multiple bus errors, an error
counter BCU_ECON[15:0] shows the number of bus errors since the first error
occurred. A hardware reset clears this 16-bit counter to zero, but the counter can
be set to any value through software. This counter is prevented from overflowing,
so a value of 216 - 1 indicates that at least this many errors have occurred, but
there may have been more. After BCU_ECON has been read, the BCU_ECON,
BCU_EADD and BCU_EDAT registers are re-enabled to trace FPI Bus activity.

SPC [31:24] rw BCU Sample Period Control
Defines the sample period for the starvation counter.
Must be larger than the number of masters. The reset
value is 40H.

0 17,
[23:20]

r Reserved; read as 0; should be written with 0.

Field Bits Type Description
User’s Manual 16-12 V2.0, 2001-02

TC1775
System Units

FPI Bus and Bus Control

BCU_ECON
BCU Error Control Capture Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

OPC TAG RDN WRN SVM ACK ABT RDY T
OUT

rwh rwh rwh rwh rwh rwh rwh rwh rwh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ERRCNT

rwh

Field Bits Type Description

ERRCNT [15:0] rwh Number of FPI Bus Error Counter
ERRCNT is incremented on each occurrence of an
FPI Bus error. ERRCNT is reset to 0000H after the
BCU_ECON register is read.

TOUT 16 rwh State of FPI Bus Time-Out Signal (active high)

RDY 17 rwh State of FPI Bus Ready Signal
(active high)

ABT 18 rwh State of FPI Bus Abort Signal
(active low)

ACK [20:19] rwh State of FPI Bus Acknowledge Signal

SVM 21 rwh State of FP Bus Supervisor Mode Signal
(active high)

WRN 22 rwh State of FPI Bus Write Signal
(active low).

RDN 23 rwh State of FPI Bus Read Signal
(active low).

TAG [27:24] rwh FPI Bus Tag Number
see Table 16-3

OPC [31:28] rwh FPI Bus Operation Code
see Table 16-4
User’s Manual 16-13 V2.0, 2001-02

TC1775
System Units

FPI Bus and Bus Control

BCU_EADD
BCU Error Address Capture Register Reset Value: 0000 0000H

31 0

FPIADR

rwh

Field Bits Type Description

FPIADR [31:0] rwh Captured FPI Bus Address (in case of a bus error)
Note: If there are multiple errors, only the address of
the first error is captured.

BCU_EDAT
BCU Error Data Capture Register Reset Value: 0000 0000H

31 0

FPIDAT

rwh

Field Bits Type Description

FPIDAT [31:0] rwh Captured FPI Bus Data (in case of a bus error)
Note: If there are multiple errors, only the data for the
first error are captured.
User’s Manual 16-14 V2.0, 2001-02

TC1775
System Units

FPI Bus and Bus Control
16.2.4.3 BCU Service Request Control Register

In case of a bus error, the BCU generates an interrupt request to the selected service
provider (usually the CPU). This interrupt request is controlled through a standard
service request control register.

Note: Further details on interrupt handling and processing are described in Chapter 13
in this User’s Manual.

BCU_SRC
BCU Service Request Control Register Reset Values: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SET
R

CLR
R SRR SRE TOS 0 SRPN

w w rh rw rw r rw

Field Bits Type Description

SRPN [7:0] rw Service Request Priority Number

TOS [11:10] rw Type of Service Control

SRE 12 rw Service Request Enable

SRR 13 rh Service Request Flag

CLRR 14 w Request Clear Bit

SETR 15 w Request Set Bit

0 [9:8],
[31:16]

r Reserved; read as 0; should be written with 0.
User’s Manual 16-15 V2.0, 2001-02

TC1775
System Units

System Timer
17 System Timer

17.1 Overview

This chapter describes the System Timer (STM). The TC1775’s STM is designed for
global system timing applications requiring both high precision and long range. The STM
has the following features:

• Free-running 56-bit counter
• All 56 bits can be read synchronously
• Different 32-bit portions of the 56-bit counter can be read synchronously
• Driven by clock, fSTM (identical to the system clock fSYSCLK).
• Counting begins at power-on reset
• Continuous operation is not affected by any reset condition except power-on reset

Special STM register semantics provide synchronous views of the entire 56-bit counter,
or 32-bit subsets at different levels of resolution.

The maximum clock period is 256 × 1 / fSTM. At fSTM = 40 MHz, for example, the STM
counts 57.1 years before overflowing. Thus, it is capable of continuously timing the entire
expected product life-time of a system without overflowing.

17.2 Kernel Functions

The STM is an upward counter, running with the system clock frequency
(fSTM = fSYSCLK). It is enabled per default after reset, and immediately starts counting up.
Other than via reset, it is no possible to affect the contents of the timer during normal
operation of the application, it can only be read, but not written to. Depending on the
implementation of the clock control of the STM, the timer can optionally be disabled or
suspended for power-saving and debugging purposes via a clock control register.

Due to the 56-bit width of the STM, it is not possible to read its entire contents with one
instruction. It needs to be read with two load instructions. Since the timer would continue
to count between the two load operations, there is a chance that the two values read are
not be consistent (due to possible overflow from the low part of the timer to the high part
between the two read operations). To enable a synchronous and consistent reading of
the STM contents, a capture register (CAP), is implemented. It latches the contents of
the high part of the STM each time the low part, TIM0, is read. Thus, it holds the upper
value of the timer at exactly the same time when the lower part is read. The second read
operation would then read the contents of the CAP to get the complete timer value.

The System Timer can also be read in sections from seven registers, TIM0 through
TIM6, which select increasingly higher-order 32-bit ranges of the System Timer. These
can be viewed as individual 32-bit timers, each with a different resolution and timing
range.
User’s Manual 17-1 V2.0, 2001-02

TC1775
System Units

System Timer
Figure 17-1 is an overview on the System Timer module. It shows the options for
reading parts of STM contents.

Figure 17-1 General Block Diagram of the STM Module

STM Module

00H CAP

TIM6

TIM5

TIM4

TIM3

TIM2

TIM1

TIM0

00H

55 47 39 31 23 15 7

56-Bit System Timer

Address
Decoder

Clock
Control

Enable /
Disable

PORST

fSTM

MCA04795
User’s Manual 17-2 V2.0, 2001-02

TC1775
System Units

System Timer
Table 17-1 is an overview on the individual timer registers with their resolution and
timing range. As an example, the values for a 40 MHz system frequency are given.

Table 17-1 System Timer Resolutions and Ranges

Register STM
Bits

Resolution [s] Range [s] Example Frequency: 40 MHz
fSTM = fSYSCLK

Resolution Range

TIM0 [31:0] fSTM 232 / fSTM 25 ns 107.4 s

TIM1 [35:4] 16 / fSTM 236 / fSTM 400 ns 1717.9 s

TIM2 [39:8] 256 / fSTM 240 / fSTM 6.4 µs 458.1 min

TIM3 [43:12] 4096 / fSTM 244 / fSTM 102.4 µs 122.2 h

TIM4 [47:16] 65536 / fSTM 248 / fSTM 1.64 ms 81.45 days

TIM5 [51:20] 220 / fSTM 252 / fSTM 26.2 ms 3.57 yr

TIM6 [55:32] 232 / fSTM 256 / fSTM 107.4 s 57.1 yr

CAP [55:32] 232 / fSTM 256 / fSTM 107.4 s 57.1 yr
User’s Manual 17-3 V2.0, 2001-02

TC1775
System Units

System Timer
17.3 Kernel Registers

The STM registers can be divided into two types, as shown in Figure 17-2.

Figure 17-2 SFRs of the STM Module

Note: All STM kernel register names described in this section will be referenced in other
parts of this TC1775 User’s Manual with the module name prefix “STM_”.

Table 17-2 STM Kernel Registers

Register
Short Name

Register Long Name Offset
Address

Description
see

TIM0 Timer Register 0 0010H Page 17-5

TIM1 Timer Register 1 0014H Page 17-5

TIM2 Timer Register 2 0018H Page 17-5

TIM3 Timer Register 3 001CH Page 17-5

TIM4 Timer Register 4 0020H Page 17-6

TIM5 Timer Register 5 0024H Page 17-6

TIM6 Timer Register 6 0028H Page 17-6

CAP Timer Capture Register 002CH Page 17-6

MCA04796

TIM0

Data Registers

TIM1

TIM2

TIM3

TIM4

TIM5

TIM6

CAP
User’s Manual 17-4 V2.0, 2001-02

TC1775
System Units

System Timer
TIM1 to TIM6 provide 32-bit views at varying resolutions of the underlying STM counter.

TIM0
Timer Register 0 Reset Value: 0000 0000H

31 0

STM[31:0]

r

TIM1
Timer Register 1 Reset Value: 0000 0000H

31 0

STM[35:4]

r

TIM2
Timer Register 2 Reset Value: 0000 0000H

31 0

STM[39:8]

r

TIM3
Timer Register 3 Reset Value: 0000 0000H

31 0

STM[43:12]

r

User’s Manual 17-5 V2.0, 2001-02

TC1775
System Units

System Timer
Note: CAP captures the system timer bits [55:32] when a read of TIM0 (contains the
system timer bits [31:0]) is performed in order to enable software to operate with
a coherent value of all the 56 bits of the system timer.

Note: The bits in registers CAP - TIM0 are all read only.

TIM4
Timer Register 4 Reset Value: 0000 0000H

31 0

STM[47:16]

r

TIM5
Timer Register 5 Reset Value: 0000 0000H

31 0

STM[51:20]

r

TIM6
Timer Register 6 Reset Value: 0000 0000H

31 24 23 0

0 STM[55:32]

 r r

CAP
Timer Capture Register Reset Value: 0000 0000H

31 24 23 0

0 STM_CAP[55:32]

 r r
User’s Manual 17-6 V2.0, 2001-02

TC1775
System Units

System Timer
17.4 External Register

The clock control register allows to switch the System Timer on or off. After power-on
reset, the System Timer is always enabled and starts counting. The System Timer can
be disabled by setting bit DISR to 1.

Figure 17-3 STM External Register

STM_CLC
System Timer Clock Control Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 DIS
S

DIS
R

r r rw

Field Bits Type Description

DISR 0 rw Module Disable Request Bit
Used for enable/disable control of the module.
0 No disable requested
1 Disable requested

DISS 1 r Module Disable Status Bit
Bit indicates the current status of the module
0 Module is enabled
1 Module is disabled

0 [31:2] r Reserved; read as 0; should be written with 0;

MCA04797

STM_CLC

Control Register

STM_CLC : System Timer Clock Control Register
User’s Manual 17-7 V2.0, 2001-02

TC1775
System Units

System Timer
17.5 STM Register Address Ranges

In the TC1775, the registers of the STM module are located in the following address
range:

– Module Base Address: F000 0300H
Module End Address: F000 03FFH

– Absolute Register Address = Module Base Address + Offset Address
(offset addresses see Table 17-2)
User’s Manual 17-8 V2.0, 2001-02

TC1775
System Units

Watchdog Timer
18 Watchdog Timer
This chapter describes the TC1775 Watchdog Timer (WDT). Topics include an overview
of the Watchdog Timer function and descriptions of the registers, the password
protection scheme, accessing registers, modes, and initialization.

18.1 Watchdog Timer Overview

The Watchdog Timer (WDT) provides a highly reliable and secure way to detect and
recover from software or hardware failure. The WDT helps to abort an accidental
malfunction of the TC1775 in a user-specified time period. When enabled, the WDT will
cause the TC1775 system to be reset if the WDT is not serviced within a user-
programmable time period. The CPU must service the WDT within this time interval to
prevent the WDT from causing a TC1775 system reset. Hence, routine service of the
WDT confirms that the system is functioning properly.

In addition to this standard “Watchdog” function, the WDT incorporates the EndInit
feature and monitors its modifications. A system-wide line is connected to the ENDINIT
bit implemented in a WDT control register, serving as an additional write-protection for
critical registers (besides Supervisor Mode protection). Registers protected via this line
can only be modified when Supervisor Mode is active and bit ENDINIT = 0.

Because servicing the Watchdog and modifications of the ENDINIT bit are critical
functions that must not be allowed in case of a system malfunction, a sophisticated
scheme is implemented which requires a password and guard bits during accesses to
the WDT control register. Any write access that does not deliver the correct password or
the correct value for the guard bits is regarded as a malfunction of the system, and a
Watchdog reset is triggered. In addition, even after a valid access has been performed
and the ENDINIT bit has been cleared to provide access to the critical registers, the
Watchdog imposes a time-limit for this access window. If ENDINIT has not been properly
set again before this limit expires, the system is assumed to malfunction, and a
Watchdog reset is triggered. These stringent requirements, although not a guarantee,
nonetheless provide a high degree of assurance of the robustness of system operation.

A further enhancement in the TC1775’s Watchdog Timer is its reset prewarning
operation. Instead of immediately resetting the device on the detection of an error, as
known from standard Watchdogs, the WDT first issues an Non-maskable Interrupt (NMI)
to the CPU before finally resetting the device at a specified time period later. This gives
the CPU a chance to save system state to memory for later examination of the cause of
the malfunction, an important aid in debugging.
User’s Manual 18-1 V2.0, 2001-02

TC1775
System Units

Watchdog Timer
18.2 Features of the Watchdog Timer

The major features of the WDT are summarized here. The Watchdog Timer is
implemented in the System Control Unit (SCU) module of the TC1775. Figure 18-1
gives an overview of its interface signals.

• 16-bit Watchdog counter.
• Selectable input frequency: fSYSCLK/256 or fSYSCLK/16384.
• 16-bit user-definable reload value for normal Watchdog operation, fixed reload value

for Time-Out and Prewarning Modes.
• Incorporation of the ENDINIT bit and monitoring of its modifications.
• Sophisticated password access mechanism with fixed and user-definable password

fields.
• Proper access always requires two write accesses. The time between the two

accesses is monitored by the WDT and limited.
• Access Error Detection: Invalid password (during first access) or invalid guard bits

(during second access) trigger the Watchdog reset generation.
• Overflow Error Detection: An overflow of the counter triggers the Watchdog reset

generation.
• Watchdog function can be disabled; access protection and ENDINIT monitor function

remain enabled.
• Double Reset Detection: If a Watchdog induced reset occurs twice without a proper

access to its control register in between, a severe system malfunction is assumed and
the TC1775 is held in reset until a power-on reset. This prevents the device from being
periodically reset if, for instance, connection to the external memory has been lost
such that even system initialization could not be performed.

• Important debugging support is provided through the reset prewarning operation by
first issuing an NMI to the CPU before finally resetting the device after a certain period
of time.

Figure 18-1 Interface of the WDT Inside and Outside the SCU Module

MCA04798

SCU Module

To CPU
NMI

To System
ENDINIT

To System
Reset

Watchdog Timer (WDT)Address
Decoder

WDTTIM[15] WDT_RSTWDT_NMI

fSYSCLK
User’s Manual 18-2 V2.0, 2001-02

TC1775
System Units

Watchdog Timer
18.3 The EndInit Function

Because understanding of the ENDINIT bit and its function is an important prerequisite
for the descriptions in the following sections, its function is explained first.

There are a number of registers in the TC1775 that are usually programmed only once
during the initialization sequence of the application. Modification of such registers during
normal application run can have a severe impact on the overall operation of modules or
the entire system.

While the Supervisor Mode, which allows writes to registers only when it is active,
provides a certain level of protection against unintentional modifications, this might not
provide enough security for system critical registers.

The TC1775 provides one more level of protection for such registers via the EndInit
feature. This is a highly secure write protection scheme that makes unintentional
modifications of registers protected by this feature nearly impossible.

The EndInit feature consists of an ENDINIT bit incorporated in the Watchdog Timer
control register, WDT_CON0. A system-wide line is connected to this bit. Registers
protected via EndInit use the state of this line to determine whether or not writes are
enabled. Writes are only enabled if ENDINIT = 0 and Supervisor Mode is active. Write
attempts if this condition is not true will cause a bus error, the register contents will not
be modified in this case.

An additional line, controlled through a separate bit, to protect against unintentional
writes does provide an extra level of security. However, to get the highest level of
security, this bit is incorporated in the highly secure access protection scheme
implemented in the Watchdog Timer. This is a complex procedure, that makes it nearly
impossible for the ENDINIT bit to be modified unintentionally. It is explained in the
following sections. In addition, the WDT monitors ENDINIT modifications by starting a
time-out sequence each time software opens access to the critical registers through
clearing ENDINIT to 0. If the Time-out period ends before ENDINIT is set to 1 again, a
malfunction of the software and/or the hardware is assumed and the device is reset.

The access protection scheme and the EndInit time-out operation of the WDT is
described in the following sections. Table 18-1 lists the registers that are protected via
the EndInit feature in the TC1775.
User’s Manual 18-3 V2.0, 2001-02

TC1775
System Units

Watchdog Timer
Table 18-1 TC1775 Registers Protected via the EndInit Feature

Normal Mode Description

mod_CLC All clock control registers of the individual peripheral modules are
EndInit-protected.

BTV, BIV, ISP Trap and interrupt vector table pointer as well as the interrupt stack
pointer are EndInit-protected.

WDT_CON1 The Watchdog Timer Control Register 1, which controls the disabling
and the input frequency of the Watchdog Timer, is EndInit-protected. In
addition, its bits will only have an effect on the WDT when ENDINIT is
properly set to 1 again.
User’s Manual 18-4 V2.0, 2001-02

TC1775
System Units

Watchdog Timer
18.4 Watchdog Timer Operation

The following sections describe the registers, the operation, and different modes of the
WDT, as well as the password access mechanism. Figure 18-2 gives an example for the
operation of the Watchdog Timer. A rough description of the sequence of events in this
figure is provided here. Refer to the following sections for a detailed explanation.

1. Time-Out Mode is automatically entered after reset. Timer counts with slowest input
clock.

2. Time-Out Mode terminated and Normal Mode is entered by setting ENDINIT to 1.
3. Normal Mode is terminated and Time-Out Mode is entered through a password

access to WDT_CON0. The reload value was set to REL_1.
4. Time-Out Mode is terminated and Normal Mode entered again by setting ENDINIT to

1. The reload value WDTREL has been changed to REL_2 and the timer input clock
was set to the fast clock.
Events 3) and 4) constitute a Watchdog Timer service sequence.

5. The Watchdog Timer was not serviced and continued to count until overflow. Reset
Prewarning Mode is entered. Timer counts with selected fast input clock. Watchdog
operation cannot be altered or stopped in this mode.

6. Timer continued to count until overflow, generating a Watchdog Timer reset.
7. Time-Out Mode is automatically entered after reset. Timer counts with slowest input

clock.
8. Time-Out Mode is terminated and Normal Mode is entered again.

Figure 18-2 Example for an Operation Sequence of the Watchdog Timer

MCT04799

REL_1

REL_2

FFFCH

FFFFH

1)

2)

3)
4)

5)

WDT Reset

8)

6) 7)

Time-Out
Mode

Normal
Mode

Time-
Out
Mode

Time-Out
Mode

Prewarning
Mode

Normal
Mode
User’s Manual 18-5 V2.0, 2001-02

TC1775
System Units

Watchdog Timer
18.4.1 WDT Register Overview

Two control registers, WDT_CON0 and WDT_CON1, and one status register, WDT_SR,
serve for communication of the software with the WDT. This section provides a short
overview and describes the access mechanisms of the WDT registers. Detailed layout
and bit descriptions of the registers are given in Section 18.6.

Register WDT_CON0 holds the ENDINIT bit, a register lock status bit (WDTLCK), an
8-bit user-definable password field (WDTPW), and the user-definable reload (start)
value (WDTREL) for the Watchdog Timer in Normal Mode.

Register WDT_CON1 contains two bits. Bit WDTIR is a request bit for the Watchdog
Timer input frequency selection, while bit WDTDR is a request bit for the Disable Mode
of the WDT. These two bits are only request bits in that they do not actually control the
input frequency and disabling of the WDT. They can be modified only when the ENDINIT
bit is 0, but they will have an effect only when ENDINIT is properly set to 1 again.

The status register WDT_SR holds information about the current conditions of the WDT.
It contains the current timer count value (WDTTIM), three bits indicating the mode of
operation (WDTTO for Time-Out Mode, WDTPR for Prewarning Mode, and WDTDS for
Disable Mode), and the error indication bits for timer overflow (WDTOE) and access
error (WDTAE).

While WDT_SR is a read-only register, the control registers can be read and written.
Reading these registers is always possible; a write access, however, must follow certain
protocols. Register WDT_CON1 is Supervisor Mode and EndInit-protected, thus,
Supervisor Mode must be active and bit ENDINIT must be 0 for a successful write to this
register. If one or both conditions are not met, a bus error will be generated, and the bits
in WDT_CON1 will be not modified.

Register WDT_CON0 requires a much more complex write procedure as it has a special
write protection mechanism. Proper access to WDT_CON0 always requires two write
accesses in order to modify its contents. The first write access requires a password to
be written to the register to unlock it. This access is called Password Access. Then, the
second access can modify the register’s contents. It is called Modify Access. When the
modify access completes, WDT_CON0 is locked again automatically. (Even if no
parameters are changed in the second write access, it is still called a modify access.) If
the Modify Access sets WDT_CON0.ENDINIT = 0, then other protected system
registers, such as WDT_CON1, are unlocked and can be modified.

Note: WDT_CON0 is automatically re-locked after a modify access, so a new password
access must be performed to modify it again. Note further that the WDT switches
to Time-Out Mode as a side-effect of a successful password access, so that
protected registers can remain unlocked at most for the duration of one Time-out
Period. Otherwise, the system will be forced to reset.
User’s Manual 18-6 V2.0, 2001-02

TC1775
System Units

Watchdog Timer
18.4.2 Modes of the Watchdog Timer

The Watchdog Timer can operate in one of four different modes:

• Time-Out Mode
• Normal Mode
• Disable Mode
• Prewarning Mode

The following description provides a short overview of these modes and how the WDT
changes from one mode to the other. As well as these major operating modes, the WDT
has special behavior during power-saving and OCDS suspend modes. Detailed
discussions of each of the modes can be found in Section 18.4.6.

Figure 18-3 provides a state diagram of the different modes of the WDT and the
transition possibilities. Please refer to the description for the conditions for changing from
one state to the other.

Figure 18-3 State Diagram of the Modes of the WDT

MCA04800

Reset

Time-Out
Mode

Normal
Mode

Prewarning
Mode

Disable
Mode
User’s Manual 18-7 V2.0, 2001-02

TC1775
System Units

Watchdog Timer
18.4.2.1 Time-Out Mode

The Time-Out Mode is the default mode after a reset. It is also always entered when a
valid password access to register WDT_CON0 is performed (see Section 18.4.3). The
timer is set to a predefined value and starts counting upwards. Time-Out Mode can only
be exited properly by setting ENDINIT to one with a correct access sequence. If an
improper access to the WDT is performed, or if the timer overflows before ENDINIT is
set to 1, a Watchdog Timer NMI request (WDT_NMI) is requested, and Prewarning
Mode is entered. A reset of the TC1775 is imminent and can no longer be stopped.

A proper exit from Time-Out Mode can either be to the Normal or the Disable Mode,
depending on the state of the disable request bit, WDTDR, in register WDT_CON1.

18.4.2.2 Normal Mode

In Normal Mode (WDTDR = 0), the WDT operates in a standard Watchdog fashion. The
timer is set to a user-defined start value, and begins counting up. It has to be serviced
before the counter overflows. Servicing is performed through a proper access sequence
to the WDT control register WDT_CON0. This reloads the timer with the start value, and
normal operation continues.

If the WDT is not serviced before the timer overflows, or if an invalid access to the WDT
is performed, a system malfunction is assumed. Normal Mode is terminated, a Watchdog
Timer NMI request (WDT_NMI) is requested, and Prewarning Mode is entered. A reset
of the TC1775 is imminent and can no longer be stopped.

Because servicing the WDT is an access sequence, first requiring a valid password
access to register WDT_CON0, the WDT will enter Time-Out Mode until the second
proper access is performed.

18.4.2.3 Disable Mode

Disable Mode is provided for applications which truly do not require the Watchdog Timer
function. It can be entered from Time-Out Mode when the disable request bit WDTDR is
set to 1. The timer is stopped in this mode. However, disabling the WDT does only stop
it from performing the standard Watchdog function (Normal Mode), eliminating the need
for timely service of the WDT. It does not disable Time-Out and Prewarning Mode. If an
access to register WDT_CON0 is performed in Disable Mode, Time-Out Mode is entered
if the access was valid, and Prewarning Mode is entered if the access was invalid. Thus,
the ENDINIT monitor function as well as (a part of) the system malfunction detection will
still be active.
User’s Manual 18-8 V2.0, 2001-02

TC1775
System Units

Watchdog Timer
18.4.2.4 Prewarning Mode

Prewarning Mode is entered always when a Watchdog error is detected. This can be an
overflow of the timer in Normal or Time-Out Mode, or an invalid access to register
WDT_CON0. Instead of immediately generating a reset of the device, as known from
other Watchdog timers, the TC1775 Watchdog Timer provides the system with a chance
to save important state information before the reset occurs. This is done through first
activating an NMI trap request to the CPU, warning it about the coming reset (reset
prewarning). If the CPU is still able to do so (depending on the type and severity of the
detected malfunction), it can react on the Watchdog NMI request and can save important
system state to memory. This saved system state can then be examined during
debugging to determine the cause of the malfunction. If the part would be immediately
reset on the detection of a Watchdog error, this debugging information would never be
available, and investigating the cause of the malfunction would be a very difficult task.

In Prewarning mode, after having generated the NMI request, the WDT counts for a
specified period of time, and then generates a Watchdog reset for the device. This reset
generation cannot be avoided in this mode; the WDT does not react anymore to
accesses to its registers, nor will it change its state. This is to prevent a malfunction from
falsely terminating this mode, disabling the reset, and letting the device to continue to
function improperly.

Note: In Prewarning Mode, it is not required for the part waits for the end of this mode
and the reset. After having saved required state in the NMI routine, software can
execute a soft reset to shorten the time. However, the state of the Watchdog
Status Register should also be saved in this case, because the error flags
contained in it will be cleared due to the soft reset (this is not the case if the
Watchdog reset is awaited).
User’s Manual 18-9 V2.0, 2001-02

TC1775
System Units

Watchdog Timer
18.4.3 Password Access to WDT_CON0

A correct password must be written to register WDT_CON0 in order to unlock it for
modifications. Software must either know the correct password in advance or it can
compute it at runtime. The password required to unlock the register is formed by a
combination of bits in registers WDT_CON0 and WDT_CON1, plus a number of guard
bits. Table 18-2 summarizes the requirements for the password.

When reading register WDT_CON0, bit positions [7:4] always return 0s. As can be seen
from Table 18-2, the password is designed such that it is not possible to just read the
contents of a register and use this as the password. The password is never identical to
the contents of WDT_CON0 or WDT_CON1, it is always required to modify the read
value (at least bits 1 and [7:4]) to get the correct password. This prevents a malfunction
from accidentally reading a WDT register’s contents and writing it to WDT_CON0 as an
unlocking password.

If the password matches the requirements, WDT_CON0 will be unlocked as soon as the
password access has finished. The unlocked condition will be indicated by
WDT_CON0.WDTLCK = 0.

If WDT_CON0 is successfully unlocked, a subsequent write access can modify it, as
described in Section 18.4.4.

If an improper password value is written to WDT_CON0 during the password access, a
Watchdog Access Error condition exists. Bit WDTAE is set and the Prewarning Mode is
entered.

The user-definable password, WDTPW, provides additional options for adjusting the
password requirements to the application’s needs. It can be used, for instance, to detect
unexpected software loops or to monitor the execution sequence of routines. See
Section 18.5.4.

Table 18-2 Password Access Bit Pattern Requirements

Bit Position Required Value

0 Current state of the ENDINIT bit, WDT_CON0.ENDINIT

1 Fixed; must be written with 0.

2 Current state of the input frequency request bit, WDT_CON1.WDTIR

3 Current state of the input frequency request bit, WDT_CON1.WDTDR

[7:4] Fixed; must be written to 1111B

[15:8] Current value of user-definable password field, WDT_CON0.WDTPW

[31:16] Current value of user-definable reload value, WDT_CON0.WDTREL
User’s Manual 18-10 V2.0, 2001-02

TC1775
System Units

Watchdog Timer
18.4.4 Modify Access to WDT_CON0

If WDT_CON0 is successfully unlocked as described in Section 18.4.3, the following
write access to WDT_CON0 can modify it. However, also this access must follow certain
requirements in order to be accepted and regarded as valid. Table 18-3 lists the required
bit patterns. If the access does not follow these rules, a Watchdog Access Error condition
is detected, bit WDTAE is set and the Prewarning Mode is entered.

After the modify access has completed, WDT_CON0.WDTLCK is set to 1 again by
hardware, automatically re-locking WDT_CON0. Before the register can be modified
again, a valid password access must be executed again.

Table 18-3 Modify Access Bit Pattern Requirements

Bit Position Value

0 User definable; desired value for the ENDINIT bit, WDT_CON0.ENDINIT.

1 Fixed; must be written with 1.

2 Fixed; must be written with 0.

3 Fixed; must be written with 0.

[7:4] Fixed; must be written with 1111B.

[15:8] User-definable; desired value of user-definable password field,
WDT_CON0.WDTPW.

[31:16] User-definable; desired value of user-definable reload value,
WDT_CON0.WDTREL.
User’s Manual 18-11 V2.0, 2001-02

TC1775
System Units

Watchdog Timer
18.4.5 Term Definitions for WDT_CON0 Accesses

To simplify the descriptions in the following sections, a number of terms are defined to
indicate the type of access to register WDT_CON0:

Watchdog Access Sequence: Two accesses to register WDT_CON0 consisting of first
a Password Access followed by a Modify Access. The two accesses do not have to be
adjacent accesses, any number of accesses to other addresses can be between these
accesses unless the Time-out Period is not exceeded.

Password Access: The first access of a Watchdog Access Sequence to register
WDT_CON0 intended to open WDT_CON0 for modifications. This access needs to write
a defined password value to WDT_CON0 in order to successfully open WDT_CON0.

Valid Password Access: A Password Access with the correct password value. A Valid
Password Access opens register WDT_CON0 for one, and only one, Modify Access. Bit
WDTLCK is set to 0 after this access. The Watchdog Timer is placed into the Time-Out
Mode after a Valid Password Access in Normal Mode or Disabled Mode.

Modify Access: The second access of an Watchdog Access Sequence to register
WDT_CON0 intended to modify parameters in WDT_CON0. The parameters that can
be modified are WDTREL, WDTPW and ENDINIT. Special guard bits in WDT_CON0
must be written with predefined values in order for this access to be accepted.

Valid Modify Access: A Modify Access with the correct guard bit values. The values
written to WDTREL, WDTPW, and ENDINIT are in effect after completion of this access.
Bit WDTLCK is automatically set to 1 after this access. Register WDT_CON0 is locked
until it is re-opened with a Valid Password Access again.
User’s Manual 18-12 V2.0, 2001-02

TC1775
System Units

Watchdog Timer
18.4.6 Detailed Descriptions of the WDT Modes

The following subsections provide detailed descriptions of each of the modes of the
WDT. The entry conditions and actions, operation in this mode, as well as exit conditions
and the succeeding mode are listed for each mode.

18.4.6.1 Time-Out Mode Details

Time-Out Mode is the default after reset, and is entered each time a Valid Password
Access to register WDT_CON0 is performed.

Table 18-4 WDT Time-Out Mode

State /
Action

Description

Entry – Automatically after any reset.
– If a valid password was written to WDT_CON0 in Normal or Disable Mode

Actions
on Entry

– WDTTIM is set to FFFCH; WDTTO is set to 1; WDTDS is set to 0.
– ENDINIT = 0 if mode entered through reset; otherwise, it retains its

previous value.
– Bits WDTAE and WDTOE depend on their state before the reset if the

reset was caused by the Watchdog. For any other reset (POR, HRST,
SRST, PWDRST), they are 0.

– WDTIS retains its previous value.
– After reset, EndInit is 0. Thus, access to EndInit-protected registers is

enabled. If Time-Out Mode was entered through other reasons, ENDINIT
might or might not be 0.

Opera-
tion

– Timer starts counting up from FFFCH; increments with clock rate
determined through WDTIS (0 after reset, slowest clock).

– Access to registers WDT_CON0 is possible. Access to register
WDT_CON1 is possible if ENDINIT = 0.

– Restarting Time-Out Mode is not possible: A valid password access in this
mode does not invoke another Time-out sequence (it does not reload the
timer, etc.). A modify access to WDT_CON0 writing a 0 to ENDINIT does
not terminate Time-Out Mode.

– It is not possible to change the reload value or frequency in Time-Out
Mode, as this would require setting EndInit to 1, which terminates Time-
Out Mode. Reload value is not used until Normal mode is entered.

Exit a) Writing ENDINIT to 1 with a valid Modify Access (a Valid Password
Access must have been executed first).

b) Timer WDTTIM overflows from FFFFH to 0000H.
c) An invalid access to WDT_CON0 (either during the password or the

modify access)
User’s Manual 18-13 V2.0, 2001-02

TC1775
System Units

Watchdog Timer
18.4.6.2 Normal Mode Details

Normal Mode can be entered from Time-Out Mode only if bit WDT_CON1.WDTDR is set
to 0 before proper termination of Time-Out Mode. The WDT operates as a standard
Watchdog in this mode, requiring timely service to prevent a timer overflow.

Next
Mode

Depending on the Exit condition:
a1) If WDTDR = 0 (no disable request), the WDT enters the Normal Mode.
a2) If WDTDR = 1 (disable request), the WDT enters the Disable Mode.
b) Bit WDTOE is set to 1, and the WDT enters the Prewarning Mode.
c) Bit WDTAE is set to 1, and the WDT enters the Prewarning Mode

Table 18-5 WDT Normal Mode

State /
Action

Description

Entry – Only from Time-Out Mode by writing ENDINIT to 1 with a Valid Modify
Access (a Valid Password Access must have been executed first), while
bit WDTDR = 0.

Actions
on Entry

– WDTTIM is loaded with the value of WDTREL.
– Bits WDTAE, WDTOE, WDTPR, WDTTO, and WDTDS are cleared to 0.

Operation – WDTTIM starts counting up from reload value with frequency selected
through WDTIS.

Exit a) A valid password access to register WDTCON.
b) Timer WDTTIM overflows from FFFFH to 0000H.
c) An invalid access to WDT_CON0 (either during the password or the

modify access)

Next
Mode

Depending on Exit condition:
a) Time-Out Mode.
b) Prewarning Mode, bit WDTOE is set to 1 (overflow error).
c) Prewarning Mode, bit WDTAE is set to 1 (access error).

Table 18-4 WDT Time-Out Mode

State /
Action

Description
User’s Manual 18-14 V2.0, 2001-02

TC1775
System Units

Watchdog Timer
18.4.6.3 Disable Mode Details

Disable Mode is provided for applications which truly do not require the Watchdog Timer
function. It can only be entered from Time-Out Mode if bit WDT_CON1.WDTDR is set to
1 before proper termination of Time-Out Mode. The counter stops in this mode,
eliminating the need for a WDT service. However, if an access to register WDT_CON0
is performed, the WDT will leave Disable Mode. Disable Mode does not stop the
detection of access errors and the entry of Prewarning Mode nor the entry of Time-Out
Mode on a Valid Password Access.

Table 18-6 WDT Disable Mode

State /
Action

Description

Entry – Only from Time-Out Mode by writing ENDINIT to 1 with a Valid Modify
Access (a Valid Password Access must have been executed first), while
bit WDTDR = 1.

Actions
on Entry

– Bits WDTAE, WDTOE, WDTPR, and WDTTO are cleared. Bit WDTDS
is set to 1.

– Timer WDTTIM is stopped (it retains its current value).

Operation –

Exit a) Valid password access to register WDTCON.
b) Invalid access to WDT_CON0 (either during the password or the modify

access)

Next
Mode

Depending on Exit condition:
a) Time-Out Mode.
b) Prewarning Mode, bit WDTAE is set to 1 (access error).
User’s Manual 18-15 V2.0, 2001-02

TC1775
System Units

Watchdog Timer
18.4.6.4 Prewarning Mode Details

Prewarning Mode is always entered immediately after a Watchdog error condition was
detected. This can be either an access error to register WDT_CON0 or an overflow of
the counter in Normal or Time-Out Mode. This mode indicates that a reset of the device
is imminent. Operation of the WDT in this mode can not be altered or stopped, except
through a reset.

Table 18-7 WDT Prewarning Mode

State /
Action

Description

Entry Detection of a Watchdog error:
– Overflow of timer WDTTIM.
– Access error to register WDT_CON0 (either on a password or modify

access) in Time-Out, Normal, or Disable modes.

Actions
on Entry

– NMIWDT in register NMISR is set (this triggers an NMI request to the
CPU).

– WDTTIM is set to FFFCH.
– WDTPR is set to 1; WDTDS is set to 0; WDTIS retains its value.
– WDTTO retains its previous value: if entry into Prewarning Mode was

from Time-Out Mode, WDTTO is 1. In all other cases, WDTTO is 0.
– Bits WDTAE and WDTOE indicate whether Prewarning Mode was

entered due to an access or an overflow error. They have been set
accordingly on exit of the previous mode.

Operation – Timer WDT_TIM starts counting up from FFFCH with frequency
selected through WDTIS.

– Register WDT_CON0 can be accessed in this mode as usual. However,
the WDT will not change its mode anymore, regardless whether valid or
invalid accesses are made to WDT_CON0. For invalid accesses to
WDT_CON0 (password or modify access), however, bit WDTAE in
WDT_SR will be set.

– Register WDT_CON1 can not be written to in Prewarning Mode, even if
bit ENDINIT = 0. Write access to WDT_CON1 is totally prohibited. A
write attempt will generate a bus error in this mode.

Exit – Prewarning Mode can not be disabled, prolonged, or terminated (except
through a reset). The timer will increment until it overflows from FFFFH
to 0000H, which then causes a system reset. Bit WDTRST in register
RSTSR is set in this case.

Next Mode Reset
User’s Manual 18-16 V2.0, 2001-02

TC1775
System Units

Watchdog Timer
Note: In Prewarning Mode, it is not required that the part waits for the end of the
Time-out Period and the reset. After having saved required state in the NMI
routine, software can execute a soft reset to shorten the time. However, the state
of the Watchdog Status Register should also be saved in this case, since the error
flags contained in it will be cleared due to the soft reset (this is not the case if the
Watchdog reset is awaited).

18.4.6.5 WDT Operation During Power-Saving Modes

If the CPU is in Idle Mode, Sleep Mode, or Deep Sleep Mode, it cannot service the
Watchdog Timer because no software is running. When in Deep Sleep, only an external
event can awaken the system. Excluding this case, and the case where the system is
running normally, a strategy for managing the WDT is needed while the CPU is in Idle
Mode or Sleep Mode. There are two ways to manage the WDT in these cases. First, the
Watchdog can be disabled before idling the CPU. This has the disadvantage that the
system will no longer be monitored during the idle period.

A better approach to this problem relies upon a wake-up features of the WDT. Whenever
the CPU is put in Idle or Sleep Mode and the WDT is not disabled, it causes the CPU to
be awakened at regular intervals. The Watchdog Timer triggers an NMI trap request
when its count value (WDT_SR.WDTTIM) transitions from 7FFFH to 8000H, that is, when
the most significant bit of the WDT counter changes its state from 0 to 1. The WDT also
sets the NMISR.NMIWDT bit at this time to indicate to the CPU that the WDT caused the
NMI. The CPU is awakened by the NMI trap, and can then service the Watchdog Timer
in the usual manner, reset NMISR.NMIWDT, and then return to its former power-
management mode.

This operation does not cause a WDT error condition. The WDT continues to operate in
Normal Mode after generating this wake-up NMI. However, if the CPU does not service
the WDT in the NMI trap routine, it will continue to run, eventually causing an overflow,
which will cause the WDT to enter Prewarning Mode.

Note: Before switching into a non-running power-management mode, software should
perform a Watchdog service sequence. With the Modify Access, the Watchdog
reload value, WDT_CON0.WDTREL, should be programmed such that the wake-
up occurs after a period which best meets application requirements. The
maximum period between NMI requests is one-half of the maximum Watchdog
Timer period.

18.4.6.6 WDT Operation in OCDS Suspend Mode

When the On-Chip Debugging System (OCDS) is enabled after reset (through the
OCDSE pin), the WDT will automatically stop when OCDS Suspend Mode is activated.
It will resume operation after the Suspend Mode is deactivated Watchdog Error.
User’s Manual 18-17 V2.0, 2001-02

TC1775
System Units

Watchdog Timer
It is possible that severe system malfunctions may not be corrected even by a system
reset. If application code cannot be executed properly because of a system fault, then
the WDT initialization code itself might not be able to execute to service the WDT, with
the result that two WDT-initiated resets might occur back-to-back. A feature of the WDT
detects such Double Watchdog Errors and suspends all system operations after the
second reset occurs. This feature prevents the TC1775 from executing random wrong
code for longer than the Time-out Period, and prevents the TC1775 from being
repeatedly reset by the Watchdog Timer.

Double Watchdog Errors are detected with the aid of the error-indication flags
WDT_SR.WDTOE and WDT_SR.WDTAE. Ordinarily, software clears these bits to 0
during normal WDT service. But, these bits are not cleared when a reset is caused by
the WDT. Because the error bits are preserved across resets, the WDT can examine
them if it times out again. If either error bit is still set when a new Watchdog Timer Error
occurs, then there must have been a preceding WDT-initiated reset without intervening
software service of the WDT. Hence, this is a Double Watchdog Error condition. In this
case the WDT will generate another reset after the termination of the Prewarning Mode,
but this time the TC1775 will be held in the reset state until a power-up reset is generated
by external hardware.

18.4.7 Determining WDT Periods

The WDT uses the same clock, fSYSTEM, as the System Control Unit (SCU) in which it is
integrated. In the TC1775, this clock is equal to the system clock, fSYSCLK. A clock
divider in front of the Watchdog Timer provides two output frequencies, fSYSCLK/256 and
fSYSCLK/16384. Bit WDTIS selects between these options.

When the WDT is in Normal Mode, the duration of a WDT cycle is defined as a Normal
Period, as described in Section 18.4.7.2.

When the WDT is in Time-Out Mode or Prewarning Mode, the duration of a WDT cycle
is defined as a Time-out Period, as described in Section 18.4.7.1.

The general form to calculate a Watchdog period is:

[18-1]

The parameter startvalue represents the fixed value FFFCH for the calculation of the
Time-out Period, and the user-programmable reload value WDTREL for the calculation
of the Normal Period. Note that the exponent (1 - WDTIS) × 6 results to 0 if WDTIS is 1,
and to 6 if WDTIS is 0. This results in the value 256 being multiplied by either 1 (20 = 1)
or by 64 (26), giving the two divider factors 256 and 16384.

Note: Because there is no synchronization of the clock divider to the mode transitions of
the Watchdog, the next clock pulse, incrementing the counter, may come after one

period
216 startvalue–() 256× 2

1 WDTIS–() 6××
fSYSCLK

---=
User’s Manual 18-18 V2.0, 2001-02

TC1775
System Units

Watchdog Timer
clock divider period, or immediately after the counter was reloaded. Thus, it is
recommended that the reload value is programmed to a value which results in one
clock pulse more than the required period.

18.4.7.1 Time-out Period

The duration of Time-Out Mode and Prewarning Mode is determined by the Time-out
Period described here. The Time-out Period that occurs immediately after reset is
governed entirely by system defaults, as no software is been able to run at this point; it
is described separately below.

Time-out Period After Reset

After reset, the initial count value for the timer is fixed at FFFCH when the WDT clock
starts running. The WDT counts up at a rate determined by WDT_SR.WDTIS, which is
0 after any reset (fSYSCLK/16384). Counting up from FFFCH, it takes four clocks for the
counter to overflow, so the Time-out Period defaults to a period of 4 × 16384/fSYSCLK =
65536/fSYSCLK. This establishes the real-time deadline for software to initialize the
Watchdog and critical system registers, and to then set ENDINIT. For example, the
Time-out Period after reset would correspond to 1.6 ms @ 40 MHz system frequency.

Changing the input frequency selection via WDT_CON1.WDTIR during this initial
Time-out Period has no immediate effect, because frequency selection is actually
determined by WDT_SR.WDTIS, but WDT_CON1.WDTIR is only copied into
WDT_SR.WDTIS after WDT_CON0.ENDINIT has been set to 1, that is, after Time-Out
Mode has been properly exited. Hence, the new input frequency will become effective
only in a subsequent Time-out Period.

Time-out Period During Normal Operation

As after reset, the WDT counter is initially set to FFFCH when Time-Out Mode is entered,
and Time-Out Mode expires when the counter overflows. However, there are two
differences to the Time-out Period after reset. First, the input frequency can be either
fSYSCLK/256 or fSYSCLK/16384, depending on the programmed state of bit
WDT_SR.WDTIS before the Time-out Period was entered. Second, because there is no
synchronization of the clock divider to the mode transitions of the Watchdog, the next
clock pulse, incrementing the counter to FFFDH, may come after one clock divider
period, or immediately after the counter was initially set to FFFCH. Thus, the minimum
duration of the Time-out Period in the latter case will only be three counter clocks. The
possible minimum and maximum periods are given in Table 18-8.
User’s Manual 18-19 V2.0, 2001-02

TC1775
System Units

Watchdog Timer
The WDT input clock rate can not be changed during the Time-out Period. The control
bit for the input clock rate, WDT_SR.WDTIS, is loaded from WDT_CON1.WDTIR when
WDT_CON0.ENDINIT is set to 1, that is, after Time-Out Mode has been properly exited.
Hence, the new input frequency will become effective only in the subsequent Time-out
Period.

Note: In Prewarning Mode, it is not required that the part waits for the end of the
Time-out Period and the reset. After having saved required state in the NMI
routine, software can execute a soft reset to shorten the time. However, the state
of the Watchdog Status Register should also be saved in this case, since the error
flags contained in it will be cleared due to the soft reset (this is not the case if the
Watchdog reset is awaited).

18.4.7.2 Normal Period

The duration of Normal Mode can be varied by two parameters: the input clock and the
reload value.

The system clock, fSYSCLK, can be divided by either 256 or 16384. WDT_SR.WDTIS
selects the input clock divider. The default value of WDTIS after reset is 0, corresponding
to a frequency of fSYSCLK/16384.

When the Watchdog Timer is serviced in Normal Mode, it is reloaded with the 16-bit
reload value, WDT_CON0.WDTREL.

The Watchdog Timer Period can be varied over a wide range with these two parameters.
Again, since there is no synchronization of the clock divider to the mode transitions of
the Watchdog, the next clock pulse, incrementing the counter, may come after one clock
divider period, or immediately after the counter was reloaded. Thus, it is recommended
that the reload value is programmed to a value which results to one clock pulse more
than the required period. Using a reload value of FFFFH could therefore lead to an
immediate overflow of the timer. Thus, the examples given in Table 18-9 are only shown
with a maximum reload value of FFFEH.

Table 18-8 Time-out Period During Normal Operation

WDTIS Min/
Max

Period Example
@ fSYSCLK = 40 MHz

0 min. 3 × 16384/fSYSCLK = 49152/fSYSCLK 1.2 ms

max. 4 × 16384/fSYSCLK = 65536/fSYSCLK 1.6 ms

1 min. 3 × 256/fSYSCLK = 768/fSYSCLK 19 µs

max. 4 × 256/fSYSCLK = 1024/fSYSCLK 26 µs
User’s Manual 18-20 V2.0, 2001-02

TC1775
System Units

Watchdog Timer
18.4.7.3 WDT Period During Power-Saving Modes

Care needs to be taken when programming the WDT reload value before going to Idle
or Sleep Mode. As described in Section 18.4.6.5, the state of bit 15 of the Watchdog
counter is used to wake up from these modes through a Watchdog NMI request. Thus,
the reload value should be chosen such that it is less then 7FFEH (bit 15 = 0), otherwise
an immediate wake-up could occur. Only half of the maximum periods shown in
Table 18-9 can be used for the wake-up period.

Table 18-9 Timer Periods in Normal Mode

WDTIS Reload
Value

Min/
Max

Period Example
@ fSYSCLK = 40 MHz

0 0000H min. 65535 × 16384/fSYSCLK =
1073725440/fSYSCLK

26.8 s

max. 65536 × 16384/fSYSCLK =
1073741824/fSYSCLK

26.8 s

FFFEH min. 1 × 16384/fSYSCLK = 16384/fSYSCLK 410 µs

max. 2 × 16384/fSYSCLK = 32768/fSYSCLK 819 µs

1 0000H min. 65535 × 256/fSYSCLK =
16776960/fSYSCLK

419 ms

max. 65536 × 256/fSYSCLK =
16777216/fSYSCLK

419 ms

FFFEH min. 1 × 256/fSYSCLK = 256/fSYSCLK 6.4 µs

max. 2 × 256/fSYSCLK = 512/fSYSCLK 12.8 µs
User’s Manual 18-21 V2.0, 2001-02

TC1775
System Units

Watchdog Timer
18.5 Handling the Watchdog Timer

This section describes methods of handling the Watchdog Timer function.

18.5.1 System Initialization

After any reset, the Watchdog Timer is put in Time-Out Mode, and
WDT_CON0.ENDINIT is 0, providing access to sensitive system registers. Changes to
the operation of the Watchdog Timer controlled by WDT_CON1 become effective only
after WDT_CON0.ENDINIT has been set to 1 again. Thus, changes to the WDT mode
bits in WDT_CON1 do not interfere with the Time-out operation of the Watchdog Timer
after reset. Table 18-10 shows the default contents of the Watchdog Timer registers.

Because the Watchdog Timer is in Time-Out Mode after reset, WDT_CON0.ENDINIT
must be set to 1 before the Time-out Period expires. This means that initialization of
ENDINIT-protected system registers must be complete before the expiration of the
Time-out Period, defined in Section 18.4.7.1. To set WDT_CON0.ENDINIT to 1, a Valid
Password Access to WDT_CON0 must be performed first. During the subsequent Valid
Modify Access, WDT_CON0.ENDINIT must be set to 1, which will exit Time-Out Mode.
The Watchdog Timer is switched to the operation determined by the new values of
WDTIS and WDTDS.

Note: The action described above must absolutely be performed during initialization of
the device to properly terminate this mode. Even if the Watchdog function will not
be used in an application and the WDT will be disabled, a valid access sequence
to the WDT is mandatory. Otherwise, the Watchdog counter will overflow,
Prewarning Mode will be entered, and a Watchdog reset will occur at the end of
the Time-out Period.

Table 18-10 Watchdog Timer Default Values After Reset

Register Default
Contents

Description

WDT_CON0 FFFC 0002H Reload value is FFFCH, WDTPW is 0; WDT_CON0 is
locked (WDTLCK = 1); ENDINIT is 0.

WDT_CON1 0000 0000H Watchdog Timer disable request is 0; input clock request
set to fSYSCLK/16384.

WDT_SR FFFC 001UH The Watchdog counter contains FFFCH (the initial
Time-out value); WDT is operating in Time-Out Mode
(WDTTO = 1); WDT is enabled (WDTDS = 0); input
clock is fSYSCLK/16384.
Bits WDTOE and WDTAE are set to 0 after a power-on,
a hard or a soft reset. In case of a reset caused by the
WDT, these two bits are set depending on the error
condition that caused the Watchdog reset.
User’s Manual 18-22 V2.0, 2001-02

TC1775
System Units

Watchdog Timer
Bit fields WDT_CON0.WDTREL and WDT_CON0.WDTPW can optionally be changed
during the Valid Modify Access, but it is not required. WDT_CON0.ENDINIT can be set
to 1 or 0, however, setting ENDINIT to 0 does not stop Time-Out Mode. Any values
written to WDTREL, WDTPW, and ENDINIT are stored in WDT_CON0, and
WDT_CON0 is automatically locked (WDTLCK = 1) after the modify access is finished.

18.5.2 Re-opening Access to Critical System Registers

If some or all of the system’s ENDINIT-protected registers must be changed during run
time of an application, access can be re-opened. To do this, WDT_CON0 must first be
unlocked with a Valid Password Access. In the following Valid Modify Access, ENDINIT
can be set to 0. Access to ENDINIT-protected registers is now open again. However,
when WDT_CON0 is unlocked, the WDT is automatically switched to Time-Out Mode.
Thus, the access window is time-limited. Time-Out Mode is only terminated after
ENDINIT has been set to 1 again, requiring another Valid Password and Valid Modify
Access to WDT_CON0.

If the WDT is not used in an application and is therefore disabled
(WDT_SR.WDTDS = 1), the above described case is the only occasion when
WDT_CON0 must be accessed again after the system is initialized. If there are no further
changes to critical system registers needed, no further accesses to WDT_CON0,
WDT_CON1, or WDT_SR are necessary. However, it is always recommended that the
Watchdog Timer be used in an application for safety reasons.

18.5.3 Servicing the Watchdog Timer

If the Watchdog Timer is used in an application and is enabled (WDT_SR.WDTDS = 0),
it must be regularly serviced to prevent it from overflowing.

Service is performed in two steps. a Valid Password Access followed by a Valid Modify
Access. The Valid Password Access to WDT_CON0 automatically switches the WDT to
Time-Out Mode. Thus, the modify access must be performed before the Time-out
expires or a system reset will result.

During the following modify access, the strict requirement is that WDT_CON0.ENDINIT
as well as bit 1 and bits [7:4] are written with 1’s, while bits [3:2] are written with 0’s.

Note: ENDINIT must be written with 1 even if it is already set to 1 to perform a proper
service.

Changes to the reload value WDTREL, or the user-definable password WDTPW, are not
required. However, changing WDTPW is recommended so that software can monitor
Watchdog Timer service operations throughout the duration of an application program
(see Section 18.5.4).

If WDT service is properly executed, Time-Out Mode is terminated, and the Watchdog
Timer switches back to its former mode of operation, and Watchdog Timer service is
complete.
User’s Manual 18-23 V2.0, 2001-02

TC1775
System Units

Watchdog Timer
18.5.4 Handling the User-Definable Password Field

WDT_CON0.WDTPW is an 8-bit field that can be set by software to any arbitrary value
during a Modify Access. Settings of this field have no effect on the operation of the WDT,
other than the role it plays in forming the password bit pattern, as discussed in
Section 18.4.3.

The purpose of this field is to support further enhancements to the password protection
scheme. For the following description, it is assumed that software does at least not fully
compute the value for the Password Access from the contents of registers WDT_CON0
and WDT_CON1, but uses a predefined constant, embedded in the instruction stream,
for the password (this is at least necessary for the user-definable password field
WDTPW). For example, software can modify this field each time it executes a Watchdog
service sequence. The next service sequence needs to take this new value into account
for its Password Access. And it again changes the value during its Modify Access. Up to
256 different password values can be used. In this way, each service sequence is
unique. If a malfunction occurs that, for instance, would result in the omission of one or
more of these service sequences, the next service sequence would most probably not
write the correct password. This service sequence would rely on the password value
programmed during the normally preceding service sequence. However, if this one was
skipped, the password value required by the contents of the Watchdog registers is the
one programmed at the last service sequence executed before the malfunction had
occurred. A Watchdog error condition would be detected in this case.

In the same manner, the Watchdog would detect the malfunction if a service sequence
would be executed twice due to a falsely performed jump. Figure 18-4 illustrates these
examples.
User’s Manual 18-24 V2.0, 2001-02

TC1775
System Units

Watchdog Timer

Figure 18-4 Detection of False Jumps and Loops

Other schemes are possible. Consider the case in which a routine determines some
conditions that alter the program flow. One of two or more different paths will be executed
next depending on these conditions. Before branching to the appropriate routine(s),
software performs a Watchdog service and sets the new password value for WDTPW
such that it depends on these conditions, that is, some or all of these condition codes
can be incorporated into WDTPW. The next service sequence is performed at the point
where the different paths come together again. To determine the correct password,
software uses a value returned from the path which was executed. This value must
match the value in WDTPW, otherwise the wrong path was executed. Figure 18-5
shows an example for this.

MCA04801

Password access:
write xyH to WDTPW

Modify access:
set WDTPW to 10H

WDTPW = 10HNext expected

Service
Sequence
n

Password access:
write 10H to WDTPW

Modify access:
set WDTPW to 11H

WDTPW = 11HNext expected

Service
Sequence
n + 1

Password access:
write 11H to WDTPW

Modify access:
set WDTPW to 12H

WDTPW = 12HNext expected

Service
Sequence
n + 2

Multiple
Execution
of Service:

Expected
WDTPW = 11H

WDTPW
Written = 10H

==>
Access Error

Omission
of Service:

Expected
WDTPW = 10H

WDTPW
Written = 11H

==>
Access Error
User’s Manual 18-25 V2.0, 2001-02

TC1775
System Units

Watchdog Timer
It is also possible to have the different paths of a program compute the full or partial
password to unlock register WDT_CON0. The password will only match at the next
service sequence if all the expected paths and calculation routines have been executed
properly. If one or more steps would have been omitted or a wrong path was executed
due to a malfunction, the Watchdog failure mechanism will detect this and issue a reset
of the device (after the prewarning phase).

Figure 18-5 Monitoring Program Sequences

MCA04802

Determine branch
condition:
PW := A or B or C

Password access:
write xyH to WDTPW

Modify access:
set WDTPW to PW

Perform
Branch

Path B
...
...
PW := B
Return (PW)

Path A
...
...
PW := A
Return (PW)

Path C
...
...
PW := C
Return (PW)

WDTPW = PWNext expected

Service
Sequence
n

Password access:
write PW to WDTPW

Modify access:
...

Service
Sequence
n + 1

Password is only correct if the
correct path was executed
User’s Manual 18-26 V2.0, 2001-02

TC1775
System Units

Watchdog Timer
18.5.5 Determining the Required Values for a WDT Access

As described in Section 18.4.3 and Section 18.4.4, the values required for the
password and modify accesses to register WDT_CON0 are designed such that they can
be derived from the values read from registers WDT_CON0 and WDT_CON1. However,
at least some bits have to be modified in order to get the correct write value. This makes
it very unlikely that a false operation derives values from reading these registers which
inadvertently affect the WDT operation when written back to WDT_CON0. Even if a false
write operation would have written the correct password to WDT_CON0, one further,
different correct value needs to be written to this register in order to have an effect. In
addition, the WDT switches to Time-Out Mode after the Valid Password Access,
providing only a time-limited window for the second access.

While computing the required values from the current contents of the Watchdog registers
is one option, the method of using predetermined values, set at compile-time of the
program, may be the better approach in many cases. Usually, handling the Watchdog
Timer is performed by one and only one task. Thus, the problem will not occur that
another task might have changed some of the parameters which must not be modified
(which would require reading the contents, modifying the value appropriately, and then
writing it back). The one task handling the Watchdog Timer function would always “know”
how it has programmed the WDT last time, and would therefore also “know” the next
password value for opening WDT_CON0. In fact, this method would actually detect the
case if another task had illegally modified the Watchdog registers, since the
predetermined password might not work anymore, and a Watchdog error condition is
generated.

In addition, accessing the WDT with predetermined values has the obvious benefit of
shorter code, as no computing steps need to be performed.
User’s Manual 18-27 V2.0, 2001-02

TC1775
System Units

Watchdog Timer
18.6 Watchdog Timer Registers

Three registers are provided with the Watchdog Timer: WDT_CON0, WDT_CON1, and
WDT_SR, as shown in Figure 18-6. They are located in the System Control Unit (SCU)
Module.

Figure 18-6 Watchdog Registers

In the TC1775, the registers of the Watchdog Timer are located in the address range of
the SCU:

– Module Base Address: F000 0000H
Module End Address; F000 00FFH

– Absolute Register Address = Module Base Address + Offset Address

Table 18-11 WDT Kernel Registers

Register
Short Name

Register Long Name Offset
Address

Description
see

WDT_CON0 Watchdog Timer Control Register 0 0020H Page 18-29

WDT_CON1 Watchdog Timer Control Register 1 0024H Page 18-31

WDT_SR Watchdog Timer Status Register 0028H Page 18-32

MCA04803

WDT_CON0

WDT_CON1

WDT_SR

Control Registers Status Register
User’s Manual 18-28 V2.0, 2001-02

TC1775
System Units

Watchdog Timer
18.6.1 Watchdog Timer Control Register 0

WDT_CON0 manages password access to the Watchdog Timer. It also stores the timer
reload value, a user-definable password field, a lock bit, and the end-of-initialization
(ENDINIT) control bit.

WDT_CON0
Watchdog Timer Control Register 0 Reset Value: FFFC 0002H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

WDTREL

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WDTPW WDTHPW
1

WDTHPW
0

WDT
LCK

END
INIT

rw w w rw rw

Field Bits Type Description

ENDINT 0 rw End-of-Initialization Control Bit
0 Access to Endinit-protected registers is

permitted (default after reset).
1 Access to Endinit-protected registers is not

permitted.
ENDINIT controls the access to critical system
registers. During a password access it must be
written with its current value. It can be changed during
a modify access to WDT_CON0.
User’s Manual 18-29 V2.0, 2001-02

TC1775
System Units

Watchdog Timer
WDTLCK 1 rw Lock Bit to Control Access to WDT_CON0
0 Register WDT_CON0 is unlocked.
1 Register WDT_CON0 is locked

(default after reset).
The actual value of WDTLCK is controlled by
hardware. It is set to 0 after a successful password
access to WDT_CON0 and automatically set to 1
again after a successful modify access to
WDT_CON0. During a write to WDT_CON0 the value
written to this bit is only used for the password-
protection mechanism and is not stored.
This bit must be set to 0 during a password access to
WDT_CON0 and set to 1 during a modify access to
WDT_CON0. That is, the inverted value read from
WDTLCK always must be written to itself.

WDTHPW0 [3:2] w Hardware Password 0
This field must be written with the value of the bits
WDT_CON1.WDTDR and WDT_CON1.WDTIR
during a password access.
This field must be written with 0’s during a modify
access to WDT_CON0. When read, these bits always
return 0.

WDTHPW1 [7:4] w Hardware Password 1
This field must be written to 1111B during both, a
password access and a modify access to
WDT_CON0. When read, these bits always return 0.

WDTPW [15:8] rw User-Definable Password Field for Access to
WDT_CON0
This bit field must be written with its current contents
during a password access. It can be changed during
a modify access to WDT_CON0.

WDTREL [31:16] rw Reload Value for the Watchdog Timer
If the Watchdog Timer is enabled and in Normal
Timer Mode, it will start counting from this value after
a correct Watchdog service. This field must be written
with its current contents during a password access. It
can be changed during a modify access to
WDT_CON0 (FFFCH = default after reset).

Field Bits Type Description
User’s Manual 18-30 V2.0, 2001-02

TC1775
System Units

Watchdog Timer
18.6.2 Watchdog Timer Control Register 1

WDT_CON1 manages operation of the WDT. It includes the disable request and
frequency selection bits. It is ENDINIT-protected.

WDT_CON1
Watchdog Timer Control Register 1 Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 WDT
DR

WDT
IR 0

r rw rw r

Field Bits Type Description

WDTIR 2 rw Watchdog Timer Input Frequency Req. Control Bit
0 Request to set input frequency

to fSYSCLK/16384
1 Request to set input frequency to fSYSCLK/256
This bit can only be modified if WDT_CON0.ENDINIT
is set to 0. WDT_SR.WDTIS is updated by this bit only
when ENDINIT is set to 1 again. As long as ENDINIT
is left at 0, WDT_SR.WDTIS controls the current input
frequency of the Watchdog Timer. When ENDINIT is
set to 1 again, WDT_SR.WDTIS is updated with the
state of WDTIR.

WDTDR 3 rw Watchdog Timer Disable Request Control Bit
0 Request to enable the Watchdog Timer.
1 Request to disable the Watchdog Timer.
This bit can only be modified if WDT_CON0.ENDINIT
is set to 0. WDT_SR.WDTDS is set to this bit’s value
when ENDINIT is set to 1 again. As long as ENDINIT
is left at 0, bit WDT_SR.WDTDS controls the current
enable/disable status of the Watchdog Timer. When
ENDINIT is set to 1 again with a valid modify access,
WDT_SR.WDTDS is updated with the state of
WDTDR.
User’s Manual 18-31 V2.0, 2001-02

TC1775
System Units

Watchdog Timer
18.6.3 Watchdog Timer Status Register

WDT_SR shows the current state of the WDT. Status include bits indicating reset
prewarning, Time-out, enable/disable status, input clock status, and access error status.

The reset value for this register is depending on the cause of the reset. For any reset
other than a Watchdog reset, the reset value is FFFC 001UH. After a Watchdog reset,
bits WDTAE and WDTOE indicate the type of Watchdog error which occurred before the
Watchdog reset. Either one or both bits can be set. These bits are not reset on a
Watchdog reset. Bits WDTDS and WDTIS are always 0 after any reset.

0 [1:0],
[31:4]

r Reserved; read as 0; should be written with 0;

WDT_SR
Watchdog Timer Status Register Reset Value: FFFC 0010H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

WDTTIM

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 WDT
PR

WDT
TO

WDT
DS

WDT
IS

WDT
OE

WDT
AE

r r r r r r r

Field Bits Type Description

WDTAE 0 r Watchdog Access Error Status Flag
0 No Watchdog access error.
1 An Watchdog access error has occurred.
This bit is set by hardware when an illegal password
access or modify access to register WDT_CON0 was
attempted. This bit is only reset through:
– a power-on, hardware, or software reset occurs
– WDT_CON0.ENDINIT is set to 1 during a valid

modify access.
However it is not possible to reset this bit if the WDT
is in Prewarning Mode, indicated by
WDT_SR.WDTPR = 1.

Field Bits Type Description
User’s Manual 18-32 V2.0, 2001-02

TC1775
System Units

Watchdog Timer
WDTOE 1 r Watchdog Overflow Error Status Flag
0 No Watchdog overflow error
1 A Watchdog overflow error has occurred.
This bit is set by hardware when the Watchdog Timer
overflows from FFFFH to 0000H. This bit is only reset
when:
– a power-on, hardware, or software reset occurs;
– WDT_CON0.ENDINIT is set to 1 during a valid

modify access.
However it is not possible to reset this bit if the
Watchdog Timer is in Prewarning Mode, indicated by
WDT_SR.WDTPR = 1.

WDTIS 2 r Watchdog Input Clock Status Flag
0 Watchdog Timer input clock is fSYSCLK/16384

(default after reset).
1 Watchdog Timer input clock is fSYSCLK/256.
This bit is updated with the state of bit
WDT_CON1.WDTIR after WDT_CON0.ENDINIT is
written with 1 during a valid modify access to register
WDT_CON0.

WDTDS 3 r Watchdog Enable/Disable Status Flag
0 Watchdog Timer is enabled

(default after reset).
1 Watchdog Timer is disabled.
This bit is updated with the state of bit
WDT_CON1.WDTDR after WDT_CON0.ENDINIT is
written with 1 during a valid modify access to register
WDT_CON0.

WDTTO 4 r Watchdog Time-Out Mode Flag
0 Normal mode
1 The Watchdog is operating in Time-Out Mode

(default after reset)
This bit is set to 1 when Time-Out Mode is entered,
automatically after a reset and after every password
access to register WDT_CON0. It is automatically
reset by hardware when Time-Out Mode is properly
terminated through a valid modify access to
WDT_CON0. It is left set when a Watchdog error
occurs during Time-Out Mode, and Prewarning Mode
is entered.

Field Bits Type Description
User’s Manual 18-33 V2.0, 2001-02

TC1775
System Units

Watchdog Timer
WDTPR 5 r Watchdog Prewarning Mode Flag
0 Normal mode (default after reset)
1 The Watchdog is operating in Prewarning

Mode
This bit is set to 1 when a Watchdog error is detected.
The Watchdog Timer has issued an NMI trap and is in
Prewarning Mode. A reset of the chip occurs after the
prewarning period has expired.

WDTTIM [31:16] r Watchdog Timer Value
Reflects the current content of the Watchdog Timer.

0 [15:6] r Reserved; read as 0;

Field Bits Type Description
User’s Manual 18-34 V2.0, 2001-02

TC1775
System Units

Real Time Clock
19 Real Time Clock
This chapter describes the Real Time Clock (RTC) unit of the TC1775. It contains the
following sections:

– Functional description of the RTC kernel (see Section 19.1)
– RTC kernel register description (describes all RTC kernel specific register (see

Section 19.2))
– TC1775 implementation specific details and registers of the RTC module (interrupt

control, address decoding, clock control, see Section 19.3).

Note: All RTC kernel register names described in Section 19.2 will be referenced in this
TC1775 User’s Manual with the module name prefix “RTC_”.
User’s Manual 19-1 V2.0, 2001-02

TC1775
System Units

Real Time Clock
19.1 RTC Kernel Description

Figure 19-1 is a global view of all functional blocks required for the RTC interface.

Figure 19-1 General Block Diagram of the RTC Interface

The RTC module is an independent timer chain that counts time ticks. The base
frequency of the RTC can be programmed via a reload counter. The RTC can work
asynchronously with the system frequency, and is optimized on low power consumption.

Features:

The RTC has several purposes:

• System clock to determine the current time and date
• Cyclic time-based interrupt
• Alarm interrupt for wake up on a defined time
• 48-bit timer for long-term measurements

The RTC module consists of a chain of 3 divider blocks, a selectable fixed 8:1 divider,
the reloadable 16-bit timer T14, which is build up by a count part T14.CNT and a reload
part T14.REL; and the 32-bit RTC timer CNT. Both timers count up. Timer T14.CNT is
reloaded with the value T14.REL when it overflows from FFFFH to 0000H.

The RTC module can operate in either asynchronous or synchronous mode. In
synchronous mode, the RTC module operates internally with a synchronous clock
referring to the system clock (fSYS). In asynchronous mode, the RTC module is using the
asynchronous count input clock fRTC_COUNT as operation clock, too. The asynchronous
mode is necessary in case of a very low or disabled system clock (for example power-
down mode). The operation mode selection is controlled externally of the RTC module.
If fSYS is greater (PRE = 1) or 4 times faster (PRE = 0) than the count clock fRTC_COUNT,
the RTC can run in synchronous mode. Otherwise, the asynchronous mode must be

MCB04804

Clock
Control

Mode
Control

Address
Decoder

fRTC_COUNT

RTC
Module
(Kernel)

Interrupt
Control

RTCINT

fSYS

Mode_Select
User’s Manual 19-2 V2.0, 2001-02

TC1775
System Units

Real Time Clock
selected. In asynchronous mode, no write access to the RTC registers is possible. In
asynchronous mode read access is possible to all registers, but only correct data read
from register RTC_CON can be guaranteed. This is due to the possibility of a
asynchronous data change during the read access to the RTC data registers.

Figure 19-2 is a detailed RTC block diagram.

Figure 19-2 Detailed RTC Block Diagram

MCB04805

T14.REL

T14.CNT

T14-Register CNT-Register

REL-Register

10 Bit 6 Bit 6 Bit 10 Bit

10 Bit 6 Bit 6 Bit 10 Bit

Interrupt Sub Node

CNT
INT0

CNT
INT1

CNT
INT2

CNT
INT3

T14INT

RTCINT

Module
Control

Mode_Select

Internal Operating Clock

1

0

8

RUN

PRE

fRTC_COUNT

fSYS

MUX

MUX
User’s Manual 19-3 V2.0, 2001-02

TC1775
System Units

Real Time Clock
19.1.1 RTC Control

The operation of the RTC module is controlled by the CON register. The RTC starts
counting when the run bit RUN is set. After a RTC reset, the run bit is set and the RTC
starts its operation automatically. The RTC module is reset only in case of a power-on
reset. This behavior prevents unintentional clearing of the RTC count value by any other
system event such as software or watchdog timer reset. Bit PRE controls a prescaler that
allows the counting clock fRTC_COUNT to be divided by 8. Activating the prescaler
reduces the resolution of the reload counter T14. If the prescaler is not activated, the
RTC may lose counting clocks on switching from asynchronous to synchronous mode
and back. This effect can be avoided by activating the prescaler.

Setting the control bits T14DEC or T14INC decrements or increments the timer value
T14.CNT with the next count event. If at the next count event a reload has to be
executed, then an increment operation is delayed until the next count event occurs. The
decrement/increment function can be used only if T14.REL is not equal to FFFFH. These
bits are cleared by hardware after the decrement/increment operation.

19.1.2 System Clock Operation

A real-time system clock can be maintained that keeps running during idle and power-
down modes, and represents the current time and date. This is possible as the RTC
module is not effected by a system reset other than a power-on reset.

The maximum resolution (minimum step width) for this clock information is determined
by timer T14’s input count clock. The maximum usable period is achieved when T14.REL
is loaded with 0000H and T14 divides by 216.

19.1.3 Cyclic Interrupt Generation

The RTC module can generate the interrupt request T14INT whenever a timer T14
overflows and T14.CNT is reloaded. This interrupt request may be used, for example, to
generate a system time tick independent of the system clock frequency without loading
the general purpose timers, or to wake up regularly from idle mode. The interrupt cycle
time can be adjusted via the timer T14 reload value T14.REL. This interrupt request is
ORed with all other interrupts of the RTC timer CNT via the RTC interrupt sub-node ISNC
(see Section 19.1.9).

19.1.4 Alarm Interrupt Generation

The RTC module can provide an alarm interrupt. For easier programming of this
interrupt, the RTC timer CNT can be divided into smaller reloadable timers (see
Figure 19-1). Each sub-timer can be programmed for an overflow on different time
bases (e.g. second, hour, minute, day) by respective programming of the RTC reload
register REL. With each timer overflow a RTC interrupt can be generated. All these RTC
timer interrupts (CNTINT3 … 0) are controlled via the interrupt sub-node ISNC for the
User’s Manual 19-4 V2.0, 2001-02

TC1775
System Units

Real Time Clock
generation of a single interrupt (RTCINT). Additionally, the timer T14.CNT overflow
interrupt (T14INT) can be controlled via this interrupt sub-node.

19.1.5 48-bit Timer Operation

The concatenation of the 16-bit reload timer T14 and the 32-bit RTC timer CNT can be
regarded as a 48-bit timer that counts with the RTC count input frequency (fRTC_COUNT)
divided by the fixed 8:1 prescaler, if the prescaler is selected. The timer T14 reload value
T14.REL and the RTC timer reload register REL should be cleared to get a 48-bit binary
timer. However, any other reload values may be used.
The maximum usable period is 248 (≈ 1014) T14 input count clocks, which would equal
more than 100 years at an count input frequency below 625 kHz.

19.1.6 Defining the RTC Time Base

The reload timer T14 determines the input count frequency of the RTC timer CNT, i.e.
the RTC time base, as well as the timer T14 interrupt cycle time.

See Section 19.3 for more information on the TC1775 specific implementation.

19.1.7 Increased RTC Accuracy through Software Correction

The accuracy of the TC1775’s RTC is determined by the oscillator frequency and by the
respective prescaler factor (excluding or including T14 and the selectable prescaler).
The accuracy limit generated by the prescaler is due to the quantization of a binary
counter (where the average is zero), while the accuracy limit generated by the oscillator
frequency is due to the difference between ideal and real frequency (and therefore
accumulates over time). The total accuracy of the RTC can be further increased via
software for specific applications that demand highly accurate timing.

The key to the improved accuracy is the knowledge of the exact oscillator frequency. The
relation of this frequency to the expected ideal frequency is a measure of the RTC’s
deviation. The number N of cycles after which this deviation causes an error of ± 1 cycle
can be easily computed. The only action required is to correct the count by ± 1 after each
series of N cycles.

This correction may be applied to the RTC timer register CNT as well as to T14.CNT.
Also the correction may be done cyclically, e.g. within RTC’s interrupt service routine, or
by evaluating a formula when the CNT register is read (for this the respective “last” CNT
value must be available somewhere). The timer T14 count value T14.CNT can be
adjusted by a write access, or even better, by using the decrement/increment function
provided by the CON register.

Note: For most applications, the standard accuracy provided by the RTC’s structure will
be more than sufficient.
User’s Manual 19-5 V2.0, 2001-02

TC1775
System Units

Real Time Clock
19.1.8 Hardware-dependent RTC Accuracy

The RTC has different counting accuracies, depending on the operating mode (with or
without prescaler). There is only an impact on the counting accuracy when switching the
RTC from synchronous mode to asynchronous mode and back.

19.1.9 Interrupts

The RTC module provides one common interrupt line (RTCINT), which combines five
interrupt sources. Each of these interrupt sources has a separate enable and request
flag in register ISNC. The request flags can be checked by software, and must be reset
by software. They are not cleared by hardware.

Figure 19-3 shows the RTC interrupt sub-node control logic.

Figure 19-3 RTC Interrupt Sub-Node

Table 19-1 Impact on counting accuracy

Operating mode Inaccuracy in T14 counting ticks

without prescaler +0.0 / -0.5

with prescaler +0.0 / -0.0

MCA04806

T14IE

T14IRT14INT

CNTINT0 CNT0IR

CNT0IE

CNTINT1 CNT1IR

CNT1IE

CNTINT2 CNT2IR

CNT2IE

CNT3IE

CNT3IRCNTINT3

RTCINT

Note: The IR flags must be cleared by software

1>
User’s Manual 19-6 V2.0, 2001-02

TC1775
System Units

Real Time Clock
19.2 RTC Kernel Registers

Figure 19-4 shows the registers associated with the RTC kernel.

Figure 19-4 RTC Kernel Registers

Note: All RTC kernel register names described in this section will be referenced in other
parts of this TC1775 User’s Manual with the module name prefix “RTC_”.

Table 19-2 RTC Kernel Registers

Register
Short Name

Register Long Name Offset
Address

Description
see

CON Control Register 0010H Page 19-8

T14 T14 Count/Reload Register 0014H Page 19-9

CNT Count Register 0018H Page 19-9

REL Reload Register 001CH Page 19-10

ISNC Interrupt Sub-Node Control Register 0020H Page 19-11

MCA04807

CON ISNCT14

Control Register Interrupt RegisterData Registers

CNT

REL
User’s Manual 19-7 V2.0, 2001-02

TC1775
System Units

Real Time Clock
The control register CON handles basic RTC functionality such as counting on/off and
count clock prescaler selection.

CON
Control Register Reset Value: 0000 0003H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ACC
POS 0 T14

INC
T14
DEC PRE RUN

r r rwh wrh rwh rw

Field Bits Type Description

RUN 0 rw RTC Run Bit
0 RTC is stopped
1 RTC is running (default)

PRE 1 rwh RTC Input Count Prescaler Enable
0 Input prescaler disabled
1 Input prescaler enabled (default)

T14DEC 2 rwh Decrement T14 Timer Value
Setting this bit to 1 generates a decrement of the T14
timer value. The bit is cleared by hardware after the
T14 timer value decrement operation.

T14INC 3 rwh Increment T14 Timer Value
Setting this bit to 1 generates an increment of the T14
timer value. The bit is cleared by hardware after the
T14 timer value increment operation.

ACCPOS 15 r RTC Register Access Possible
This bit indicates, that a synchronous read/write
access is possible. Note that the Clock Control
Register RTC_CLC can always be accessed.
0 No write access is possible, only asynchronous

read access
1 Read/write access is possible

0 [31:16]
[14:4]

r Reserved; read as 0; should be written with 0.
User’s Manual 19-8 V2.0, 2001-02

TC1775
System Units

Real Time Clock
Timer T14 generates the input clock for the RTC count register CNT and the periodic
interrupt T14INT.

The count register shows the current RTC value.

T14
T14 Count/Reload Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CNT

rwh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

REL

rw

Field Bits Type Description

REL [15:0] rw Timer T14 Reload Value

CNT [31:16] rwh Timer T14 Count Value

CNT
Count Register Reset Value: 0000 0000H

31 0

CNT

rwh

Field Bits Type Description

CNT [31:0] rwh RTC Timer Count Value
User’s Manual 19-9 V2.0, 2001-02

TC1775
System Units

Real Time Clock
The reload register contains the reload values needed for the alarm interrupt generation.

REL
Reload Register Reset Value: 0000 0000H

31 0

REL

rw

Field Bits Type Description

REL [31:0] rw RTC Timer Reload Value
User’s Manual 19-10 V2.0, 2001-02

TC1775
System Units

Real Time Clock
The Interrupt Sub-Node Control Register contains the interrupt enable bits and interrupt
request flags of the RTC interrupt sub-node.

Note: The interrupt request flags of the RTC interrupt sub-node must be cleared by
software.

ISNC
Interrupt Sub-Node Control Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0
CNT

3
IR

CNT
3
IE

CNT
2
IR

CNT
2
IE

CNT
1
IR

CNT
1
IE

CNT
0
IR

CNT
0
IE

T14
IR

T14
IE

r rwh rw rwh rw rwh rw rwh rw rwh rw

Field Bits Type Description

T14IE 0 rw T14 Overflow Interrupt Enable Control Bit
0 T14 overflow interrupt is disabled
1 T14 overflow interrupt is enabled

T14IR 1 rwh T14 Overflow Interrupt Request Flag
0 No T14 overflow interrupt request is pending
1 T14 overflow interrupt request is pending
T14IR is bit protected.

CNTxIE 2, 4, 6,
8

rw CNTx Interrupt Enable Control Bits (x = 3-0)
0 CNTx interrupt is disabled
1 CNTx interrupt is enabled

CNTxIR 3, 5, 7,
9

rwh CNTx Interrupt Request Flag (x = 3-0)
0 No CNTx interrupt request is pending
1 CNTx interrupt request is pending
The CNTxIR bits are bit protected.

0 [31:10] r Reserved; read as 0; should be written with 0;
User’s Manual 19-11 V2.0, 2001-02

TC1775
System Units

Real Time Clock
19.3 Implementation of the RTC

Figure 19-5 shows the TC1775 specific implementation of the Real Time Clock
module.

Figure 19-5 TC1775 Specific Implementation of the RTC Module

The TC1775 has a dedicated 32-kHz oscillator circuit for the RTC. The output signal of
this RTC oscillator is connected with the fRTC_COUNT count clock of the RTC while fSYS
is driven by the TC1775 system clock. The RTC operation mode selection (synchronous
or asynchronous mode) is controlled by bit RTCREGSEL in register SCU_CON:

– SCU_CON.16 (RTCACCEN) = 0: RTC is operating in asynchronous mode
– SCU_CON.16 (RTCACCEN) = 1: RTC is operating in synchronous mode

When the RTC is counting, bit RTCACCEN must be set to 0. RTCACCEN must be also
reset before a power saving mode (idle, sleep, deep sleep) is entered. RTCREGSEL has
to be set for RTC register accesses, or no register access is possible.

MCB04808

RTC
Oscillator

SCU

Address
Decoder

fRTC_COUNT

RTC
Module
(Kernel)

Interrupt
Control

RTCINT

fSYS

Mode_Select

XTAL3

XTAL4

32 KHz
User’s Manual 19-12 V2.0, 2001-02

TC1775
System Units

Real Time Clock
19.3.1 RTC Module Related External Registers

Figure 19-6 summarizes the module related external registers required for RTC
programming (see also Figure 19-4 for the RTC module kernel specific registers).

Figure 19-6 RTC Implementation Specific SFRs

MCA04809

RTC_CLC RTC_SRC

Control Register Interrupt Register
User’s Manual 19-13 V2.0, 2001-02

TC1775
System Units

Real Time Clock
19.3.1.1 Clock Control Register

The RTC Clock Control Register allows the programmer to adapt the functionality and
power consumption of the RTC module to the requirements of the application. The
diagram below shows this register’s functions that are implemented for the RTC module.

RTC_CLC
RTC Clock Control Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 FS
OE

SB
WE

E
DIS

SP
EN

DIS
S

DIS
R

r rw w rw rw r rw

Field Bits Type Description

DISR 0 rw Module Disable Request Bit
Used for enable/disable control of the module.

DISS 1 r Module Disable Status Bit
Bit indicates the current status of the module
(0: enabled, 1: disabled)

SPEN 2 rw Module Suspend Enable for OCDS
Used for enabling the suspend mode.

EDIS 3 rw External Request Disable
Used for controlling the external clock disable
request.

SBWE 4 w Module Suspend Write Enable for OCDS

FSOE 5 rw Fast Switch Off Enable

0 [31:6] r Reserved; read as 0; should be written with 0;
User’s Manual 19-14 V2.0, 2001-02

TC1775
System Units

Real Time Clock
19.3.1.2 Interrupt Register

The interrupt of the RTC module is controlled by the RTC Service Request Control
Register.

Note: Further details on interrupt handling and processing are described in Chapter 13
of this User’s Manual.

RTC_SRC
RTC Service Request Control Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SET
R

CLR
R SRR SRE TOS 0 SRPN

w w rh rw rw r rw

Field Bits Type Description

SRPN [7:0] rw Service Request Priority Number.

TOS [11:10] rw Type of Service Control

SRE 12 rw Service Request Enable

SRR 13 rh Service Request Flag

CLRR 14 w Request Clear Bit

SETR 15 w Request Set Bit

0 [9:8],
[31:16]

r Reserved; read as 0; should be written with 0.
User’s Manual 19-15 V2.0, 2001-02

TC1775
System Units

Real Time Clock
19.3.1.3 Interrupt Cycle Times and Reload Values

Table 19-3 lists the T14 overflow interrupt cycle time range for a count input frequency
of 32 kHz:

Table 19-4 lists the T14 reload values for a time base of 1 s (A), 100 ms (B) and 1 ms
(C) based on a count input frequency of 32 kHz:

19.3.2 RTC Register Address Ranges

In the TC1775, the registers of the RTC module are located in the following address
range:

– Module Base Address: F000 0100H
Module End Address: F000 01FFH

– Absolute Register Address = Module Base Address + Offset Address
(offset addresses see Table 19-2)

Table 19-3 T14 Interrupt Cycle Time

Count Input
Frequency

Prescaler
Factor

T14 Interrupt Cycle Time

Minimum Maximum

32 kHz 1 31.25 µs 2.048 s

8 250 µs 16.384 s

Table 19-4 RTC Reload Values

Count
Input
Freq.

Prescaler
Factor

Reload Value A Reload Value B Reload Value C

T14.REL Base T14.REL Base T14.REL Base

32 kHz 1 8300H 1.000 s F380H 100.0 ms FFE0H 1.000 ms

8 F060H 1.000 s FE70H 100.0 ms FFFCH 1.000 ms
User’s Manual 19-16 V2.0, 2001-02

TC1775
System Units

On-Chip Debug Support
20 On-Chip Debug Support
The On-Chip Debug Support (OCDS) of the TC1775 consists of four building blocks:

• OCDS module in the TriCore CPU
• OCDS module in the PCP
• Trace module of the TriCore
• Debugger Interface (Cerberus)

Figure 20-1 shows a basic block diagram of the building blocks.
.

Figure 20-1 OCDS Basic Block Diagram

MCB04810

Cerberus &
JTAG

TRST

TCK

TMS

TDI

TDO

JTAG
I/O Lines

TriCore
CPU

OCDS

PCP

SCU

Trace
Control

16

BRKIN

BRKOUT

P
or

t 5 TRACE[15:0]

OCDSE

FPI Bus
User’s Manual 20-1 V2.0, 2001-02

TC1775
System Units

On-Chip Debug Support
20.1 TriCore CPU Debug Support

The TriCore CPU in the TC1775 provides On-Chip Debug Support (OCDS) with the
following features:

• On-chip breakpoint hardware
• Support of an external break signal

20.1.1 Basic Concepts

The TriCore breakpoint concept has two parts. The first part defines the generation of
debug events and the second part defines what actions are taken when a debug event
is generated.

Figure 20-2 Basic TriCore Debug Concept

20.1.2 Debug Event Generation

In order for any debug event to be generated, the debug enable bit DBGSR.DE in the
Debug Status Register must be set. If this bit is set, debug events can be generated by
the:

– An active (low) signal at the OCDS Break Input pin BRKIN
– Execution of a debug instruction
– Execution of a MTCR/MFCR instruction
– Debug event generation unit

MCA04811

Debug
Event

Generation

D
eb

ug
 T

rig
ge

rs

Debug
Event

Processing
Ext. Break Input
(BRKIN)

Execution of the
DEBUG Instruction

Execution of MTCR /
MFCR Instruction
User’s Manual 20-2 V2.0, 2001-02

TC1775
System Units

On-Chip Debug Support
20.1.2.1 External Debug Break Input

An external debug break pin is provided to allow the emulator to interrupt the processor
asynchronously. The action that is performed when the external debug break input is
activated is defined by the contents of the External Break Input Event Specifier Register
EXEVT.

Note: The CPU core detects the active edge of BRKIN and performs the action specified
in EXEVT at the first available opportunity.

20.1.2.2 Software Debug Event Generation

The TriCore architecture also supports a mechanism through which software can
explicitly generate a debug event. This can be used, for instance, by a debugger to patch
code held in RAM in order to implement breakpoints. A special DEBUG instruction is
defined which is a user mode instruction, and its operation depends on whether the
debug mode is enabled.

If debug mode is enabled (DBGSR.DE = 1), the DEBUG instruction causes a debug
event to be raised and the action defined in the Software Break Event Specifier Register
SWEVT is taken. If the debug mode is not enabled, then the DEBUG instruction is
treated as a NOP instruction.

Both 16-bit and 32-bit forms of the DEBUG instruction are provided.

20.1.2.3 Execution of a MTCR or MFCR Instruction

In order to protect the emulator resource, a debug event is raised whenever a MTCR or
MFCR instruction is used to read or modify an user core SFR. That means that an event
is not raised when the user reads or modifies one of the dedicated debug core SFRs:

– DBGSR or
– CREVT or
– SWEVT or
– EXEVT or
– TR0EVT or
– TR1EVT

The action that is performed when a MTCR or MFCR instruction is executed on user core
SFRs defined by the content of the Emulator Resource Protection Event Specifier
Register CREVT.
User’s Manual 20-3 V2.0, 2001-02

TC1775
System Units

On-Chip Debug Support
20.1.2.4 Debug Event Generation from Debug Triggers

– The debug event generation unit is responsible for generating debug events when
a programmable set of debug triggers are active.

– Code protection logic
– Data protection logic

These debug triggers provide the inputs to a programmable block of combinational logic
that outputs debug events.

Figure 20-3 Debug Event Generation Logic

The aim is to be able to specify the breakpoints which use fairly simple criteria purely in
the on-chip debug event generation unit, and to rely on help from the external debug
system or debug monitor to implement more complex breakpoints.

20.1.3 Debug Triggers

20.1.3.1 Protection Mechanism

The TriCore debug system is also integrated into the protection mechanism which can
generate the following types of debug triggers:

– Trigger on execution of an instruction at a specific address
– Trigger on execution of an instruction within a range of addresses
– Trigger on the loading of a value from a specific address
– Trigger on the loading of a value from anywhere in a range of addresses
– Trigger on the storing of a value to a specific address
– Trigger on the storing of a value to anywhere in a range of addresses

Informations on the generation of debug triggers by the protection mechanism are given
in the TriCore Architecture Manual.

MCA04812

Programmable
Debug Event

Generation Logic
Debug Event

D
eb

ug
 T

rig
ge

rs
User’s Manual 20-4 V2.0, 2001-02

TC1775
System Units

On-Chip Debug Support
20.1.3.2 Combination of Triggers

In the TC1775 the first two code and data ranges can be used to generate one debug
event. The TriCore CPU in the TC1775 allows one code range and one data range to be
combined for a debug event generation. The combination is controlled by the Trigger
Event n Specifier Registers TRnEVT (n = 0, 1).

Figure 20-4 Combination of Data and Code Triggers

For example, the inputs from range 0 of the code protection logic can be combined with
the inputs from range 0 of the data protection logic. This combination and the action
taken if a debug event is generated are controlled by the TR0EVT register.

The debug event generation logic places certain restrictions on which debug triggers can
be combined in order to produce a debug event whose action is marked as “break before
make”.

All debug events that are produced from a combination of triggers which include inputs
from the data protection logic are treated as “break after make”, irrespective of the event
specifier.

MCA04813

Code Protection

Debug Event

Debug Event

Data Protection

Range 1 Range 1

TR0EVT

Range 0

Trigger Combination Logic

Trigger Combination Logic

Range 0

TR1EVT
User’s Manual 20-5 V2.0, 2001-02

TC1775
System Units

On-Chip Debug Support
20.1.4 Actions taken on a Debug Event

When a debug event is generated, one of the following actions is taken.

20.1.4.1 Assert an External Pin BRKOUT

A signal can be asserted on the external pin BRKOUT. This could be used in critical
routines where the system cannot be interrupted to signal to the external world that a
particular event has happened. This feature could also be useful to synchronize the
internal and external debug hardware.

For example, when the CPU writes to an off-chip location through the external bus
interface, this could be detected and the external pin asserted. This could then be used
as the input trigger to an analyzer to capture the bus cycles on the external interface pins.

20.1.4.2 Halt

The halt mode performs a selective cancellation of:

– All instruction after and including the instruction that caused the breakpoint if
EXEVT.BBM = 1.

– All instructions after the instruction that caused the breakpoint if EXEVT.BBM = 0.

Once the pipeline has been cancelled, it enters a halt mode where no more instructions
are executed. It then relies on the external debug system to interrogate the target purely
through the mapping of the architectural state into the FPI address space without any
help from the core.

While halted, the core will not respond to any interrupts, and will only resume execution
once the external debug hardware clears the halt bit by writing 10B to the DBGSR.HALT
bit field.

When the halt mode is entered, the following actions are also performed:

– The DBGSR.EVTSRC bit field is updated.
– The breakout pin BRKOUT is asserted for one cycle.

20.1.4.3 Breakpoint Trap

The breakpoint trap is designed to be used to enter a debug monitor without using any
user resource. It relies upon the following emulator resources:

– The debug monitor is held in the emulator region at address BE00 0000H.
– There is a 4-word area of RAM available at address BE80 0000H which can be used

to store critical state during the debug monitor entry sequence.

When a breakpoint trap is taken, the following actions are performed:

– Write PSW to BE80 0000H
– Write PCXI to BE80 0004H
– Write A10 to BE80 0008H
User’s Manual 20-6 V2.0, 2001-02

TC1775
System Units

On-Chip Debug Support
– Write A11 to BE80 000CH
– A11 = breakpoint PC
– PC = BE00 0000H
– PSW.PRS = 0
– PSW.IO = 2
– PSW.GW = 0
– PSW.IS = 1
– ICR.IE = 0

The corresponding return sequence is provided through the RFM (return from monitor)
instruction. This effectively perform the reverse of the above:

– Branch to A11
– Restore PSW from BE80 0000H
– Restore PCXI from BE80 0004H
– Restore A10 from BE80 0008H
– Restore A11 from BE80 000CH

This provides an automated route into the debug monitor which does not use any user
resource. The RFM instruction is then used to return control the original task.

When the debug trap is taken, the following actions are also performed:

– The EVTSRC bit field in DBGSR is updated.
– The BRKOUT pin is asserted for one cycle.

20.1.4.4 Software Breakpoint

When a debug event is raised, the system can enter the software debug mode. The
software debug mode is basically an interrupt. The software breakpoint interrupt is
controlled in the Software Breakpoint Service Request Control Register SBSRC0.
User’s Manual 20-7 V2.0, 2001-02

TC1775
System Units

On-Chip Debug Support
20.1.5 OCDS Registers

Figure 20-5 OCDS Registers

Table 20-1 OCDS Registers

Register
Short Name

Register Long Name Offset
Address

Description
see

DBGSR Debug Status Register 0000H Page 20-9

EXEVT External Break Input Event Specifier Register 0008H Page 20-11

CREVT Emulator Resource Protection Event Specifier
Register

000CH Page 20-12

SWEVT Software Break Event Specifier Register 0010H Page 20-13

TR0EVT Trigger Event 0 Specifier Register 0020H Page 20-14

TR1EVT Trigger Event 1 Specifier Register 0024H Page 20-14

SBSRC0 Software Breakpoint Service Request Control
Register 0

00BCH
1)

1) The SBSRC0 register is located in the address range of the CPU slave interface CPS (see Section 20.5).

Page 20-15

MCA04814

DBGSR

EXEVT

Control Registers

CREVT

SWEVT

TR0EVT

TR1EVT

SBSRC0
User’s Manual 20-8 V2.0, 2001-02

TC1775
System Units

On-Chip Debug Support
DBGSR
Debug Status Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 EVTSRC P
EVT

PRE
VSU
SP

0 SU
SP 0 HALT DE

r rh rwh rh r rwh r rwh rh

Field Bits Type Description

DE 0 rh Debug Enable
Indicates whether debug support was enabled at reset
0 Debug disabled
1 Debug enabled

HALT [2:1] rwh CPU Halt Request / Status Field
HALT can be set or cleared by software. HALT[0] is
the actual halt bit. HALT[1] is a mask bit to specify
whether HALT[0] is to be updated on a software write
or not. HALT[1] is always read as 0. HALT[1] must be
set to one in order to update HALT[0] by software (R:
read; W: write).
00 R: CPU running / W: HALT[0] unchanged
01 R: CPU halted / W: HALT[0] unchanged
10 R: n.a. / W: reset HALT[0]
11 R: n.a. / W: if debug support is enabled (DE = 1),

set HALT[0]; if debug support is not enabled
(DE = 0), HALT[0] is left unchanged

SUSP 4 rwh Current State of the Suspend Signal
0 Suspend inactive
1 Suspend active

PREVSUSP 6 rh Previous State of the Suspend Signal
0 Previous suspend inactive
1 Previous suspend active

PEVT 7 rwh Posted Event
0 No posted event
1 Posted event
User’s Manual 20-9 V2.0, 2001-02

TC1775
System Units

On-Chip Debug Support

EVTSRC [12:8] rh Event Source
0 EXTEVT
1 CREVT
2 SWEVT
16 + n TRnEVT (n = 0, 1)
other Reserved

0 3, 5,
[31:13]

r Reserved; read as 0; should be written with 0.

Field Bits Type Description
User’s Manual 20-10 V2.0, 2001-02

TC1775
System Units

On-Chip Debug Support

EXEVT
External Break Input Event Specifier Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SU
SP 0 BBM EVTA

r rw r rw rw

Field Bits Type Description

EVTA [2:0] rw Event Associated
Specifies the action associated with the event:
000 None; disabled
001 Assert external pin BRKOUT
010 Halt
011 Breakpoint trap
100 Software breakpoint 0
101 Reserved, same behavior as 000
110 Reserved, same behavior as 000
111 Reserved, same behavior as 000

BBM 3 rw Break Before Make or Break After Make Selection
0 Break after make
1 Break before make

SUSP 5 rw OCDS Suspend Signal State
Value to be assigned to the OCDS suspend signal
when the event is raised.

0 4,
[31:6]

r Reserved; read as 0; should be written with 0.
User’s Manual 20-11 V2.0, 2001-02

TC1775
System Units

On-Chip Debug Support

CREVT
Emulator Resource Protection Event Specifier Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SU
SP 0 BBM EVTA

r rw r rw rw

Field Bits Type Description

EVTA [2:0] rw Event Associated
Specifies the action associated with the event:
000 None; disabled
001 Assert external pin BRKOUT
010 Halt
011 Breakpoint trap
100 Software breakpoint 0
101 Reserved, same behavior as 000
110 Reserved, same behavior as 000
111 Reserved, same behavior as 000

BBM 3 rw Break Before Make or Break After Make Selection
0 Break after make
1 Break before make

SUSP 5 rw OCDS Suspend Signal State
Value to be assigned to the OCDS suspend signal
when the event is raised.

0 4,
[31:6]

r Reserved; read as 0; should be written with 0.
User’s Manual 20-12 V2.0, 2001-02

TC1775
System Units

On-Chip Debug Support

SWEVT
Software Break Event Specifier Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 SU
SP 0 BBM EVTA

r rw r rw rw

Field Bits Type Description

EVTA [2:0] rw Event Associated
Specifies the action associated with the event:
000 None; disabled
001 Assert external pin BRKOUT
010 Halt
011 Breakpoint trap
100 Software breakpoint 0
101 Reserved, same behavior as 000
110 Reserved, same behavior as 000
111 Reserved, same behavior as 000

BBM 3 rw Break Before Make or Break After Make Selection
0 Break after make
1 Break before make

SUSP 5 rw OCDS Suspend Signal State
Value to be assigned to the OCDS suspend signal
when the event is raised.

0 4,
[31:6]

r Reserved; read as 0; should be written with 0.
User’s Manual 20-13 V2.0, 2001-02

TC1775
System Units

On-Chip Debug Support
TR0EVT
Trigger Event 0 Specifier Register Reset Value: 0000 0000H
TR1EVT
Trigger Event 1 Specifier Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 DU
_U

DU
_LR

DLR
_U

DLR
_LR 0 SU

SP 0 BBM EVTA

r rw rw rw rw r rw r rw rw

Field Bits Type Description

EVTA [2:1] rw Event Associated
Specifies the action associated with the event:
000 None; disabled
001 Assert external pin BRKOUT
010 Halt
011 Breakpoint trap
100 Software breakpoint 0
101 Reserved, same behavior as 000
110 Reserved, same behavior as 000
111 Reserved, same behavior as 000

BBM 3 rw Break Before Make or Break After Make Selection
0 Break after make
1 Break before make

SUSP 5 rw OCDS Suspend Signal State
Value to be assigned to the OCDS suspend signal
when the event is raised.

DLR_LR 8 rw Controls combination of DLR and CLR

DLR_U 9 rw Controls combination of DLR and CU

DU_LR 10 rw Controls combination of DU and CLR

DU_U 11 rw Controls combination of DU and CU

0 4,[7:6],
[31:12]

r Reserved; read as 0; should be written with 0.
User’s Manual 20-14 V2.0, 2001-02

TC1775
System Units

On-Chip Debug Support
The software breakpoint is controlled by the Software Breakpoint Service Request
Control Register 0.

SBSRC0
Software Breakpoint Service Request Control Register 0

Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SET
R

CLR
R SRR SRE TOS 0 SRPN

w w rh rw rw r rw

Field Bits Type Description

SRPN [7:0] rw Service Request Priority Number
00H Software breakpoint service request is never

serviced
01H- Software breakpoint service request is on lowest

priority
FFH Software breakpoint service request is on

highest priority

TOS [11:10] rw Type of Service Control
00 CPU service is initiated
01 PCP request is initiated
1X Reserved

SRE 12 rw Service Request Enable
0 Software breakpoint service request is disabled
1 Software breakpoint service request is enabled

SRR 13 rh Service Request Flag
0 No software breakpoint service request is

pending
1 A software breakpoint service request is

pending
User’s Manual 20-15 V2.0, 2001-02

TC1775
System Units

On-Chip Debug Support
Note: Further details on interrupt handling and processing are described in Chapter 13
of this User’s Manual

20.2 PCP Debug Support

A special PCP instruction, DEBUG, is provided for debugging the PCP. It can be placed
at important locations inside the code to track and trace program execution. The
execution of the instruction depends on a condition code specified with the instruction.
The actions programmed for this instruction will only take place if the specified condition
is true.

Further details on the PCP debugging features are described in Chapter 15 of this
User’s Manual.

CLRR 14 w Request Clear Bit
CLRR is required to reset SRR.
0 No action
1 Clear SRR; bit value is not stored; read always

returns 0; no action if SETR is set too

SETR 15 w Request Set Bit
SETR is required to set SRR.
0 No action
1 Set SRR; bit value is not stored; read always

returns 0; no action if SETR is set too

0 [9:8],
[31:16]

r Reserved; returns 0 if read; should be written with 0.

Field Bits Type Description
User’s Manual 20-16 V2.0, 2001-02

TC1775
System Units

On-Chip Debug Support
20.3 Trace Module

This chapter describes the PC trace support implemented in the TC1775.

20.3.1 Overview

Every cycle, 16 bits of information are sent out about the current state of the CPU core.
These bits include the following 3 groups:

– 5 bits of pipeline status information
– An 8-bit indirect PC bus
– 3 bits of breakpoint qualification information

From this information, an emulator can reconstruct a cycle-by-cycle break down of the
execution of the CPU. It should be possible to follow in real-time the current PC
facilitating advanced tools such as profilers, coverage analysis tools etc. The information
may also be captured and used to reconstruct, off-line, a cycle-accurate disassembly of
the code being executed within the CPU.

The following sections describe the 3 groups of signals listed above and how they may
be used to reconstruct the real time trace.

20.3.2 Pipeline Status Signals

Each cycle, a 5-bit code is sent out over the status signals. The meaning of this code is
shown in Table 20-2 for every cycle except for the first cycle after an indirect branch,
when an indirect address sync code is sent (see Section 20.3.3.1).

Table 20-2 Pipeline Status Codes

Status PC increment Jump Indirect Description Unique1)

00000B 0 no no nop yes

00001B 2 no no – yes

00010B 2 yes no – yes

00011B 2 yes yes – yes

00100B 0 yes yes trap yes

00101B 4 yes no – yes

00110B 4 yes no – yes

00111B 4 yes yes – yes

01000B 0 yes yes interrupt yes

01001B 6 no no – yes

01010B 6 yes no – yes

01011B 6 yes yes – yes
User’s Manual 20-17 V2.0, 2001-02

TC1775
System Units

On-Chip Debug Support
01100B – – – Reserved: overrun
sync pattern

no

01101B 8 no no – yes

01110B 8 yes no – yes

01111B 8 yes yes – yes

10000B – – – Reserved no

10001B 10 no no – no

10010B 10 yes no – no

10011B – – – Reserved: invalid for
core 1

no

10100B – – – Reserved no

10101B 12 no no – no

10110B 12 yes no – no

10111B – – – Reserved: invalid for
core 1

no

11000B – – – Reserved no

11001B – – – Reserved no

11010B – – – Reserved no

11011B – – – Reserved no

11100B – – – Reserved no

11101B – – – Reserved no

11110B – – – Reserved no

11111B – – – Reserved no
1) See Section 20.3.2.1.

Table 20-2 Pipeline Status Codes (cont’d)

Status PC increment Jump Indirect Description Unique1)
User’s Manual 20-18 V2.0, 2001-02

TC1775
System Units

On-Chip Debug Support
Quick Decoding of the Pipeline Status Codes

The pipeline status code is split up into two fields:

– Bits [4:2] indicate PC increment
– Bits [1:0] indicate code type

The code type field can have the values shown in Table 20-3.

For sequential code, the new value of the PC determined from:

 new_PC = PC + ((PC increment + 1) * 2)

20.3.2.1 Synchronizing with the Status and Indirect Streams

Unless the emulator follows the execution of the core from reset, there needs to be a way
for the emulator to synchronize with the information coming out of the chip. This process
can be performed in two stages.

1. The emulator would synchronize with the pipeline status stream.
2. The emulator would synchronize with the indirect PC stream so that the first PC could

be obtained at the next indirect branch.

Pipeline Status Stream

Many of the most common pipeline status codes are unique and no equivalent indirect
sync code exists. The unique codes are identified in the last column of Table 20-2. By
waiting until it sees one of these unique codes, the emulator can synchronize with the
pipeline status stream.

Indirect PC Stream

Once the emulator has synchronized with pipeline status stream, it can wait for the first
indirect branch. Provided there has not been an overrun, the emulator will then be able
to determine the PC, and using that as a starting point it will be able to reconstruct the
trace.

Table 20-3 Code Type

Code Type Increment PC Jump Indirect Description

00 no no – Special code, trap, interrupt etc.

01 yes no – Sequential code

10 yes yes no Relative branch

11 yes yes yes Indirect branch
User’s Manual 20-19 V2.0, 2001-02

TC1775
System Units

On-Chip Debug Support
20.3.3 Indirect Addresses

The target address of an indirect branch, interrupt, or trap entry are sent out one byte at
a time over a dedicated 8-bit bus.

A FIFO is implemented to de-couple the generation of the indirect addresses by the core
from the trickling of the addresses out of the chip. The pipeline status and indirect sync
encoding has been designed to support a FIFO of up to 4 entries. However, the
implementation may have fewer entries. If the FIFO fills up, an indirect address overrun
is signalled through a special status code (01100B).

20.3.3.1 Indirect Sync

The indirect sync is a 5-bit code sent over the status bus after every indirect branch. This
code is used to synchronize the status stream to the indirect addresses being sent over
the indirect PC bus.

The sync code is interpreted in the following manner:

Overrun

The overrun case occurs when the FIFO fills up that decouples the generation of indirect
addresses within the CPU from the ability to transmit those addresses over the 8 bit
indirect PC bus. When this scenario arises, the PC of the indirect jump which causes the
overrun is lost. This is communicated to the emulator through the indirect PC overrun
code 01100B.

The emulator will then not be able to reconstruct the trace between the time of the
indirect jump which caused the overrun, and the next indirect jump that does not also
encounter an overrun condition.

The overrun condition should only occur very rarely in normal code. The most common
source of indirect branches is when the jump is associated with a return from a function
or trap/interrupt handler (RET or RFE). The context model in the first implementation
restrict the execution of back-to-back context restores, such that the worst case would
be 3 context restores separated by 3 cycles followed by a number of context restores
separated by a minimum of 5 cycles. Each context restore generates an indirect PC.

Table 20-4 Indirect Sync Format

Bits Name Description

4 Overrun Used to determine whether an overrun occurred.
0 Overrun
1 No overrun

[3:0] Offset 1100B means overrun occurred
Other combinations: number of cycle before first byte of
indirect target address will be seen on indirect PC bus.
User’s Manual 20-20 V2.0, 2001-02

TC1775
System Units

On-Chip Debug Support
Figure 20-6 Worst Case Back to Back Returns

The FIFO, which is designed to decouple the generation of addresses by the CPU core
and the sending out of the indirect PC’s over four cycles, can easily handle this scenario.
Hence even if the core performs a large number of back to back returns, an overrun
would never be generated.

The only scenario that can result in an overrun is several back-to-back jump indirect
instructions. This scenario should very seldom be encountered in normal code.

MCT04815

ret1 ret2 ret3 ret4 ret5

Cycle n n+3 n+6 n+11 n+16
User’s Manual 20-21 V2.0, 2001-02

TC1775
System Units

On-Chip Debug Support
20.3.3.2 Example
 ;a2 contains the address of dest1
 ;a3 contains the address of dest2
 ji a2
 dest1: ji a3

 dest2: add d9, d8, d7
 ld.w d5, [a0]24
 ld.w d6, [a0]28

Figure 20-7 Example Output

Table 20-5 Trace Example

Cycle Status Indirect_pc

Code Sync PC
increment

Jump
taken

Indirect

0 – no 4 yes yes X

1 00000B yes – – – t1[7:0]

2 – no 4 yes yes t1[15:8]

3 00010B yes – – – t1[23:16]

4 – no 8 no no t1[31:24]

5 – no 4 no no t2[7:0]

MCT04816

4 Bytes
taken indirect 0 4 Bytes4 Bytes

taken indirect 2 8 Bytes

X t1[7:0] t1[15:8] t1[23:16] t1[31:24] t2[7:0]Indirect_pc

Status

0 1 2 3 4 5
User’s Manual 20-22 V2.0, 2001-02

TC1775
System Units

On-Chip Debug Support
20.3.4 Trace Output Control

This part of the SCU controls the interconnections of Port 5 to the trace interfaces of the
TCU and PCP (see also Chapter 4 in this User’s Manual).

Figure 20-8 Port 5 Trace Control within the SCU

SCU

MCA04718

Port 5
BRKIN

BRKOUT

TCU
BOU
TEN

TCU
BIN
EN

PCP
BIN
EN

PCP
BOU
TEN

ET
SEL

ET
EN

&
1

&

SCU_CON

&

&

FPI
Bus

16

16

TCU

BRKOUT

BRKIN

PCP

BRKOUT

BRKIN

MUX

MUX
User’s Manual 20-23 V2.0, 2001-02

TC1775
System Units

On-Chip Debug Support
20.4 Debugger Interface (Cerberus)

The Cerberus debug port is provided to debug and emulation tool vendors. The external
debug hardware can access the OCDS registers and arbitrary memory locations across
the FPI Bus (Figure 20-1). The interface is based on the JTAG standard, and uses only
the dedicated JTAG port pins.

The description in this section gives a rough overview for the system programmer of the
TC1775 on the operations the debugger interface can perform in the system (and thus
affect system behavior). It also describes how the Cerberus is disabled to ensure
security in the final product. The Cerberus should not be used by an application software
since this will disturb the tool behavior. The information of this section is not sufficient to
design tools for the TC1775. For tool developers detailed specifications of Cerberus and
the JTAG IO client are necessary.

Features

• External debugger uses the JTAG pins only
• Allows to address the complete FPI Bus address space
• Performance optimized (protocol)
• Does not use any user resources
• Minimum run time impact
• Generic memory read/write functionality
• Writes words, half words and bytes
• Block read and write support
• Full support for communication between monitor and external debugger
• Supports OCDS for several CPUs on the same FPI Bus

Applications

• Download of programs and data
• Control of the OCDS blocks
• Data acquisition

Performance

The maximum JTAG port clock frequency is 20 MHz. The following performance figures
can be achieved:

Table 20-6 Cerberus Performance (Net Data Rates)

Operation JTAG clock 200 kHz JTAG clock 10 MHz JTAG clock 20 MHz

Random read 48 kBit/s 2.4 MBit/s 4.6 MBit/s

Random write 50 kBit/s 2.5 MBit/s 4.9 MBit/s

Block read 104 kBit/s 5.2 MBit/s 10.0 MBit/s

Block write 114 kBit/s 5.7 MBit/s 11.2 MBit/s
User’s Manual 20-24 V2.0, 2001-02

TC1775
System Units

On-Chip Debug Support
20.4.1 RW Mode

The RW mode is used to read or write memory locations by a JTAG host via the JTAG
interface. The RW mode needs the FPI Bus master interface of the Cerberus to actively
request data reads or writes.

20.4.1.1 Entering RW Mode

RW mode is entered when the RWDIS bit in the IOSR register is 0 and the JTAG host
writes a 1 to the MODE bit of the IOCONF register.

20.4.1.2 Data Type Support

The default data type is a 32-bit word. It is used for single word transfers and block
transfers. For reading 16-bit registers without getting an FPI Bus error, the
IO_READ_HWORD JTAG instruction is provided. If the JTAG host wants to read a byte,
it has to read the associated word or half-word. In all cases, the read value is 32-bit value
and the JTAG host has to extract the needed part by itself.

Writes to bytes or half-words are supported with the IO_WRITE_BYTE and
IO_WRITE_HWORD JTAG instructions. With this instructions the JTAG host must also
shift in the full 32-bit word, but only the selected byte or half-word is actually written. Its
position is defined by the lowest 2 (bytes) or the second (half-word) address bit in
IOADDR.

20.4.1.3 FPI Bus Master Interface

The FPI Bus master interface executes the actual read or write of memory locations. It
is configured by the IOCONF register and the transactions are requested by the JTAG
shift core.

FPI Bus Master Priority Control

There are two different requirements for the RW mode access priority:

– The Cerberus is used to configure the OCDS registers in a CPU. Under this
conditions, the Cerberus must be able to set these registers immediately.

– The RW mode is used to read registers while a user program is running.

Under these conditions it is important to influence the real time behavior as little as
possible. To allow both options, the FPI Bus master priority can be configured with the
FPIPRIO bit in the IOCONF register.

FPI Bus Supervisor Mode

For full debugging support, the external debugger needs the option to access memory
locations which are only accessible in supervisor mode. This can be configured with the
SVMODE bit in the IOCONF register.
User’s Manual 20-25 V2.0, 2001-02

TC1775
System Units

On-Chip Debug Support
Split Transactions Support

The Cerberus FPI Bus master does not support the full split transactions functionality,
but it is able for reads to cooperate with slave peripherals that send a split acknowledge
code. In this case, the master interface must wait until the data is sent from the slave.

20.4.2 Communication Mode

In the communication mode the Cerberus has no access to the FPI Bus, but a
communication between an JTAG host and a software monitor, which is embedded in
the application program, can be established via the Cerberus registers.

The communication mode is the default mode after reset. If the Cerberus is in RW mode,
the communication mode is entered when the JTAG host writes a 0 into the mode bit of
the IOCONF register.

20.4.3 System Security

After power-on reset, the Cerberus is in communication mode and needs at least 54 tCK
clock cycles to be set into RW mode (20 to set IOPATH and 34 to set IOCONF). If the
user program running on the CPU sets bit RWDIS immediately after reset, there is no
way anymore from outside to set the Cerberus into RW mode via the JTAG interface.

20.4.4 Triggered Transfers

Triggered transfers are an OCDS specific feature of the Cerberus. They can be used to
read from or write to a certain memory location, when an OCDS trigger becomes active.
Triggered transfers are executed when:

– the Cerberus is in RW mode
– the TRGEN bit in register IOCONF is 1
– the JTAG shift core has requested a transaction
– and a positive edge occurs on the transfer_trigger signal

(BRKOUT becomes active)

Triggered transfers behave like normal transfers, except that there must be additionally
a positive edge on the transfer_trigger signal after the JTAG shift core requests the
transfer. In the TC1775, a trigger_transfer signal can be generated by the CPU or by the
PCP.Another exception is that in case of IO_READ_WORD, IO_READ_HWORD, and
IO_READ_BLOCK JTAG instructions the read data is followed by a dirty bit.

20.4.4.1 Tracing of Memory Locations

The main application for triggered transfers is to trace a certain memory location. If a
certain memory location is written by a user program, the OCDS module activates a
trigger signal. Which trigger signal is selected is defined by the content of the channel bit
field in register IOCONF. The Cerberus is configured to read the memory location on the
User’s Manual 20-26 V2.0, 2001-02

TC1775
System Units

On-Chip Debug Support
occurrence of this trigger signal. The maximum transfer rate that can be reached is
defined by:

NINSTR is the number of instruction cycles that need to be between two CPU accesses
to the memory location. tINSTR is the instruction cycle time of the CPU and fJTAG is the
clock rate of the JTAG interface (tCK). For example, if tINSTR = 25 ns and
fJTAG = 10 MHz, accesses in every 184th instruction cycle can be fully traced. In many
cases this will be sufficient to trace for instance the task ID register. The factor 46 is the
sum of 32 for the data, 10 for the JTAG state machine, I/O instruction and start bit and 4
for the synchronization between transfer_trigger events and the shift out.

It is recommended that triggered transfers are done with the highest FPI Bus master
priority and SVMODE = 1, because otherwise another higher priority master could
change the desired data value before it is actually read.

20.4.5 Trace with External Bus Address

This is a special operating mode of the master interface for faster tracing. In this mode
the data is not shifted out via the JTAG port, but immediately forwarded to an external
bus address. The data is then captured from the external bus by the debugger (“trace
box”). This kind of tracing can be enabled in communication mode only and can be used
in parallel to it.

The condition for transfers is, that MODE = 0, TRGEN = 1, EXBUSTRA = 1 (all are bits
in IOCONF) and a positive edge on the transfer_trigger signal. With EXBUSHW the FPI
Bus access for the source read can be switched between word and half word.

The external bus address is defined by:

The TRADDR register sets the most significant bits, the rest is hardwired to 10F06AH. It
is recommended that also this kind of triggered transfers are done with the highest FPI
Bus master priority and SVMODE = 1.

20.4.6 Power Saving

The Cerberus is in power saving mode when it is not selected from the JTAG side. The
only register that is always accessible and working is IOSR.

tINSTR × fJTAG
NINSTR =

46

6AHF0H10HTRADDR

031
User’s Manual 20-27 V2.0, 2001-02

TC1775
System Units

On-Chip Debug Support
20.4.7 Registers

Note: The Cerberus has fixed absolute register addresses. This makes a debug monitor
independent of a TriCore product.

20.4.7.1 IOCONF Register

The IOCONF register is used to configure the Cerberus.The IOCONF register is a write-
only register for the JTAG host and not accessible from the FPI Bus side.

Table 20-7 Register Summary

Register Size Address Description

IOCONF 12 Bits Accessible via JTAG only Configuration register

IOADDR 32 Bits Accessible via JTAG only Address for next RW mode
accesses

IODATA 32 Bits Accessible via JTAG only RW mode data register

COMDATA 32 Bits F000 0468H Communication mode data
register

IOSR 32 Bits F000 046CH Status register

TRADDR 8 Bits Accessible via JTAG only External bus trace mode
address

IOCONF
Cerberus I/O Configuration Register Reset Value: 0000H

11 10 9 8 7 6 5 4 3 2 1 0

0 CHANNEL
SV
MO
DE

FPI
PRIO

EX
BUS
HW

EX
BUS
TRA

TRG
EN

CM
SYN

C
CM
RST

MO
DE

r w w w w w w w w w

Field Bits Type Description

MODE 0 w Mode Selection
This bit defines whether the Cerberus is in RW mode or
in communication mode.
0 Communication mode selected
1 RW mode selected
User’s Manual 20-28 V2.0, 2001-02

TC1775
System Units

On-Chip Debug Support
CMRST 1 w Communication Mode Bit Reset
This bit is provided to reset the CWSYNC and HWSYNC
bits in register IOSR to abort requests in communication
mode. This reset is not static, it is only done once when
the IOCONF register is updated.
0 Bits CWSYNC and HWSYNC are not affected
1 Bits CWSYNC and HWSYNC in register IOSR are

reset

CMSYNC 2 w Communication Mode Bit Set
This bit sets the bit COMSYNC in register IOSR.
0 Bit COMSYNC in register IOSR is not affected
1 Bit COMSYNC in register IOSR is set

TRGEN 3 w Triggered Transfer Enable
This bit enables triggered transfers in RW mode.
0 Triggered transfers in RW mode are disabled
1 The next RW mode transfers must be triggered by

a transfer_trigger signal

EXBUSTRA 4 w Enable Triggered Transfers to External Bus Address
This bit enables triggered transfers to an external bus
address.
0 Trace with external bus address disabled
1 Trace with external bus address enabled

EXBUSHW 5 w FPI Bus Read Size Selection
This bit distinguishes between FPI Bus word and half
word reads of the trace source for the external bus trace.
0 The trace source is read with an FPI Bus word

access
1 The trace source is read with an FPI Bus half word

access

FPIPRIO 6 w FPI Bus Master Priority of the Cerberus
This bit sets the priority of the Cerberus FPI Bus master
interface in RW mode.
0 Next FPI Bus master request is done with lowest

priority
1 Next FPI Bus master request is done with highest

priority

Field Bits Type Description
User’s Manual 20-29 V2.0, 2001-02

TC1775
System Units

On-Chip Debug Support
20.4.7.2 IOSR Register

The IOSR register is used in communication mode. It allows to disable the Cerberus from
the CPU side. The IOSR register is only accessible from the FPI Bus.

SVMODE 7 w Supervisor Mode Selection
This bit sets the supervisor mode for the FPI Bus master
interface in RW mode.
0 The next RW transfers are not done in supervisor

mode
1 The next RW transfers are done in FPI Bus

supervisor mode

CHANNEL [10:8] w Transfer Trigger Selection
This bit field sets the associated bit field in register IOSR
and selects whether CPU or PCP can activate the
transfer_trigger signal.
001B CPU is selected to activate the transfer_trigger

signal
010B PCP is selected to activate the transfer_trigger

signal
All other combinations are reserved and must not be
used.

0 11 r Reserved; should be written with 0.

IOSR
Cerberus Status Register Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 CHANNEL
COM
SYN

C

CW
SYN

C

CR
SYN

C
RW
EN

RW
DIS

r rh r r r rwh rw

Field Bits Type Description
User’s Manual 20-30 V2.0, 2001-02

TC1775
System Units

On-Chip Debug Support
20.4.7.3 TRADDR Register

The TRADDR register is used for tracing with external bus address. It defines the
uppermost 8 bits of the external bus address. It is set with the IO_SET_TRADDR
instruction by the external JTAG host.

20.4.7.4 IOADDR, COMDATA and RWDATA Registers

These registers are used as address, data, and control registers in communication and
RW mode.

Field Bits Type Description

RWDIS 0 rw
1)2)

Enable Entering RW Mode
This bit is used to prevent the Cerberus from entering
RW mode. It can only be set by the CPU in
communication mode with an FPI Bus supervisor write
operation. If the Cerberus has already entered RW
mode, all attempts by the CPU to set this bit are ignored.
0 Entering RW mode is enabled
1 Entering RW mode is disabled

RWEN 1 rwh3) User Flag
This bit has no effect on the Cerberus behavior. It is
provided for the user program to store whether it has RW
mode enabled already or not.

CRSYNC 2 r Read Synchronization Bit in Communication Mode

CWSYNC 3 r Write Synchronization Bit in Communication Mode

COMSYNC 4 r High Level Communication Synchronization Bit in
Communication Code

CHANNEL [7:5] rh The CHANNEL bit field is set as COMSYNC by the
associated field in the IOCONF register. It is provided to
define the CPU (monitor) which is addressed for the next
transfer in communication mode on a multi CPU chip.

0 [31:8] r Reserved; read as 0; should be written with 0.
1) Write only in communication mode.

2) Write only in FPI supervisor mode.

3) Reset by a JTAG reset only and not by a FPI Bus reset.
User’s Manual 20-31 V2.0, 2001-02

TC1775
System Units

On-Chip Debug Support
20.5 OCDS Register Address Ranges

In the TC1775, the registers for on-chip OCDS control are located at the following
address ranges:

– Core Debug Registers (except SBSRC0)
Module Base Address: FFFF FD00H
Module End Address: FFFF FDFFH

– CPU Slave Registers (SBSRC0 only)
Module Base Address: FFFE FF00H
Module End Address: FFFE FFFFH

– On-Chip Debug Support (Cerberus) Registers
Module Base Address: F000 0400H
Module End Address: F000 04FFH

– Absolute Register Address = Module Base Address + Offset Address
(offset addresses see Table 20-1)
User’s Manual 20-32 V2.0, 2001-02

TC1775
System Units

Register Overview
21 Register Overview
This chapter defines all registers of the TC1775 and provides the complete address
range as well . It also defines the read/write access rights of the specific address ranges/
registers.

Throughout the tables in this chapter, the “Access Mode” “Read” and “Write”, and “Reset
Values” columns indicate access rights and values using symbols listed in Section 21-1.

Table 21-1 Address Map Symbols

Symbol Description

U Access permitted in User Mode 0 or 1.

SV Access permitted in Supervisor Mode.

R Read-only register.

32 Only 32-bit word accesses are permitted to that register/address range.

E Endinit protected register/address.

PW Password protected register/address.

NC No change, indicated register is not changed.

BE Indicates that an access to this address range generates a Bus Error.

nBE Indicates that no Bus Error is generated when accessing this address
range, even though it is either an access to an undefined address or the
access does not follow the given rules.

nE Indicates that no Error is generated when accessing this address or
address range, even though the access is to an undefined address or
address range. True for CPU accesses (MTCR/MFCR) to undefined
addresses in the CSFR range.

X Undefined value or bit.
User’s Manual 21-1 V2.0, 2001-02

TC1775
System Units

Register Overview
21.1 Segments 0 - 14

21.1.1 Address Map

Table 21-2 shows the block address map of Segment 0 to 14. Special Function
Registers are located in Segments 12 and 13 (see Table 21-3).

Note: Bold entries in column “Access Mode” are links to register definitions of the
corresponding functional unit.

Table 21-2 Block Address Map of Segments 0 to 14

Segment Description Address
Range

Access Mode Size

Read Write

0-7 Reserved 0000 0000H -
7FFF FFFFH

BE BE 2 GBytes

8 Reserved 800C 0000H -
8FFF FFFFH

nE nE –

9 Reserved 9000 0000H -
9FFF FFFFH

nE nE 256 MBytes

10 Reserved for External
Memory, cached

A000 0000H -
AFFF FFFFH

nE nE 256 MBytes

11

Reserved for External
Memory, non-cached,
mappable into segment 10

B000 0000H -
BDFF FFFFH

nE nE 224 MBytes

External Emulator Space,
non-cached

BE00 0000H -
BEFF FFFFH

nE nE 16 MBytes

Reserved BF00 0000H -
BFFF EFFFH

nE nE 16 MBytes

8-kByte Boot ROM BFFF E000H -
BFFF FFFFH

nE nE

12

Local Scratch-Pad Code
Memory, non-cached
(SPRAM)

C000 0000H -
C000 7FFFH

nE nE 1 KByte1)

Reserved C000 8000H -
C7FF FEFFH

nE nE 1)

PMU Registers C7FF FF00H -
C7FF FFFFH

see
Page 21-4

256 Byte

Reserved C80C 0000H -
CFFF FFFFH

nE nE –
User’s Manual 21-2 V2.0, 2001-02

TC1775
System Units

Register Overview
13

Local Data Memory (SRAM)
non-cached

D000 0000H -
D000 7FFFH

nE nE 32 KBytes

Local Data Memory for
standby operation
(SBSRAM), non-cached

D000 8000H -
D000 9FFFH

1)2) 8 KBytes

SBSRAM mirrored D000 A000H -
D000 BFFFH

8 KBytes

SBSRAM mirrored D000 C000H -
D000 DFFFH

8 KBytes

SBSRAM mirrored D000 E000H -
D000 FFFFH

8 KBytes

Reserved D001 0000H -
D7FF FEFFH

nE nE –

DMU Registers D7FF FF00H -
D7FF FFFFH

see
Page 21-4)

256 Bytes

Reserved D800 0000H -
DFFF FFFFH

nE nE 128 MBytes

14 Reserved for External
Peripheral and Data Memory
non-cached

E000 0000H -
EFFF FFFFH

nE nE –

1) CPU Load/Store accesses to this range can be performed in User or Supervisor Mode. Access width can be
8, 16, 32 or 64 bit, with 8-bit data aligned on byte boundaries and all others aligned on half-word (16-bit)
boundaries. Misaligned accesses to the data memory by the CPU’s load/store unit will not occur as such
conditions will already be handled inside the CPU (Unalignment trap, ALN).

2) The read/write accesses from the FPI Bus can be performed in User or Supervisor Mode. Access width can
be 16 or 32 bits, with data aligned on its natural boundary. Misaligned accesses will result in a bus error.

Table 21-2 Block Address Map of Segments 0 to 14 (cont’d)

Segment Description Address
Range

Access Mode Size

Read Write
User’s Manual 21-3 V2.0, 2001-02

TC1775
System Units

Register Overview
21.1.2 Registers

This section defines the memory map and the addresses of the Special Function
Registers of PMU (Segment 12) and DMU (Segment 13).

Note: Addresses listed in column “Address” of Table 21-3 are word (32-bit) addresses.

Table 21-3 Special Function Registers located in Segment 12 and 13

Short
Name

Description Absolute
Address

Access Mode Reset Value

Read Write

PMU Register (Segment 12)

– Reserved C7FF FF00H-
C7FF FF04H

BE BE –

PMU_ID PMU Module Identification
Register

C7FF FF08H U, SV BE XXXX
XXXXH

– Reserved C7FF FF0CH BE BE –

PMU_CON PMU Control Register C7FF FF10H U, SV SV,32 0400 3F06H

– Reserved C7FF FF14H BE BE –

PMU_
EIFCON

PMU External Instruction
Fetch Control Register

C7FF FF18H U, SV SV,32 0000 005FH

– Reserved C7FFFF1CH-
C7FF FFFCH

BE BE –

DMU Register (Segment 13)

– Reserved D7FF FF00H nBE nBE –

– Reserved D7FF FF04H BE BE 3)

DMU_ID DMU Module Identification
Register

D7FF FF08H U, SV BE XXXX

XXXXH

– Reserved D7FF FF0CH BE BE 3)

DMU_CON DMU Control Register D7FF FF10H U, SV SV 0000 0000H

– Reserved D7FF FF14H BE BE 3)

DMU_STR DMU Synchronous Trap
Flag Register

D7FF FF18H U, SV

2)

1) 0000 0000H

– Reserved D7FFFF1CH BE BE 3)

DMU_ATR DMU Asynchronous Trap
Flag Register

D7FF FF20H U, SV
2)

1) 0000 0000H

– Reserved D7FF FF24H BE BE 3)

Notes see end of table (Page 21-7).
User’s Manual 21-4 V2.0, 2001-02

TC1775
System Units

Register Overview
– Reserved D7FF FF28H nBE nBE –

– Reserved D7FF FF2CH BE BE 3)

– Reserved D7FF FF30H nBE nBE –

– Reserved D7FF FF34H BE BE 3)

– Reserved D7FF FF38H nBE nBE –

– Reserved D7FF FF3CH BE BE 3)

– Reserved D7FF FF40H nBE nBE –

– Reserved D7FF FF44H BE BE 3)

– Reserved D7FF FF48H nBE nBE –

– Reserved D7FF FF4CH BE BE 3)

– Reserved D7FF FF50H nBE nBE –

– Reserved D7FF FF54H BE BE 3)

– Reserved D7FF FF58H nBE nBE –

– Reserved D7FF FF5CH BE BE 3)

– Reserved D7FF FF60H nBE nBE –

– Reserved D7FF FF64H BE BE 3)

– Reserved D7FF FF68H nBE nBE –

– Reserved D7FF FF6CH BE BE 3)

– Reserved D7FF FF70H nBE nBE –

– Reserved D7FF FF74H BE BE 3)

– Reserved D7FF FF78H nBE nBE –

– Reserved D7FF FF7CH BE BE 3)

DMU_
IOCR0

DMU Internal Overlay
Control Register 0

D7FF FF80H U, SV SV 0000 0000H

– Reserved D7FF FF84H BE BE 3)

DMU_
IOCR1

DMU Internal Overlay
Control Register 1

D7FF FF88H U, SV SV 0000 0000H

– Reserved D7FF FF8CH BE BE 3)

Notes see end of table (Page 21-7);

Table 21-3 Special Function Registers located in Segment 12 and 13 (cont’d)

Short
Name

Description Absolute
Address

Access Mode Reset Value

Read Write
User’s Manual 21-5 V2.0, 2001-02

TC1775
System Units

Register Overview
DMU_
IOCR2

DMU Internal Overlay
Control Register 2

D7FF FF90H U, SV
1)

SV1) 0000 0000H

– Reserved D7FF FF94H BE BE 3)

DMU_
IOCR3

DMU Internal Overlay
Control Register 3

D7FF FF98H U, SV
1)

SV1) 0000 0000H

– Reserved D7FF FF9CH BE BE 3)

DMU_
EOCR0

DMU External Overlay
Control Register 0

D7FF FFA0H U, SV
1)

SV1) 0000 0000H

– Reserved D7FF FFA4H BE BE 3)

DMU_
EOCR1

DMU External Overlay
Control Register 1

D7FF FFA8H U, SV SV 0000 0000H

– Reserved D7FFFFACH BE BE 3)

DMU_
POCR

DMU Port Overlay Control
Register

D7FF FFB0H U, SV
1)

SV1) 0000 0000H

– Reserved D7FF FFB4H BE BE 3)

DMU_
IORBAP

DMU Internal Overlay
RAM Base Address Page
Register

D7FF FFB8H U, SV
1)

SV1) 0000 0000H

– Reserved D7FFFFBCH BE BE 3)

– Reserved D7FFFFC0H nBE nBE –

– Reserved D7FFFFC4H BE BE 3)

– Reserved D7FFFFC8H nBE nBE –

– Reserved D7FFFFCCH BE BE 3)

– Reserved D7FFFFD0H nBE nBE –

– Reserved D7FFFFD4H BE BE 3)

– Reserved D7FFFFD8H nBE nBE –

– Reserved D7FFFFDCH BE BE 3)

– Reserved D7FFFFE0H nBE nBE –

– Reserved D7FFFFE4H BE BE 3)

– Reserved D7FFFFE8H nBE nBE –

Notes see end of table (Page 21-7).

Table 21-3 Special Function Registers located in Segment 12 and 13 (cont’d)

Short
Name

Description Absolute
Address

Access Mode Reset Value

Read Write
User’s Manual 21-6 V2.0, 2001-02

TC1775
System Units

Register Overview
1) Access to the DMU registers must only be made with double-word-aligned word accesses. An access not
conforming to this rule, or an access which does not follow the specified privilege mode (supervisor mode), or
a write access to a read-only register, will cause a bus error if the access was from the FPI Bus, or to a trap,
flagged with a DMU Control Register Error Flag (see DMUSTR/DMUATR registers) in case of a CPU load/
store access.

2) Reading this register in supervisor mode returns the contents and then clears the register. Reading it in user
mode only returns the contents of the register and does not clear its bits. No error will be reported in this case.

3) A read access to this range will lead to a bus error on data load operation trap. A write access to this range will
lead to a bus error on data store operation trap.

– Reserved D7FFFFECH BE BE 3)

– Reserved D7FFFFF0H nBE nBE –

– Reserved D7FFFFF4H BE BE 3)

– Reserved D7FFFFF8H nBE nBE –

– Reserved D7FFFFFCH BE BE 3)

Table 21-3 Special Function Registers located in Segment 12 and 13 (cont’d)

Short
Name

Description Absolute
Address

Access Mode Reset Value

Read Write
User’s Manual 21-7 V2.0, 2001-02

TC1775
System Units

Register Overview
21.2 Segment 15 (Peripheral Units)

21.2.1 Address Map

Table 21-4 and Table 21-5 show the memory map and registers of Segment 15.

Note: Bold entries in column "Access Mode" are links to the register definitions of the
corresponding functional unit.

Table 21-4 Block Address Map of Segment 15

Unit Address
Range

Access Mode Size

Read Write

System Control Unit (SCU) and
Watchdog Timer (WDT)

F000 0000H -
F000 00FFH

see
Page 21-12

256 Bytes

Real Time Clock (RTC) F000 0100H -
F000 01FFH

see
Page 21-13

256 Bytes

Bus Control Unit (BCU) F000 0200H -
F000 02FFH

see
Page 21-14

256 Bytes

System Timer (STM) F000 0300H -
F000 03FFH

see
Page 21-14

256 Bytes

On-Chip Debug Support (Cerberus) F000 0400H -
F000 04FFH

see
Page 21-15

256 Bytes

External Bus Unit (EBU) F000 0500H -
F000 05FFH

see
Page 21-15

256 Bytes

Reserved F000 0600H -
F000 06FFH

BE BE –

General Purpose Timer Unit (GPTU) F000 0700H -
F000 07FFH

see
Page 21-16

256 Bytes

Asynchronous/Synchronous Serial
Interface 0 (ASC0)

F000 0800H -
F000 08FFH

see
Page 21-19

256 Bytes

Asynchronous/Synchronous Serial
Interface 1 (ASC1)

F000 0900H -
F000 09FFH

see
Page 21-20

256 Bytes

High-Speed Synchronous Serial
Interface 0 (SSC0)

F000 0A00H -
F000-0AFFH

see
Page 21-21

256 Bytes

High-Speed Synchronous Serial
Interface 1 (SSC1)

F000 0B00H -
F000-0BFFH

see
Page 21-21

256 Bytes

Reserved F000 0C00H -
F000 17FFH

BE BE –
User’s Manual 21-8 V2.0, 2001-02

TC1775
System Units

Register Overview
General Purpose Timer Array (GPTA)1) F000 1800H -
F000 1FFFH

see
Page 21-22

8 × 256
Bytes

Reserved F000 2000 -
F000 21FFH

BE BE –

Analog to Digital Converter 0 (ADC0)1) F000 2200H -
F000 23FFH

see
Page 21-42

2 × 256
Bytes

Analog to Digital Converter 1 (ADC1)1) F000 2400H -
F000 25FFH

see
Page 21-47

2 × 256
Bytes

Serial Data Link Module (SDLM) F000 2600H -
F000 26FFH

see
Page 21-52

256 Bytes

Reserved F000 2700H -
F000 27FFH

BE BE –

Port 0 F000 2800H -
F000 28FFH

see
Page 21-53

256 Bytes

Port 1 F000 2900H -
F000 29FFH

see
Page 21-54

256 Bytes

Port 2 F000 2A00H -
F000 2AFFH

see
Page 21-54

256 Bytes

Port 3 F000 2B00H -
F000 2BFFH

see
Page 21-55

256 Bytes

Port 4 F000 2C00H -
F000 2CFFH

see
Page 21-55

256 Bytes

Port 5 F000 2D00H -
F000 2DFFH

see
Page 21-56

256 Bytes

Port 6 & 7 (no registers available) F000 2E00H -
F000 2FFFH

BE BE 2 × 256
Byte

Port 8 F000 3000H -
F000 30FFH

see
Page 21-56

256 Bytes

Port 9 F000 3100H -
F000 31FFH

see
Page 21-57

256 Bytes

Port 10 F000 3200H -
F000 32FFH

see
Page 21-58

256 Bytes

Table 21-4 Block Address Map of Segment 15 (cont’d)

Unit Address
Range

Access Mode Size

Read Write
User’s Manual 21-9 V2.0, 2001-02

TC1775
System Units

Register Overview
Port 11 F000 3300H -
F000 33FFH

see
Page 21-59

256 Bytes

Port 12 F000 3400H -
F000 34FFH

see
Page 21-60

256 Bytes

Port 13 F000 3500H -
F000 35FFH

see
Page 21-61

256 Bytes

Reserved F000 3600H -
F000 3EFFH

BE BE –

PCP Peripheral Control Processor
(PCP)

F000 3F00H -
F000 3FFFH

see
Page 21-62

256 Bytes

Reserved F000 4000H -
F000 FFFFH

BE BE –

PCP Data Memory (PRAM) F001 0000H -
F001 0FFFH

nE nE 4 KBytes

Reserved F001 1000H -
F001 FFFFH

BE BE –

PCP Code Memory F002 0000H
F002 3FFFH

nE nE 16 KBytes

Reserved F002 4000H -
F00F FFFFH

BE BE –

Controller Area Network Module (CAN)
1)

F010 0000H -
F010 0BFFH

see
Page 21-63

12 × 256
Bytes

Reserved F010 0C00H -
FFFE FEFFH

BE BE –

Table 21-4 Block Address Map of Segment 15 (cont’d)

Unit Address
Range

Access Mode Size

Read Write
User’s Manual 21-10 V2.0, 2001-02

TC1775
System Units

Register Overview
CPU CPU Slave Interface Registers
(CPS)

FFFE FF00H -
FFFE FFFFH

see
Page 21-81

256 Bytes

Reserved FFFF 0000H -
FFFF BFFFH

nE nE –

Memory Protection Register FFFF C000H -
FFFF EFFFH

see
Page 21-81

48 × 256
Bytes

Reserved FFFF F000H -
FFFF FCFFH

nE nE –

Core Debug Register (OCDS) FFFF FD00H -
FFFF FDFFH

see
Page 21-84

256 Bytes

Core Special Function
Registers (CSFR)

FFFF FE00H -
FFFF FEFFH

see
Page 21-84

256 Bytes

General Purpose Register
(GPR)

FFFF FF00H -
FFFF FFFFH

see
Page 21-85

256 Bytes

1) Accesses to unused address regions within these peripheral units do not generate bus errors.

Table 21-4 Block Address Map of Segment 15 (cont’d)

Unit Address
Range

Access Mode Size

Read Write
User’s Manual 21-11 V2.0, 2001-02

TC1775
System Units

Register Overview
21.2.2 Registers

Table 21-5 shows the address map with all register of Segment 15.

Note: Addresses listed in column “Address” of Table 21-5 are word (32-bit) addresses.

Table 21-5 Detailed Address Map of Segment 15

Short Name Description Address Access Mode Reset Value

Read Write

System Control Unit (SCU) with Watchdog Timer (WDT)

– Reserved F000 0000H-
F000 0004H

BE BE –

SCU_ID SCU Module Identification
Register

F000 0008H U, SV BE XXXXXXXXH

– Reserved F000 000CH BE BE –

RST_REQ Reset Request Register F000 0010H U, SV U, SV,
E

0000 0000H

RST_SR Reset Status Register F000 0014H U, SV – according
boot cfg.

– Reserved F000 0018H-
F000 001CH

BE BE –

WDT_CON0 Watchdog Timer Control
Register 0

F000 0020H U, SV U, SV,
PW

FFFC 0002H

WDT_CON1 Watchdog Timer Control
Register 1

F000 0024H U, SV U, SV,
E

0000 0000H

WDT_SR Watchdog Timer Status
Register

F000 0028H U, SV U, SV,
NC

FFFC 0010H

NMISR NMI Status Register F000 002CH U, SV U, SV 0000 0000H

PMG_CON Power Management
Control Register

F000 0030H U, SV U, SV,
E

0000 0001H

PMG_CSR Power Management
Control and Status Reg.

F000 0034H U, SV U, SV 0000 0100H

– Reserved F000 0038H-
F000 003CH

BE BE –

PLL_CLC PLL Clock Control Reg. F000 0040H U, SV U, SV,
E

0007 UU00H

– Reserved F000 0044H-
F000 004CH

BE BE –
User’s Manual 21-12 V2.0, 2001-02

TC1775
System Units

Register Overview
SCU_CON SCU Control Register F000 0050H U, SV U, SV 00F0 0030H

SCU_
TRSTAT

Port 5 Trace Status Reg. F000 0054H U, SV U, SV 0000 0000H

– Reserved F000 0058H-
F000 006CH

BE BE –

MANID Manufacturer Identification
Register

F000 0070H U, SV BE 0000 1820H

CHIPID Chip Identification Reg. F000 0074H U, SV BE 0000 8002H

RTID Redesign Tracing
Identification Register

F000 0078H U, SV BE 0000 0000H

– Reserved F000 007CH-
F000 00FCH

BE BE –

Real Time Clock (RTC)

RTC_CLC RTC Clock Control Reg. F000 0100H U, SV U, SV,
E

0000 0000H

– Reserved F000 0104H BE BE –

RTC_ID RTC Module Identification
Register

F000 0108H U, SV BE XXXXXXXXH

– Reserved F000 010CH BE BE –

RTC_CON RTC Control Register F000 0110H U, SV U, SV 0000 0003H

RTC_T14 RTC T14 Count/Reload
Register

F000 0114H U, SV U, SV 0000 0000H

RTC_CNT RTC Count Register F000 0118H U, SV U, SV 0000 0000H

RTC_REL RTC Reload Register F000 011CH U, SV U, SV 0000 0000H

RTC_ISNC RTC Interrupt Sub-Node
Control Register

F000 0120H U, SV U, SV 0000 0000H

– Reserved F000 0124H-
F000 01F8H

BE BE –

RTC_SRC RTC Service Request
Control Register

F000 01FCH U, SV U, SV 0000 0000H

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-13 V2.0, 2001-02

TC1775
System Units

Register Overview
Bus Control Unit (BCU)

– Reserved F000 0200H -
F000 0204H

BE BE –

BCU_ID BCU Module Identification
Register

F000 0208H U, SV BE XXXXXXXXH

– Reserved F000 020CH BE BE –

BCU_CON BCU Control Register F000 0210H U, SV,
32

U, SV,
32

4009 FFFFH

– Reserved F000 0214H-
F000 021CH

BE BE –

BCU_ECON BCU Error Control Capture
Register

F000 0220H U, SV,
32

U, SV,
32

0000 0000H

BCU_EADD BCU Error Address
Capture Register

F000 0224H U, SV,
32

U, SV,
32

0000 0000H

BCU_EDAT BCU Error Data Capture
Register

F000 0228H U, SV,
32

U, SV,
32

0000 0000H

– Reserved F000 022CH-
F000 02F8H

BE BE –

BCU_SRC BCU Service Request
Control Register

F000 02FCH U, SV,
32

U, SV,
32

0000 0000H

System Timer (STM)

STM_CLC STM Clock Control Reg. F000 0300H U, SV U, SV,
E

0000 0000H

– Reserved F000 0304H BE BE –

STM_ID STM Module Identification
Register

F000 0308H U, SV BE XXXXXXXXH

– Reserved F000 030CH BE BE –

STM_TIM0 STM Timer Register 0 F000 0310H U, SV U, SV 0000 0000H

STM_TIM1 STM Timer Register 1 F000 0314H U, SV U, SV 0000 0000H

STM_TIM2 STM Timer Register 2 F000 0318H U, SV U, SV 0000 0000H

STM_TIM3 STM Timer Register 3 F000 031CH U, SV U, SV 0000 0000H

STM_TIM4 STM Timer Register 4 F000 0320H U, SV U, SV 0000 0000H

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-14 V2.0, 2001-02

TC1775
System Units

Register Overview
STM_TIM5 STM Timer Register 5 F000 0324H U, SV U, SV 0000 0000H

STM_TIM6 STM Timer Register 6 F000 0328H U, SV U, SV 0000 0000H

STM_CAP STM Timer Capture Reg. F000 032CH U, SV U, SV 0000 0000H

– Reserved F000 0330H-
F000 03FCH

BE BE –

On-Chip Debug Support (Cerberus)

– Reserved F000 0400H-
F000 0404H

BE BE –

JPD_ID JTAG/OCDS Module
Identification Register

F000 0408H U, SV BE XXXX XXXXH

– Reserved F000 040CH-
F000 0464H

BE BE –

COMDATA Cerberus Communication
Mode Data Register

F000 0468H SV SV 0000 0000H

IOSR Cerberus Status Register F000 046CH SV SV 0000 0000H

– Reserved F000 0470H-
F000 04FCH

BE BE –

External Bus Unit (EBU)

EBU_CLC EBU Clock Control Reg. F000 0500H U, SV U, SV,
E

0000 0000H

– Reserved F000 0504H BE BE –

EBU_ID EBU Module Identification
Register

F000 0508H U, SV BE XXXXXXXXH

– Reserved F000 050CH BE BE –

EBU_CON EBU Global Control Reg. F000 0510H U, SV U, SV 0000 0028H
0000 0068H
0000 00A8H

– Reserved; this location
must not be written

F000 0514H-
F000 051CH

nBE nBE –

EBU_
ADDSEL0

EBU Address Select
Register 0

F000 0520H U, SV U, SV 0000 0000H
A000 0001H

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-15 V2.0, 2001-02

TC1775
System Units

Register Overview
EBU_
ADDSEL1

EBU Address Select
Register 1

F000 0524H U, SV U, SV 0000 0000H
A000 0001H

EBU_
ADDSEL2

EBU Address Select
Register 2

F000 0528H U, SV U, SV 0000 0000H
A000 0001H

EBU_
ADDSEL3

EBU Address Select
Register 3

F000 052CH U, SV U, SV 0000 0000H
A000 0001H

– Reserved F000 0530H-
F000 055CH

BE BE –

EBU_
BUSCON0

EBU Bus Configuration
Register 0

F000 0560H U, SV U, SV E80261FFH

EBU_
BUSCON1

EBU Bus Configuration
Register 1

F000 0564H U, SV U, SV E80261FFH

EBU_
BUSCON2

EBU Bus Configuration
Register 2

F000 0568H U, SV U, SV E80261FFH

EBU_
BUSCON3

EBU Bus Configuration
Register 3

F000 056CH U, SV U, SV E80261FFH

– Reserved F000 0570H-
F000 057CH

BE BE –

EBU_
EMUAS

EBU Emulator Address
Select Register

F000 0580H U, SV U, SV BE00 0031H

EBU_
EMUBC

EBU Emulator Bus
Configuration Register

F000 0584H U, SV U, SV 0016 0280H

EBU_
EMUCON

EBU Emulator
Configuration Register

F000 0588H U, SV U, SV 0000 0000H

– Reserved F000 058CH-
F000 05FCH

BE BE –

General Purpose Timer Unit (GPTU)

GPTU_
CLC

GPTU Clock Control Reg. F000 0700H U, SV U, SV,
E

0000 0002H

– Reserved F000 0704H nBE nBE –

GPTU_ID GPTU Module
Identification Register

F000 0708H U, SV BE XXXXXXXXH

– Reserved F000 070CH nBE nBE –

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-16 V2.0, 2001-02

TC1775
System Units

Register Overview
GPTU_
T01IRS

GPTU Timers T0 and T1
Input and Reload Source
Selection Register

F000 0710H U, SV U, SV 0000 0000H

GPTU_
T01OTS

GPTU Timers T0 and T1
Output, Trigger and
Service Req. Register

F000 0714H U, SV U, SV 0000 0000H

GPTU_
T2CON

GPTU Timer T2 Control
Register

F000 0718H U, SV U, SV 0000 0000H

GPTU_
T2RCCON

GPTU Timer T2 Reload/
Capture Control Register

F000 071CH U, SV U, SV 0000 0000H

GPTU_
T2AIS

GPTU Timer T2/T2A Ext.
Input Selection Register

F000 0720H U, SV U, SV 0000 0000H

GPTU_
T2BIS

GPTU Timer T2B External
Input Selection Register

F000 0724H U, SV U, SV 0000 0000H

GPTU_
T2ES

GPTU Timer T2 External
Input Edge Selection Reg.

F000 0728H U, SV U, SV 0000 0000H

GPTU_
OSEL

GPTU Output Source
Selection Register

F000 072CH U, SV U, SV 0000 0000H

GPTU_OUT GPTU Output Register F000 0730H U, SV U, SV 0000 0000H

GPTU_
T0DCBA

GPTU Timer T0 Count
Register (T0D, T0C, T0B,
T0A)

F000 0734H U, SV U, SV 0000 0000H

GPTU_
T0CBA

GPTU Timer T0 Count
Register (T0C, T0B, T0A)

F000 0738H U, SV U, SV 0000 0000H

GPTU_
T0RDCBA

GPTU Timer T0 Reload
Register (T0RD, T0RC,
T0RB, T0RA)

F000 073CH U, SV U, SV 0000 0000H

GPTU_
T0RCBA

GPTU Timer T0 Reload
Register (T0RC, T0RB,
T0RA)

F000 0740H U, SV U, SV 0000 0000H

GPTU_
T1DCBA

GPTU Timer T1 Count
Register (T1D, T1C, T1B,
T1A)

F000 0744H U, SV U, SV 0000 0000H

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-17 V2.0, 2001-02

TC1775
System Units

Register Overview
GPTU_
T1CBA

GPTU Timer T1 Count
Register (T1C, T1B, T1A)

F000 0748H U, SV U, SV 0000 0000H

GPTU_
T1RDCBA

GPTU Timer T1 Reload
Register (T1RD, T1RC,
T1RB, T1RA)

F000 074CH U, SV U, SV 0000 0000H

GPTU_
T1RCBA

GPTU Timer T1 Reload
Register (T1RC, T1RB,
T1RA)

F000 0750H U, SV U, SV 0000 0000H

GPTU_T2 GPTU Timer T2 Count
Register

F000 0754H U, SV U, SV 0000 0000H

GPTU_
T2RC0

GPTU Timer T2 Reload/
Capture Register 0

F000 0758H U, SV U, SV 0000 0000H

GPTU_
T2RC1

GPTU Timer T2 Reload/
Capture Register 1

F000 075CH U, SV U, SV 0000 0000H

GPTU_
T012RUN

GPTU Timers T0, T1, T2
Run Control Register

F000 0760H U, SV U, SV 0000 0000H

– Reserved F000 0764H-
F000 07D8H

BE BE –

GPTU_
SRSEL

GPTU Service Request
Source Select Register

F000 07DCH U, SV U, SV 0000 0000H

GPTU_
SRC7

GPTU Service Request
Control Register 7

F000 07E0H U, SV U, SV 0000 0000H

GPTU_
SRC6

GPTU Service Request
Control Register 6

F000 07E4H U, SV U, SV 0000 0000H

GPTU_
SRC5

GPTU Service Request
Control Register 5

F000 07E8H U, SV U, SV 0000 0000H

GPTU_
SRC4

GPTU Service Request
Control Register 4

F000 07ECH U, SV U, SV 0000 0000H

GPTU_
SRC3

GPTU Service Request
Control Register 3

F000 07F0H U, SV U, SV 0000 0000H

GPTU_
SRC2

GPTU Service Request
Control Register 2

F000 07F4H U, SV U, SV 0000 0000H

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-18 V2.0, 2001-02

TC1775
System Units

Register Overview
GPTU_
SRC1

GPTU Service Request
Control Register 1

F000 07F8H U, SV U, SV 0000 0000H

GPTU_
SRC0

GPTU Service Request
Control Register 0

F000 07FCH U, SV U, SV 0000 0000H

Asynchronous/Synchronous Serial Interface 0 (ASC0)

ASC0_
CLC

ASC0 Clock Control Reg. F000 0800H U, SV U, SV,
E

0000 0002H

ASC0_
PISEL

ASC0 Peripheral Input
Select Reg.

F000 0804H U, SV U, SV 0000 0000H

ASC0_ID ASC0 Module
Identification Register

F000 0808H U, SV BE XXXXXXXXH

– Reserved F000 080CH BE BE –

ASC0_CON ASC0 Control Register F000 0810H U, SV U, SV 0000 0000H

ASC0_BG ASC0 Baud Rate/Timer
Reload Register

F000 0814H U, SV U, SV 0000 0000H

ASC0_FDV ASC0 Fractional Divider
Register

F000 0818H U, SV U, SV 0000 0000H

– Reserved F000 081CH BE BE –

ASC0_
TBUF

ASC0 Transmit Buffer
Register

F000 0820H U, SV U, SV 0000 0000H

ASC0_
RBUF

ASC0 Receive Buffer
Register

F000 0824H U, SV U, SV 0000 0000H

– Reserved F000 0828H-
F000 08D4H

BE BE –

– Reserved F000 08D8H-
F000 08DCH

nBE nBE –

– Reserved F000 08E0H-
F000 08ECH

BE BE –

ASC0_
TSRC

ASC0 Transmit Interrupt
Service Req. Control Reg.

F000 08F0H U, SV U, SV 0000 0000H

ASC0_
RSRC

ASC0 Receive Interrupt
Service Req. Control Reg.

F000 08F4H U, SV U, SV 0000 0000H

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-19 V2.0, 2001-02

TC1775
System Units

Register Overview
ASC0_
ESRC

ASC0 Error Interrupt
Service Req. Control Reg.

F000 08F8H U, SV U, SV 0000 0000H

ASC0_
TBSRC

ASC0 Transmit Buffer
Interrupt Service Req.
Control Reg.

F000 08FCH U, SV U, SV 0000 0000H

Asynchronous/Synchronous Serial Interface 1 (ASC1)

ASC1_CLC ASC1 Clock Control Reg. F000 0900H U, SV U, SV,
E

0000 0002H

ASC1_
PISEL

ASC1 Peripheral Input
Select Reg.

F000 0904H U, SV U, SV 0000 0000H

ASC1_ID ASC1 Module
Identification Register

F000 0908H U, SV BE XXXXXXXXH

– Reserved F000 090CH BE BE –

ASC1_CON ASC1 Control Register F000 0910H U, SV U, SV 0000 0000H

ASC1_BG ASC1 Baud Rate/Timer
Reload Register

F000 0914H U, SV U, SV 0000 0000H

ASC1_FDV ASC1 Fractional Divider
Register

F000 0918H U, SV U, SV 0000 0000H

– Reserved F000 091CH BE BE –

ASC1_
TBUF

ASC1 Transmit Buffer
Register

F000 0920H U, SV U, SV 0000 0000H

ASC1_
RBUF

ASC1 Receive Buffer
Register

F000 0924H U, SV U, SV 0000 0000H

– Reserved F000 0928H-
F000 09D4H

BE BE –

– Reserved F000 09D8H-
F000 09DCH

nBE nBE –

– Reserved F000 09E0H-
F000 09ECH

BE BE –

ASC1_
TSRC

ASC1 Transmit Interrupt
Service Req. Control Reg.

F000 09F0H U, SV U, SV 0000 0000H

ASC1_
RSRC

ASC1 Receive Interrupt
Service Req. Control Reg.

F000 09F4H U, SV U, SV 0000 0000H

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-20 V2.0, 2001-02

TC1775
System Units

Register Overview
ASC1_
ESRC

ASC1 Error Interrupt
Service Req. Control Reg.

F000 09F8H U, SV U, SV 0000 0000H

ASC1_
TBSRC

ASC1 Transmit Buffer
Interrupt Service Req.
Control Reg.

F000 09FCH U, SV U, SV 0000 0000H

High-Speed Synchronous Serial Interface 0 (SSC0)

SSC0_CLC SSC0 Clock Control Reg. F000 0A00H U, SV U, SV,
E

0000 0002H

– Reserved F000 0A04H nBE nBE –

SSC0_ID SSC0 Module
Identification Register

F000 0A08H U, SV BE XXXXXXXXH

– Reserved F000 0A0CH BE BE –

SSC0_CON SSC0 Control Register F000 0A10H U, SV U, SV 0000 0000H

SSC0_BR SSC0 Baud Rate Timer
Reload Register

F000 0A14H U, SV U, SV 0000 0000H

– Reserved F000 0A18H-
F000 0A1CH

BE BE –

SSC0_TB SSC0 Transmit Buffer
Register

F000 0A20H U, SV U, SV 0000 0000H

SSC0_RB SSC0 Receive Buffer
Register

F000 0A24H U, SV U, SV 0000 0000H

– Reserved F000 0A28H-
F000 0AF0H

BE BE –

SSC0_
TSRC

SSC0 Transmit Interrupt
Service Req. Control Reg.

F000 0AF4H U, SV U, SV 0000 0000H

SSC0_
RSRC

SSC0 Receive Interrupt
Service Req. Control Reg.

F000 0AF8H U, SV U, SV 0000 0000H

SSC0_
ESRC

SSC0 Error Interrupt
Service Req. Control Reg.

F000 0AFCH U, SV U, SV 0000 0000H

High-Speed Synchronous Serial Interface 1 (SSC1)

SSC1_CLC SSC1 Clock Control Reg. F000 0B00H U, SV U, SV,
E

0000 0002H

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-21 V2.0, 2001-02

TC1775
System Units

Register Overview
– Reserved F000 0B04H nBE nBE –

SSC1_ID SSC1 Module
Identification Register

F000 0B08H U, SV BE XXXXXXXXH

– Reserved F000 0B0CH BE BE –

SSC1_CON SSC1 Control Register F000 0B10H U, SV U, SV 0000 0000H

SSC1_BR SSC1 Baud Rate Timer
Reload Register

F000 0B14H U, SV U, SV 0000 0000H

– Reserved F000 0B18H-
F000 0B1CH

BE BE –

SSC1_TB SSC1 Transmit Buffer
Register

F000 0B20H U, SV U, SV 0000 0000H

SSC1_RB SSC1 Receive Buffer
Register

F000 0B24H U, SV U, SV 0000 0000H

– Reserved F000 0B28H-
F000 0BF0H

BE BE –

SSC1_
TSRC

SSC1 Transmit Interrupt
Service Req. Control Reg.

F000 0BF4H U, SV U, SV 0000 0000H

SSC1_
RSRC

SSC1 Receive Interrupt
Service Req. Control Reg.

F000 0BF8H U, SV U, SV 0000 0000H

SSC1_
ESRC

SSC1 Error Interrupt
Service Req. Control Reg.

F000 0BFCH U, SV U, SV 0000 0000H

General Purpose Timer Array (GPTA)

GPTA_CLC GPTA Clock Control Reg. F000 1800H U. SV U,SV,
E

0000 0002H

– Reserved F000 1804H nBE nBE –

GPTA_ID GPTA Module
Identification Register

F000 1808H U, SV BE XXXX XXXXH

– Reserved F000 180CH nBE nBE –

GPTA_
SRS0

GPTA Service Request
State Register 0

F000 1810H U, SV U, SV 0000 0000H

GPTA_
SRS1

GPTA Service Request
State Register 1

F000 1814H U, SV U, SV 0000 0000H

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-22 V2.0, 2001-02

TC1775
System Units

Register Overview
GPTA_
SRS2

GPTA Service Request
State Register 2

F000 1818H U, SV U, SV 0000 0000H

GPTA_
SRS3

GPTA Service Request
State Register 3

F000 181CH U, SV U, SV 0000 0000H

– Reserved F000 1820H-
F000 182CH

nBE nBE –

GPTA_
ADCCTR

GPTA AD Converter
Control Register

F000 1830H U, SV U, SV 0000 0000H

GPTA_
EMGCTR0

GPTA Emergency Control
Register 0

F000 1834H U, SV U, SV 0000 0000H

GPTA_
EMGCTR1

GPTA Emergency Control
Register 1

F000 1838H U, SV U, SV 0000 0000H

GPTA_
OMR0

GPTA Output Port Line
Multiplex Register 0

F000 183CH U, SV U, SV 0000 0000H

GPTA_
OMR1

GPTA Output Port Line
Multiplex Register 1

F000 1840H U, SV U, SV 0000 0000H

GPTA_
OMR2

GPTA Output Port Line
Multiplex Register 2

F000 1844H U, SV U, SV 0000 0000H

GPTA_
OMR3

GPTA Output Port Line
Multiplex Register 3

F000 1848H U, SV U, SV 0000 0000H

– Reserved F000 184CH nBE nBE –

GPTA_
FPCCTR1

GPTA Filter and Prescaler
Cell Control Register 1

F000 1850H U, SV U, SV 0000 0000H

GPTA_
FPCCTR2

GPTA Filter and Prescaler
Cell Control Register 2

F000 1854H U, SV U, SV 0000 0000H

GPTA_
FPCTIM0

GPTA Filter and Prescaler
Cell Timer Register 0

F000 1858H U, SV U, SV 0000 0000H

GPTA_
FPCCOM0

GPTA Filter and Prescaler
Cell Compare Register 0

F000 185CH U, SV U, SV 0000 0000H

GPTA_
FPCTIM1

GPTA Filter and Prescaler
Cell Timer Register 1

F000 1860H U, SV U, SV 0000 0000H

GPTA_
FPCCOM1

GPTA Filter and Prescaler
Cell Compare Register 1

F000 1864H U, SV U, SV 0000 0000H

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-23 V2.0, 2001-02

TC1775
System Units

Register Overview
GPTA_
FPCTIM2

GPTA Filter and Prescaler
Cell Timer Register 2

F000 1868H U, SV U, SV 0000 0000H

GPTA_
FPCCOM2

GPTA Filter and Prescaler
Cell Compare Register 2

F000 186CH U, SV U, SV 0000 0000H

GPTA_
FPCTIM3

GPTA Filter and Prescaler
Cell Timer Register 3

F000 1870H U, SV U, SV 0000 0000H

GPTA_
FPCCOM3

GPTA Filter and Prescaler
Cell Compare Register 3

F000 1874H U, SV U, SV 0000 0000H

GPTA_
FPCTIM4

GPTA Filter and Prescaler
Cell Timer Register 4

F000 1878H U, SV U, SV 0000 0000H

GPTA_
FPCCOM4

GPTA Filter and Prescaler
Cell Compare Register 4

F000 187CH U, SV U, SV 0000 0000H

GPTA_
FPCTIM5

GPTA Filter and Prescaler
Cell Timer Register 5

F000 1880H U, SV U, SV 0000 0000H

GPTA_
FPCCOM5

GPTA Filter and Prescaler
Cell Compare Register 5

F000 1884H U, SV U, SV 0000 0000H

GPTA_
PDLCTR

GPTA Phase
Discrimination Logic
Control Register

F000 1888H U, SV U, SV 0000 0000H

GPTA_
DCMCTR0

GPTA Duty Cycle
Measurement Control
Register 0

F000 188CH U, SV U, SV 0000 0000H

GPTA_
DCMTIM0

GPTA Duty Cycle
Measurement Timer
Register 0

F000 1890H U, SV U, SV 0000 0000H

GPTA_
DCMCAV0

GPTA Duty Cycle
Measurement Capture
Register 0

F000 1894H U, SV U, SV 0000 0000H

GPTA_
DCMCOV0

GPTA Duty Cycle
Measurement Capture/
Compare Register 0

F000 1898H U, SV U, SV 0000 0000H

GPTA_
DCMCTR1

GPTA Duty Cycle
Measurement Control
Register 1

F000 189CH U, SV U, SV 0000 0000H

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-24 V2.0, 2001-02

TC1775
System Units

Register Overview
GPTA_
DCMTIM1

GPTA Duty Cycle
Measurement Timer
Register 1

F000 18A0H U, SV U, SV 0000 0000H

GPTA_
DCMCAV1

GPTA Duty Cycle
Measurement Capture
Register 1

F000 18A4H U, SV U, SV 0000 0000H

GPTA_
DCMCOV1

GPTA Duty Cycle
Measurement Capture/
Compare Register 1

F000 18A8H U, SV U, SV 0000 0000H

GPTA_
DCMCTR2

GPTA Duty Cycle
Measurement Control
Register 2

F000 18ACH U, SV U, SV 0000 0000H

GPTA_
DCMTIM2

GPTA Duty Cycle
Measurement Timer
Register 2

F000 18B0H U, SV U, SV 0000 0000H

GPTA_
DCMCAV2

GPTA Duty Cycle
Measurement Capture
Register 2

F000 18B4H U, SV U, SV 0000 0000H

GPTA_
DCMCOV2

GPTA Duty Cycle
Measurement Capture/
Compare Register 2

F000 18B8H U, SV U, SV 0000 0000H

GPTA_
DCMCTR3

GPTA Duty Cycle
Measurement Control
Register 3

F000 18BCH U, SV U, SV 0000 0000H

GPTA_
DCMTIM3

GPTA Duty Cycle
Measurement Timer
Register 3

F000 18C0H U, SV U, SV 0000 0000H

GPTA_
DCMCAV3

GPTA Duty Cycle
Measurement Capture
Register 3

F000 18C4H U, SV U, SV 0000 0000H

GPTA_
DCMCOV3

GPTA Duty Cycle
Measurement Capture/
Compare Register 3

F000 18C8H U, SV U, SV 0000 0000H

GPTA_
PLLCTR

GPTA Phase Locked Loop
Control Register

F000 18CCH U, SV U, SV 0000 0000H

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-25 V2.0, 2001-02

TC1775
System Units

Register Overview
GPTA_
PLLMTI

GPTA Phase Locked Loop
Microtick Register

F000 18D0H U, SV U, SV 0000 0000H

GPTA_
PLLCNT

GPTA Phase Locked Loop
Counter Register

F000 18D4H U, SV U, SV 0000 0000H

GPTA_
PLLSTP

GPTA Phase Locked Loop
Step Register

F000 18D8H U, SV U, SV 0000 0000H

GPTA_
PLLREV

GPTA Phase Locked Loop
Reload Register

F000 18DCH U, SV U, SV 0000 0000H

GPTA_
PLLDTR

GPTA Phase Locked Loop
Delta Register

F000 18E0H U, SV U, SV 0000 0000H

GPTA_
CKBCTR

GPTA Clock Bus Control
Register

F000 18E4H U, SV U, SV 0000 FFFFH

GPTA_
GTCTR0

GPTA Global Timer
Control Register 0

F000 18E8H U, SV U, SV 0000 0000H

GPTA_
GTREV0

GPTA Global Timer
Reload Value Register 0

F000 18ECH U, SV U, SV 0000 0000H

GPTA_
GTTIM0

GPTA Global Timer
Register 0

F000 18F0H U, SV U, SV 0000 0000H

GPTA_
GTCTR1

GPTA Global Timer
Control Register 1

F000 18F4H U, SV U, SV 0000 0000H

GPTA_
GTREV1

GPTA Global Timer
Reload Value Register 1

F000 18F8H U, SV U, SV 0000 0000H

GPTA_
GTTIM1

GPTA Global Timer
Register 1

F000 18FCH U, SV U, SV 0000 0000H

GPTA_
GTCCTR00

Global Timer Cell Control
Register 00

F000 1900H U, SV U, SV 0000 0000H

GPTA_
GTCXR00

Global Timer Cell X
Register 00

F000 1904H U, SV U, SV 0000 0000H

GPTA_
GTCCTR01

Global Timer Cell Control
Register 01

F000 1908H U, SV U, SV 0000 0000H

GPTA_
GTCXR01

Global Timer Cell X
Register 01

F000 190CH U, SV U, SV 0000 0000H

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-26 V2.0, 2001-02

TC1775
System Units

Register Overview
GPTA_
GTCCTR02

Global Timer Cell Control
Register 02

F000 1910H U, SV U, SV 0000 0000H

GPTA_
GTCXR02

Global Timer Cell X
Register 02

F000 1914H U, SV U, SV 0000 0000H

GPTA_
GTCCTR03

Global Timer Cell Control
Register 03

F000 1918H U, SV U, SV 0000 0000H

GPTA_
GTCXR03

Global Timer Cell X
Register 03

F000 191CH U, SV U, SV 0000 0000H

GPTA_
GTCCTR04

Global Timer Cell Control
Register 04

F000 1920H U, SV U, SV 0000 0000H

GPTA_
GTCXR04

Global Timer Cell X
Register 04

F000 1924H U, SV U, SV 0000 0000H

GPTA_
GTCCTR05

Global Timer Cell Control
Register 05

F000 1928H U, SV U, SV 0000 0000H

GPTA_
GTCXR05

Global Timer Cell X
Register 05

F000 192CH U, SV U, SV 0000 0000H

GPTA_
GTCCTR06

Global Timer Cell Control
Register 06

F000 1930H U, SV U, SV 0000 0000H

GPTA_
GTCXR06

Global Timer Cell X
Register 06

F000 1934H U, SV U, SV 0000 0000H

GPTA_
GTCCTR07

Global Timer Cell Control
Register 07

F000 1938H U, SV U, SV 0000 0000H

GPTA_
GTCXR07

Global Timer Cell X
Register 07

F000 193CH U, SV U, SV 0000 0000H

GPTA_
GTCCTR08

Global Timer Cell Control
Register 08

F000 1940H U, SV U, SV 0000 0000H

GPTA_
GTCXR08

Global Timer Cell X
Register 08

F000 1944H U, SV U, SV 0000 0000H

GPTA_
GTCCTR09

Global Timer Cell Control
Register 09

F000 1948H U, SV U, SV 0000 0000H

GPTA_
GTCXR09

Global Timer Cell X
Register 09

F000 194CH U, SV U, SV 0000 0000H

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-27 V2.0, 2001-02

TC1775
System Units

Register Overview
GPTA_
GTCCTR10

Global Timer Cell Control
Register 10

F000 1950H U, SV U, SV 0000 0000H

GPTA_
GTCXR10

Global Timer Cell X
Register 10

F000 1954H U, SV U, SV 0000 0000H

GPTA_
GTCCTR11

Global Timer Cell Control
Register 11

F000 1958H U, SV U, SV 0000 0000H

GPTA_
GTCXR11

Global Timer Cell X
Register 11

F000 195CH U, SV U, SV 0000 0000H

GPTA_
GTCCTR12

Global Timer Cell Control
Register 12

F000 1960H U, SV U, SV 0000 0000H

GPTA_
GTCXR12

Global Timer Cell X
Register 12

F000 1964H U, SV U, SV 0000 0000H

GPTA_
GTCCTR13

Global Timer Cell Control
Register 13

F000 1968H U, SV U, SV 0000 0000H

GPTA_
GTCXR13

Global Timer Cell X
Register 13

F000 196CH U, SV U, SV 0000 0000H

GPTA_
GTCCTR14

Global Timer Cell Control
Register 14

F000 1970H U, SV U, SV 0000 0000H

GPTA_
GTCXR14

Global Timer Cell X
Register 14

F000 1974H U, SV U, SV 0000 0000H

GPTA_
GTCCTR15

Global Timer Cell Control
Register 15

F000 1978H U, SV U, SV 0000 0000H

GPTA_
GTCXR15

Global Timer Cell X
Register 15

F000 197CH U, SV U, SV 0000 0000H

GPTA_
GTCCTR16

Global Timer Cell Control
Register 16

F000 1980H U, SV U, SV 0000 0000H

GPTA_
GTCXR16

Global Timer Cell X
Register 16

F000 1984H U, SV U, SV 0000 0000H

GPTA_
GTCCTR17

Global Timer Cell Control
Register 17

F000 1988H U, SV U, SV 0000 0000H

GPTA_
GTCXR17

Global Timer Cell X
Register 17

F000 198CH U, SV U, SV 0000 0000H

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-28 V2.0, 2001-02

TC1775
System Units

Register Overview
GPTA_
GTCCTR18

Global Timer Cell Control
Register 18

F000 1990H U, SV U, SV 0000 0000H

GPTA_
GTCXR18

Global Timer Cell X
Register 18

F000 1994H U, SV U, SV 0000 0000H

GPTA_
GTCCTR19

Global Timer Cell Control
Register 19

F000 1998H U, SV U, SV 0000 0000H

GPTA_
GTCXR19

Global Timer Cell X
Register 19

F000 199CH U, SV U, SV 0000 0000H

GPTA_
GTCCTR20

Global Timer Cell Control
Register 20

F000 19A0H U, SV U, SV 0000 0000H

GPTA_
GTCXR20

Global Timer Cell X
Register 20

F000 19A4H U, SV U, SV 0000 0000H

GPTA_
GTCCTR21

Global Timer Cell Control
Register 21

F000 19A8H U, SV U, SV 0000 0000H

GPTA_
GTCXR21

Global Timer Cell X
Register 21

F000 19ACH U, SV U, SV 0000 0000H

GPTA_
GTCCTR22

Global Timer Cell Control
Register 22

F000 19B0H U, SV U, SV 0000 0000H

GPTA_
GTCXR22

Global Timer Cell X
Register 22

F000 19B4H U, SV U, SV 0000 0000H

GPTA_
GTCCTR23

Global Timer Cell Control
Register 23

F000 19B8H U, SV U, SV 0000 0000H

GPTA_
GTCXR23

Global Timer Cell X
Register 23

F000 19BCH U, SV U, SV 0000 0000H

GPTA_
GTCCTR24

Global Timer Cell Control
Register 24

F000 19C0H U, SV U, SV 0000 0000H

GPTA_
GTCXR24

Global Timer Cell X
Register 24

F000 19C4H U, SV U, SV 0000 0000H

GPTA_
GTCCTR25

Global Timer Cell Control
Register 25

F000 19C8H U, SV U, SV 0000 0000H

GPTA_
GTCXR25

Global Timer Cell X
Register 25

F000 19CCH U, SV U, SV 0000 0000H

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-29 V2.0, 2001-02

TC1775
System Units

Register Overview
GPTA_
GTCCTR26

Global Timer Cell Control
Register 26

F000 19D0H U, SV U, SV 0000 0000H

GPTA_
GTCXR26

Global Timer Cell X
Register 26

F000 19D4H U, SV U, SV 0000 0000H

GPTA_
GTCCTR27

Global Timer Cell Control
Register 27

F000 19D8H U, SV U, SV 0000 0000H

GPTA_
GTCXR27

Global Timer Cell X
Register 27

F000 19DCH U, SV U, SV 0000 0000H

GPTA_
GTCCTR28

Global Timer Cell Control
Register 28

F000 19E0H U, SV U, SV 0000 0000H

GPTA_
GTCXR28

Global Timer Cell X
Register 28

F000 19E4H U, SV U, SV 0000 0000H

GPTA_
GTCCTR29

Global Timer Cell Control
Register 29

F000 19E8H U, SV U, SV 0000 0000H

GPTA_
GTCXR29

Global Timer Cell X
Register 29

F000 19ECH U, SV U, SV 0000 0000H

GPTA_
GTCCTR30

Global Timer Cell Control
Register 30

F000 19F0H U, SV U, SV 0000 0000H

GPTA_
GTCXR30

Global Timer Cell X
Register 30

F000 19F4H U, SV U, SV 0000 0000H

GPTA_
GTCCTR31

Global Timer Cell Control
Register 31

F000 19F8H U, SV U, SV 0000 0000H

GPTA_
GTCXR31

Global Timer Cell X
Register 31

F000 19FCH U, SV U, SV 0000 0000H

GPTA_
LTCCTR00

Local Timer Cell Control
Register 00

F000 1A00H U, SV U, SV 0000 0000H

GPTA_
LTCXR00

Local Timer Cell X
Register 00

F000 1A04H U, SV U, SV 0000 0000H

GPTA_
LTCCTR01

Local Timer Cell Control
Register 01

F000 1A08H U, SV U, SV 0000 0000H

GPTA_
LTCXR01

Local Timer Cell X
Register 01

F000 1A0CH U, SV U, SV 0000 0000H

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-30 V2.0, 2001-02

TC1775
System Units

Register Overview
GPTA_
LTCCTR02

Local Timer Cell Control
Register 02

F000 1A10H U, SV U, SV 0000 0000H

GPTA_
LTCXR02

Local Timer Cell X
Register 02

F000 1A14H U, SV U, SV 0000 0000H

GPTA_
LTCCTR03

Local Timer Cell Control
Register 03

F000 1A18H U, SV U, SV 0000 0000H

GPTA_
LTCXR03

Local Timer Cell X
Register 03

F000 1A1CH U, SV U, SV 0000 0000H

GPTA_
LTCCTR04

Local Timer Cell Control
Register 04

F000 1A20H U, SV U, SV 0000 0000H

GPTA_
LTCXR04

Local Timer Cell X
Register 04

F000 1A24H U, SV U, SV 0000 0000H

GPTA_
LTCCTR05

Local Timer Cell Control
Register 05

F000 1A28H U, SV U, SV 0000 0000H

GPTA_
LTCXR05

Local Timer Cell X
Register 05

F000 1A2CH U, SV U, SV 0000 0000H

GPTA_
LTCCTR06

Local Timer Cell Control
Register 06

F000 1A30H U, SV U, SV 0000 0000H

GPTA_
LTCXR06

Local Timer Cell X
Register 06

F000 1A34H U, SV U, SV 0000 0000H

GPTA_
LTCCTR07

Local Timer Cell Control
Register 07

F000 1A38H U, SV U, SV 0000 0000H

GPTA_
LTCXR07

Local Timer Cell X
Register 07

F000 1A3CH U, SV U, SV 0000 0000H

GPTA_
LTCCTR08

Local Timer Cell Control
Register 08

F000 1A40H U, SV U, SV 0000 0000H

GPTA_
LTCXR08

Local Timer Cell X
Register 08

F000 1A44H U, SV U, SV 0000 0000H

GPTA_
LTCCTR09

Local Timer Cell Control
Register 09

F000 1A48H U, SV U, SV 0000 0000H

GPTA_
LTCXR09

Local Timer Cell X
Register 09

F000 1A4CH U, SV U, SV 0000 0000H

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-31 V2.0, 2001-02

TC1775
System Units

Register Overview
GPTA_
LTCCTR10

Local Timer Cell Control
Register 10

F000 1A50H U, SV U, SV 0000 0000H

GPTA_
LTCXR10

Local Timer Cell X
Register 10

F000 1A54H U, SV U, SV 0000 0000H

GPTA_
LTCCTR11

Local Timer Cell Control
Register 11

F000 1A58H U, SV U, SV 0000 0000H

GPTA_
LTCXR11

Local Timer Cell X
Register 11

F000 1A5CH U, SV U, SV 0000 0000H

GPTA_
LTCCTR12

Local Timer Cell Control
Register 12

F000 1A60H U, SV U, SV 0000 0000H

GPTA_
LTCXR12

Local Timer Cell X
Register 12

F000 1A64H U, SV U, SV 0000 0000H

GPTA_
LTCCTR13

Local Timer Cell Control
Register 13

F000 1A68H U, SV U, SV 0000 0000H

GPTA_
LTCXR13

Local Timer Cell X
Register 13

F000 1A6CH U, SV U, SV 0000 0000H

GPTA_
LTCCTR14

Local Timer Cell Control
Register 14

F000 1A70H U, SV U, SV 0000 0000H

GPTA_
LTCXR14

Local Timer Cell X
Register 14

F000 1A74H U, SV U, SV 0000 0000H

GPTA_
LTCCTR15

Local Timer Cell Control
Register 15

F000 1A78H U, SV U, SV 0000 0000H

GPTA_
LTCXR15

Local Timer Cell X
Register 15

F000 1A7CH U, SV U, SV 0000 0000H

GPTA_
LTCCTR16

Local Timer Cell Control
Register 16

F000 1A80H U, SV U, SV 0000 0000H

GPTA_
LTCXR16

Local Timer Cell X
Register 16

F000 1A84H U, SV U, SV 0000 0000H

GPTA_
LTCCTR17

Local Timer Cell Control
Register 17

F000 1A88H U, SV U, SV 0000 0000H

GPTA_
LTCXR17

Local Timer Cell X
Register 17

F000 1A8CH U, SV U, SV 0000 0000H

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-32 V2.0, 2001-02

TC1775
System Units

Register Overview
GPTA_
LTCCTR18

Local Timer Cell Control
Register 18

F000 1A90H U, SV U, SV 0000 0000H

GPTA_
LTCXR18

Local Timer Cell X
Register 18

F000 1A94H U, SV U, SV 0000 0000H

GPTA_
LTCCTR19

Local Timer Cell Control
Register 19

F000 1A98H U, SV U, SV 0000 0000H

GPTA_
LTCXR19

Local Timer Cell X
Register 19

F000 1A9CH U, SV U, SV 0000 0000H

GPTA_
LTCCTR20

Local Timer Cell Control
Register 20

F000 1AA0H U, SV U, SV 0000 0000H

GPTA_
LTCXR20

Local Timer Cell X
Register 20

F000 1AA4H U, SV U, SV 0000 0000H

GPTA_
LTCCTR21

Local Timer Cell Control
Register 21

F000 1AA8H U, SV U, SV 0000 0000H

GPTA_
LTCXR21

Local Timer Cell X
Register 21

F000 1AACH U, SV U, SV 0000 0000H

GPTA_
LTCCTR22

Local Timer Cell Control
Register 22

F000 1AB0H U, SV U, SV 0000 0000H

GPTA_
LTCXR22

Local Timer Cell X
Register 22

F000 1AB4H U, SV U, SV 0000 0000H

GPTA_
LTCCTR23

Local Timer Cell Control
Register 23

F000 1AB8H U, SV U, SV 0000 0000H

GPTA_
LTCXR23

Local Timer Cell X
Register 23

F000 1ABCH U, SV U, SV 0000 0000H

GPTA_
LTCCTR24

Local Timer Cell Control
Register 24

F000 1AC0H U, SV U, SV 0000 0000H

GPTA_
LTCXR24

Local Timer Cell X
Register 24

F000 1AC4H U, SV U, SV 0000 0000H

GPTA_
LTCCTR25

Local Timer Cell Control
Register 25

F000 1AC8H U, SV U, SV 0000 0000H

GPTA_
LTCXR25

Local Timer Cell X
Register 25

F000 1ACCH U, SV U, SV 0000 0000H

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-33 V2.0, 2001-02

TC1775
System Units

Register Overview
GPTA_
LTCCTR26

Local Timer Cell Control
Register 26

F000 1AD0H U, SV U, SV 0000 0000H

GPTA_
LTCXR26

Local Timer Cell X
Register 26

F000 1AD4H U, SV U, SV 0000 0000H

GPTA_
LTCCTR27

Local Timer Cell Control
Register 27

F000 1AD8H U, SV U, SV 0000 0000H

GPTA_
LTCXR27

Local Timer Cell X
Register 27

F000 1ADCH U, SV U, SV 0000 0000H

GPTA_
LTCCTR28

Local Timer Cell Control
Register 28

F000 1AE0H U, SV U, SV 0000 0000H

GPTA_
LTCXR28

Local Timer Cell X
Register 28

F000 1AE4H U, SV U, SV 0000 0000H

GPTA_
LTCCTR29

Local Timer Cell Control
Register 29

F000 1AE8H U, SV U, SV 0000 0000H

GPTA_
LTCXR29

Local Timer Cell X
Register 29

F000 1AECH U, SV U, SV 0000 0000H

GPTA_
LTCCTR30

Local Timer Cell Control
Register 30

F000 1AF0H U, SV U, SV 0000 0000H

GPTA_
LTCXR30

Local Timer Cell X
Register 30

F000 1AF4H U, SV U, SV 0000 0000H

GPTA_
LTCCTR31

Local Timer Cell Control
Register 31

F000 1AF8H U, SV U, SV 0000 0000H

GPTA_
LTCXR31

Local Timer Cell X
Register 31

F000 1AFCH U, SV U, SV 0000 0000H

GPTA_
LTCCTR32

Local Timer Cell Control
Register 32

F000 1B00H U, SV U, SV 0000 0000H

GPTA_
LTCXR32

Local Timer Cell X
Register 32

F000 1B04H U, SV U, SV 0000 0000H

GPTA_
LTCCTR33

Local Timer Cell Control
Register 33

F000 1B08H U, SV U, SV 0000 0000H

GPTA_
LTCXR33

Local Timer Cell X
Register 33

F000 1B0CH U, SV U, SV 0000 0000H

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-34 V2.0, 2001-02

TC1775
System Units

Register Overview
GPTA_
LTCCTR34

Local Timer Cell Control
Register 34

F000 1B10H U, SV U, SV 0000 0000H

GPTA_
LTCXR34

Local Timer Cell X
Register 34

F000 1B14H U, SV U, SV 0000 0000H

GPTA_
LTCCTR35

Local Timer Cell Control
Register 35

F000 1B18H U, SV U, SV 0000 0000H

GPTA_
LTCXR35

Local Timer Cell X
Register 35

F000 1B1CH U, SV U, SV 0000 0000H

GPTA_
LTCCTR36

Local Timer Cell Control
Register 36

F000 1B20H U, SV U, SV 0000 0000H

GPTA_
LTCXR36

Local Timer Cell X
Register 36

F000 1B24H U, SV U, SV 0000 0000H

GPTA_
LTCCTR37

Local Timer Cell Control
Register 37

F000 1B28H U, SV U, SV 0000 0000H

GPTA_
LTCXR37

Local Timer Cell X
Register 37

F000 1B2CH U, SV U, SV 0000 0000H

GPTA_
LTCCTR38

Local Timer Cell Control
Register 38

F000 1B30H U, SV U, SV 0000 0000H

GPTA_
LTCXR38

Local Timer Cell X
Register 38

F000 1B34H U, SV U, SV 0000 0000H

GPTA_
LTCCTR39

Local Timer Cell Control
Register 39

F000 1B38H U, SV U, SV 0000 0000H

GPTA_
LTCXR39

Local Timer Cell X
Register 39

F000 1B3CH U, SV U, SV 0000 0000H

GPTA_
LTCCTR40

Local Timer Cell Control
Register 40

F000 1B40H U, SV U, SV 0000 0000H

GPTA_
LTCXR40

Local Timer Cell X
Register 40

F000 1B44H U, SV U, SV 0000 0000H

GPTA_
LTCCTR41

Local Timer Cell Control
Register 41

F000 1B48H U, SV U, SV 0000 0000H

GPTA_
LTCXR41

Local Timer Cell X
Register 41

F000 1B4CH U, SV U, SV 0000 0000H

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-35 V2.0, 2001-02

TC1775
System Units

Register Overview
GPTA_
LTCCTR42

Local Timer Cell Control
Register 42

F000 1B50H U, SV U, SV 0000 0000H

GPTA_
LTCXR42

Local Timer Cell X
Register 42

F000 1B54H U, SV U, SV 0000 0000H

GPTA_
LTCCTR43

Local Timer Cell Control
Register 43

F000 1B58H U, SV U, SV 0000 0000H

GPTA_
LTCXR43

Local Timer Cell X
Register 43

F000 1B5CH U, SV U, SV 0000 0000H

GPTA_
LTCCTR44

Local Timer Cell Control
Register 44

F000 1B60H U, SV U, SV 0000 0000H

GPTA_
LTCXR44

Local Timer Cell X
Register 44

F000 1B64H U, SV U, SV 0000 0000H

GPTA_
LTCCTR45

Local Timer Cell Control
Register 45

F000 1B68H U, SV U, SV 0000 0000H

GPTA_
LTCXR45

Local Timer Cell X
Register 45

F000 1B6CH U, SV U, SV 0000 0000H

GPTA_
LTCCTR46

Local Timer Cell Control
Register 46

F000 1B70H U, SV U, SV 0000 0000H

GPTA_
LTCXR46

Local Timer Cell X
Register 46

F000 1B74H U, SV U, SV 0000 0000H

GPTA_
LTCCTR47

Local Timer Cell Control
Register 47

F000 1B78H U, SV U, SV 0000 0000H

GPTA_
LTCXR47

Local Timer Cell X
Register 47

F000 1B7CH U, SV U, SV 0000 0000H

GPTA_
LTCCTR48

Local Timer Cell Control
Register 48

F000 1B80H U, SV U, SV 0000 0000H

GPTA_
LTCXR48

Local Timer Cell X
Register 48

F000 1B84H U, SV U, SV 0000 0000H

GPTA_
LTCCTR49

Local Timer Cell Control
Register 49

F000 1B88H U, SV U, SV 0000 0000H

GPTA_
LTCXR49

Local Timer Cell X
Register 49

F000 1B8CH U, SV U, SV 0000 0000H

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-36 V2.0, 2001-02

TC1775
System Units

Register Overview
GPTA_
LTCCTR50

Local Timer Cell Control
Register 50

F000 1B90H U, SV U, SV 0000 0000H

GPTA_
LTCXR50

Local Timer Cell X
Register 50

F000 1B94H U, SV U, SV 0000 0000H

GPTA_
LTCCTR51

Local Timer Cell Control
Register 51

F000 1B98H U, SV U, SV 0000 0000H

GPTA_
LTCXR51

Local Timer Cell X
Register 51

F000 1B9CH U, SV U, SV 0000 0000H

GPTA_
LTCCTR52

Local Timer Cell Control
Register 52

F000 1BA0H U, SV U, SV 0000 0000H

GPTA_
LTCXR52

Local Timer Cell X
Register 52

F000 1BA4H U, SV U, SV 0000 0000H

GPTA_
LTCCTR53

Local Timer Cell Control
Register 53

F000 1BA8H U, SV U, SV 0000 0000H

GPTA_
LTCXR53

Local Timer Cell X
Register 53

F000 1BACH U, SV U, SV 0000 0000H

GPTA_
LTCCTR54

Local Timer Cell Control
Register 54

F000 1BB0H U, SV U, SV 0000 0000H

GPTA_
LTCXR54

Local Timer Cell X
Register 54

F000 1BB4H U, SV U, SV 0000 0000H

GPTA_
LTCCTR55

Local Timer Cell Control
Register 55

F000 1BB8H U, SV U, SV 0000 0000H

GPTA_
LTCXR55

Local Timer Cell X
Register 55

F000 1BBCH U, SV U, SV 0000 0000H

GPTA_
LTCCTR56

Local Timer Cell Control
Register 56

F000 1BC0H U, SV U, SV 0000 0000H

GPTA_
LTCXR56

Local Timer Cell X
Register 56

F000 1BC4H U, SV U, SV 0000 0000H

GPTA_
LTCCTR57

Local Timer Cell Control
Register 57

F000 1BC8H U, SV U, SV 0000 0000H

GPTA_
LTCXR57

Local Timer Cell X
Register 57

F000 1BCCH U, SV U, SV 0000 0000H

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-37 V2.0, 2001-02

TC1775
System Units

Register Overview
GPTA_
LTCCTR58

Local Timer Cell Control
Register 58

F000 1BD0H U, SV U, SV 0000 0000H

GPTA_
LTCXR58

Local Timer Cell X
Register 58

F000 1BD4H U, SV U, SV 0000 0000H

GPTA_
LTCCTR59

Local Timer Cell Control
Register 59

F000 1BD8H U, SV U, SV 0000 0000H

GPTA_
LTCXR59

Local Timer Cell X
Register 59

F000 1BDCH U, SV U, SV 0000 0000H

GPTA_
LTCCTR60

Local Timer Cell Control
Register 60

F000 1BE0H U, SV U, SV 0000 0000H

GPTA_
LTCXR60

Local Timer Cell X
Register 60

F000 1BE4H U, SV U, SV 0000 0000H

GPTA_
LTCCTR61

Local Timer Cell Control
Register 61

F000 1BE8H U, SV U, SV 0000 0000H

GPTA_
LTCXR61

Local Timer Cell X
Register 61

F000 1BECH U, SV U, SV 0000 0000H

GPTA_
LTCCTR62

Local Timer Cell Control
Register 62

F000 1BF0H U, SV U, SV 0000 0000H

GPTA_
LTCXR62

Local Timer Cell X
Register 62

F000 1BF4H U, SV U, SV 0000 0000H

GPTA_
LTCCTR63

Local Timer Cell Control
Register 63

F000 1BF8H U, SV U, SV 0000 0000H

GPTA_
LTCXR63

Local Timer Cell X
Register 63

F000 1BFCH U, SV U, SV 0000 0000H

– Reserved F000 1C00H-
F000 1F24H

BE BE –

GPTA_
SRC53

GPTA Service Request
Control Register 53

F000 1F28H U, SV U, SV 0000 0000H

GPTA_
SRC52

GPTA Service Request
Control Register 52

F000 1F2CH U, SV U, SV 0000 0000H

GPTA_
SRC51

GPTA Service Request
Control Register 51

F000 1F30H U, SV U, SV 0000 0000H

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-38 V2.0, 2001-02

TC1775
System Units

Register Overview
GPTA_
SRC50

GPTA Service Request
Control Register 50

F000 1F34H U, SV U, SV 0000 0000H

GPTA_
SRC49

GPTA Service Request
Control Register 49

F000 1F38H U, SV U, SV 0000 0000H

GPTA_
SRC48

GPTA Service Request
Control Register 48

F000 1F3CH U, SV U, SV 0000 0000H

GPTA_
SRC47

GPTA Service Request
Control Register 47

F000 1F40H U, SV U, SV 0000 0000H

GPTA_
SRC46

GPTA Service Request
Control Register 46

F000 1F44H U, SV U, SV 0000 0000H

GPTA_
SRC45

GPTA Service Request
Control Register 45

F000 1F48H U, SV U, SV 0000 0000H

GPTA_
SRC44

GPTA Service Request
Control Register 44

F000 1F4CH U, SV U, SV 0000 0000H

GPTA_
SRC43

GPTA Service Request
Control Register 43

F000 1F50H U, SV U, SV 0000 0000H

GPTA_
SRC42

GPTA Service Request
Control Register 42

F000 1F54H U, SV U, SV 0000 0000H

GPTA_
SRC41

GPTA Service Request
Control Register 41

F000 1F58H U, SV U, SV 0000 0000H

GPTA_
SRC40

GPTA Service Request
Control Register 40

F000 1F5CH U, SV U, SV 0000 0000H

GPTA_
SRC39

GPTA Service Request
Control Register 39

F000 1F60H U, SV U, SV 0000 0000H

GPTA_
SRC38

GPTA Service Request
Control Register 38

F000 1F64H U, SV U, SV 0000 0000H

GPTA_
SRC37

GPTA Service Request
Control Register 37

F000 1F68H U, SV U, SV 0000 0000H

GPTA_
SRC36

GPTA Service Request
Control Register 36

F000 1F6CH U, SV U, SV 0000 0000H

GPTA_
SRC35

GPTA Service Request
Control Register 35

F000 1F70H U, SV U, SV 0000 0000H

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-39 V2.0, 2001-02

TC1775
System Units

Register Overview
GPTA_
SRC34

GPTA Service Request
Control Register 34

F000 1F74H U, SV U, SV 0000 0000H

GPTA_
SRC33

GPTA Service Request
Control Register 33

F000 1F78H U, SV U, SV 0000 0000H

GPTA_
SRC32

GPTA Service Request
Control Register 32

F000 1F7CH U, SV U, SV 0000 0000H

GPTA_
SRC31

GPTA Service Request
Control Register 31

F000 1F80H U, SV U, SV 0000 0000H

GPTA_
SRC30

GPTA Service Request
Control Register 30

F000 1F84H U, SV U, SV 0000 0000H

GPTA_
SRC29

GPTA Service Request
Control Register 29

F000 1F88H U, SV U, SV 0000 0000H

GPTA_
SRC28

GPTA Service Request
Control Register 28

F000 1F8CH U, SV U, SV 0000 0000H

GPTA_
SRC27

GPTA Service Request
Control Register 27

F000 1F90H U, SV U, SV 0000 0000H

GPTA_
SRC26

GPTA Service Request
Control Register 26

F000 1F94H U, SV U, SV 0000 0000H

GPTA_
SRC25

GPTA Service Request
Control Register 25

F000 1F98H U, SV U, SV 0000 0000H

GPTA_
SRC24

GPTA Service Request
Control Register 24

F000 1F9CH U, SV U, SV 0000 0000H

GPTA_
SRC23

GPTA Service Request
Control Register 23

F000 1FA0H U, SV U, SV 0000 0000H

GPTA_
SRC22

GPTA Service Request
Control Register 22

F000 1FA4H U, SV U, SV 0000 0000H

GPTA_
SRC21

GPTA Service Request
Control Register 21

F000 1FA8H U, SV U, SV 0000 0000H

GPTA_
SRC20

GPTA Service Request
Control Register 20

F000 1FACH U, SV U, SV 0000 0000H

GPTA_
SRC19

GPTA Service Request
Control Register 19

F000 1FB0H U, SV U, SV 0000 0000H

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-40 V2.0, 2001-02

TC1775
System Units

Register Overview
GPTA_
SRC18

GPTA Service Request
Control Register 18

F000 1FB4H U, SV U, SV 0000 0000H

GPTA_
SRC17

GPTA Service Request
Control Register 17

F000 1FB8H U, SV U, SV 0000 0000H

GPTA_
SRC16

GPTA Service Request
Control Register 16

F000 1FBCH U, SV U, SV 0000 0000H

GPTA_
SRC15

GPTA Service Request
Control Register 15

F000 1FC0H U, SV U, SV 0000 0000H

GPTA_
SRC14

GPTA Service Request
Control Register 14

F000 1FC4H U, SV U, SV 0000 0000H

GPTA_
SRC13

GPTA Service Request
Control Register 13

F000 1FC8H U, SV U, SV 0000 0000H

GPTA_
SRC12

GPTA Service Request
Control Register 12

F000 1FCCH U, SV U, SV 0000 0000H

GPTA_
SRC11

GPTA Service Request
Control Register 11

F000 1FD0H U, SV U, SV 0000 0000H

GPTA_
SRC10

GPTA Service Request
Control Register 10

F000 1FD4H U, SV U, SV 0000 0000H

GPTA_
SRC09

GPTA Service Request
Control Register 09

F000 1FD8H U, SV U, SV 0000 0000H

GPTA_
SRC08

GPTA Service Request
Control Register 08

F000 1FDCH U, SV U, SV 0000 0000H

GPTA_
SRC07

GPTA Service Request
Control Register 07

F000 1FE0H U, SV U, SV 0000 0000H

GPTA_
SRC06

GPTA Service Request
Control Register 06

F000 1FE4H U, SV U, SV 0000 0000H

GPTA_
SRC05

GPTA Service Request
Control Register 05

F000 1FE8H U, SV U, SV 0000 0000H

GPTA_
SRC04

GPTA Service Request
Control Register 04

F000 1FECH U, SV U, SV 0000 0000H

GPTA_
SRC03

GPTA Service Request
Control Register 03

F000 1FF0H U, SV U, SV 0000 0000H

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-41 V2.0, 2001-02

TC1775
System Units

Register Overview
GPTA_
SRC02

GPTA Service Request
Control Register 02

F000 1FF4H U, SV U, SV 0000 0000H

GPTA_
SRC01

GPTA Service Request
Control Register 01

F000 1FF8H U, SV U, SV 0000 0000H

GPTA_
SRC00

GPTA Service Request
Control Register 00

F000 1FFCH U, SV U, SV 0000 0000H

– Reserved F000 2000H
-
F000 21FCH

BE BE –

Analog to Digital Converter 0 (ADC0)

ADC0_CLC ADC0 Clock Control
Register

F000 2200H U, SV U, SV,
E

0000 0002H

– Reserved F000 2204H nBE nBE –

ADC0_ID ADC0 Module
Identification Register

F000 2208H U, SV BE XXXXXXXXH

– Reserved F000 220CH nBE nBE –

ADC0_
CHCON0

ADC0 Channel Control
Register 0

F000 2210H U, SV U, SV XXXX XXXXH

ADC0_
CHCON1

ADC0 Channel Control
Register 1

F000 2214H U, SV U, SV XXXX XXXXH

ADC0_
CHCON2

ADC0 Channel Control
Register 2

F000 2218H U, SV U, SV XXXX XXXXH

ADC0_
CHCON3

ADC0 Channel Control
Register 3

F000 221CH U, SV U, SV XXXX XXXXH

ADC0_
CHCON4

ADC0 Channel Control
Register 4

F000 2220H U, SV U, SV XXXX XXXXH

ADC0_
CHCON5

ADC0 Channel Control
Register 5

F000 2224H U, SV U, SV XXXX XXXXH

ADC0_
CHCON6

ADC0 Channel Control
Register 6

F000 2228H U, SV U, SV XXXX XXXXH

ADC0_
CHCON7

ADC0 Channel Control
Register 7

F000 222CH U, SV U, SV XXXX XXXXH

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-42 V2.0, 2001-02

TC1775
System Units

Register Overview
ADC0_
CHCON8

ADC0 Channel Control
Register 8

F000 2230H U, SV U, SV XXXX XXXXH

ADC0_
CHCON9

ADC0 Channel Control
Register 9

F000 2234H U, SV U, SV XXXX XXXXH

ADC0_
CHCON10

ADC0 Channel Control
Register 10

F000 2238H U, SV U, SV XXXX XXXXH

ADC0_
CHCON11

ADC0 Channel Control
Register 11

F000 223CH U, SV U, SV XXXX XXXXH

ADC0_
CHCON12

ADC0 Channel Control
Register 12

F000 2240H U, SV U, SV XXXX XXXXH

ADC0_
CHCON13

ADC0 Channel Control
Register 13

F000 2244H U, SV U, SV XXXX XXXXH

ADC0_
CHCON14

ADC0 Channel Control
Register 14

F000 2248H U, SV U, SV XXXX XXXXH

ADC0_
CHCON15

ADC0 Channel Control
Register 15

F000 224CH U, SV U, SV XXXX XXXXH

– Reserved F000 2250H-
F000 227CH

nBE nBE –

ADC0_
EXEVC

ADC0 External Event
Control Register

F000 2280H U, SV U, SV 0000 0000H

ADC0_AP ADC0 Arbitration
Participation Register

F000 2284H U, SV U, SV 0000 0000H

ADC0_SAL ADC0 Source Arbitration
Level Register

F000 2288H U, SV U, SV 0103 4067H

ADC0_TTC ADC0 Timer Trigger
Control Register

F000 228CH U, SV U, SV XXXX XXXXH

ADC0_
EXTC0

ADC0 External Trigger
Control Register 0

F000 2290H U, SV U, SV XXXX XXXXH

ADC0_
EXTC1

ADC0 External Trigger
Control Register 1

F000 2294H U, SV U, SV XXXX XXXXH

– Reserved F000 2298H-
F000 229CH

nBE nBE –

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-43 V2.0, 2001-02

TC1775
System Units

Register Overview
– Reserved; these locations
must not be written

F000 22A0H-
F000 22DCH

nE nE –

– Reserved F000 22E0H-
F000 22FCH

nBE nBE –

ADC0_
LCCON0

ADC0 Limit Check Control
Register 0

F000 2300H U, SV U, SV XXXX XXXXH

ADC0_
LCCON1

ADC0 Limit Check Control
Register 1

F000 2304H U, SV U, SV XXXX XXXXH

ADC0_
LCCON2

ADC0 Limit Check Control
Register 2

F000 2308H U, SV U, SV XXXX XXXXH

ADC0_
LCCON3

ADC0 Limit Check Control
Register 3

F000 230CH U, SV U, SV XXXX XXXXH

– Reserved F000 2310H nBE nBE –

ADC0_
TCON

ADC0 Timer Control Reg. F000 2314H U, SV U, SV 0000 0000H

ADC0_CHIN ADC0 Channel Injection
Register

F000 2318H U, SV U, SV XXXX XXXXH

ADC0_QR ADC0 Queue Register F000 231CH U, SV U, SV 0000 0000H

ADC0_CON ADC0 Converter Control
Register

F000 2320H U, SV U, SV 4000 0007H

ADC0_SCN ADC0 Auto Scan Control
Register

F000 2324H U, SV U, SV XXXX XXXXH

ADC0_
REQ0

ADC0 Conversion
Request Register SW0

F000 2328H U, SV U, SV XXXX XXXXH

– Reserved F000 232CH nBE nBE –

ADC0_
CHSTAT0

ADC0 Channel Status
Register 0

F000 2330H U, SV – XXXX XXXXH

ADC0_
CHSTAT1

ADC0 Channel Status
Register 1

F000 2334H U, SV – XXXX XXXXH

ADC0_
CHSTAT2

ADC0 Channel Status
Register 2

F000 2338H U, SV – XXXX XXXXH

ADC0_
CHSTAT3

ADC0 Channel Status
Register 3

F000 233CH U, SV – XXXX XXXXH

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-44 V2.0, 2001-02

TC1775
System Units

Register Overview
ADC0_
CHSTAT4

ADC0 Channel Status
Register 4

F000 2340H U, SV – XXXX XXXXH

ADC0_
CHSTAT5

ADC0 Channel Status
Register 5

F000 2344H U, SV – XXXX XXXXH

ADC0_
CHSTAT6

ADC0 Channel Status
Register 6

F000 2348H U, SV – XXXX XXXXH

ADC0_
CHSTAT7

ADC0 Channel Status
Register 7

F000 234CH U, SV – XXXX XXXXH

ADC0_
CHSTAT8

ADC0 Channel Status
Register 8

F000 2350H U, SV – XXXX XXXXH

ADC0_
CHSTAT9

ADC0 Channel Status
Register 9

F000 2354H U, SV – XXXX XXXXH

ADC0_
CHSTAT10

ADC0 Channel Status
Register 10

F000 2358H U, SV – XXXX XXXXH

ADC0_
CHSTAT11

ADC0 Channel Status
Register 11

F000 235CH U, SV – XXXX XXXXH

ADC0_
CHSTAT12

ADC0 Channel Status
Register 12

F000 2360H U, SV – XXXX XXXXH

ADC0_
CHSTAT13

ADC0 Channel Status
Register 13

F000 2364H U, SV – XXXX XXXXH

ADC0_
CHSTAT14

ADC0 Channel Status
Register 14

F000 2368H U, SV – XXXX XXXXH

ADC0_
CHSTAT15

ADC0 Channel Status
Register 15

F000 236CH U, SV – XXXX XXXXH

ADC0_
QUEUE0

ADC0 Queue Status
Register

F000 2370H U, SV – XXXX XXXXH

– Reserved F000 2374H-
F000 237CH

nBE nBE –

ADC0_
SW0CRP

ADC0 Software SW0
Conv. Request Pending
Register

F000 2380H U, SV – 0000 0000H

– Reserved F000 2384H nBE nBE –

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-45 V2.0, 2001-02

TC1775
System Units

Register Overview
ADC0_
ASCRP

ADC0 Auto Scan
Conversion Request
Pending Register

F000 2388H U, SV – 0000 0000H

– Reserved F000 238CH nBE nBE –

ADC0_
SYSTAT

ADC0 Synchronization
Status Register

F000 2390H U, SV – 0000 0000H

– Reserved F000 2394H-
F000 239CH

nBE nBE –

– Reserved; these locations
must not be written

F000 23A0H-
F000 23A4H

nE nE –

– Reserved F000 23A8H-
F000 23ACH

nBE nBE –

ADC0_
TSTAT

ADC0 Timer Status
Register

F000 23B0H U, SV – 0000 0000H

ADC0_
STAT

ADC0 Converter Status
Register

F000 23B4H U, SV – 0000 0000H

ADC0_
TCRP

ADC0 Timer Conversion
Request Pending Register

F000 23B8H U, SV – 0000 0000H

ADC0_
EXCRP

ADC0 External
Conversion Request
Pending Register

F000 23BCH U, SV – 0000 0000H

– Reserved; this location
must not be written

F000 23C0H nE nE –

– Reserved F000 23C4H-
F000 23CCH

nBE nBE –

ADC0_
MSS0

ADC0 Service Request
Status Register 0

F000 23D0H U, SV U, SV 0000 0000H

ADC0_
MSS1

ADC0 Service Request
Status Register 1

F000 23D4H U, SV U, SV 0000 0000H

– Reserved F000 23D8H nBE nBE –

ADC0_
SRNP

ADC0 Service Request
Node Pointer Register

F000 23DCH U, SV U, SV 0000 0000H

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-46 V2.0, 2001-02

TC1775
System Units

Register Overview
– Reserved F000 23E0H-
F000 23ECH

nBE nBE –

ADC0_
SRC3

ADC0 Service Request
Control Register 3

F000 23F0H U, SV U, SV 0000 0000H

ADC0_
SRC2

ADC0 Service Request
Control Register 2

F000 23F4H U, SV U, SV 0000 0000H

ADC0_
SRC1

ADC0 Service Request
Control Register 1

F000 23F8H U, SV U, SV 0000 0000H

ADC0_
SRC0

ADC0 Service Request
Control Register 0

F000 23FCH U, SV U, SV 0000 0000H

Analog to Digital Converter 1 (ADC1)

ADC1_CLC ADC1 Clock Control Reg. F000 2400H U, SV U, SV,
E

0000 0002H

– Reserved F000 2404H nBE nBE –

ADC1_ID ADC1 Module
Identification Register

F000 2408H U.,SV BE XXXX XXXXH

– Reserved F000 240CH nBE nBE –

ADC1_
CHCON0

ADC1 Channel Control
Register 0

F000 2410H U, SV U, SV XXXX XXXXH

ADC1_
CHCON1

ADC1 Channel Control
Register 1

F000 2414H U, SV U, SV XXXX XXXXH

ADC1_
CHCON2

ADC1 Channel Control
Register 2

F000 2418H U, SV U, SV XXXX XXXXH

ADC1_
CHCON3

ADC1 Channel Control
Register 3

F000 241CH U, SV U, SV XXXX XXXXH

ADC1_
CHCON4

ADC1 Channel Control
Register 4

F000 2420H U, SV U, SV XXXX XXXXH

ADC1_
CHCON5

ADC1 Channel Control
Register 5

F000 2424H U, SV U, SV XXXX XXXXH

ADC1_
CHCON6

ADC1 Channel Control
Register 6

F000 2428H U, SV U, SV XXXX XXXXH

ADC1_
CHCON7

ADC1 Channel Control
Register 7

F000 242CH U, SV U, SV XXXX XXXXH

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-47 V2.0, 2001-02

TC1775
System Units

Register Overview
ADC1_
CHCON8

ADC1 Channel Control
Register 8

F000 2430H U, SV U, SV XXXX XXXXH

ADC1_
CHCON9

ADC1 Channel Control
Register 9

F000 2434H U, SV U, SV XXXX XXXXH

ADC1_
CHCON10

ADC1 Channel Control
Register 10

F000 2438H U, SV U, SV XXXX XXXXH

ADC1_
CHCON11

ADC1 Channel Control
Register 11

F000 243CH U, SV U, SV XXXX XXXXH

ADC1_
CHCON12

ADC1 Channel Control
Register 12

F000 2440H U, SV U, SV XXXX XXXXH

ADC1_
CHCON13

ADC1 Channel Control
Register 13

F000 2444H U, SV U, SV XXXX XXXXH

ADC1_
CHCON14

ADC1 Channel Control
Register 14

F000 2448H U, SV U, SV XXXX XXXXH

ADC1_
CHCON15

ADC1 Channel Control
Register 15

F000 244CH U, SV U, SV XXXX XXXXH

– Reserved F000 2450H-
F000 247CH

nBE nBE –

ADC1_
EXEVC

ADC1 External Event
Control Register

F000 2480H U, SV U, SV 0000 0000H

ADC1_AP ADC1 Arbitration
Participation Register

F000 2484H U, SV U, SV 0000 0000H

ADC1_SAL ADC1 Source Arbitration
Level Register

F000 2488H U, SV U, SV 0103 4067H

ADC1_TTC ADC1 Timer Trigger
Control Register

F000 248CH U, SV U, SV XXXX XXXXH

ADC1_
EXTC0

ADC1 External Trigger
Control Register 0

F000 2490H U, SV U, SV XXXX XXXXH

ADC1_
EXTC1

ADC1 External Trigger
Control Register 1

F000 2494H U, SV U, SV XXXX XXXXH

– Reserved F000 2498H-
F000 249CH

nBE nBE –

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-48 V2.0, 2001-02

TC1775
System Units

Register Overview
– Reserved; these locations
must not be written

F000 24A0H-
F000 24DCH

nE nE –

– Reserved F000 24E0H-
F000 24FCH

nBE nBE –

ADC1_
LCCON0

ADC1 Limit Check Control
Register 0

F000 2500H U, SV U, SV XXXX XXXXH

ADC1_
LCCON1

ADC1 Limit Check Control
Register 1

F000 2504H U, SV U, SV XXXX XXXXH

ADC1_
LCCON2

ADC1 Limit Check Control
Register 2

F000 2508H U, SV U, SV XXXX XXXXH

ADC1_
LCCON3

ADC1 Limit Check Control
Register 3

F000 250CH U, SV U, SV XXXX XXXXH

– Reserved F000 2510H nBE nBE –

ADC1_
TCON

ADC1 Timer Control
Register

F000 2514H U, SV U, SV 0000 0000H

ADC1_CHIN ADC1 Channel Injection
Reg.

F000 2518H U, SV U, SV XXXX XXXXH

ADC1_QR ADC1 Queue Register F000 251CH U, SV U, SV 0000 0000H

ADC1_CON ADC1 Converter Control
Register

F000 2520H U, SV U, SV 4000 0007H

ADC1_SCN ADC1 Auto Scan Control
Register

F000 2524H U, SV U, SV XXXX XXXXH

ADC1_
REQ0

ADC1 Conversion
Request Register SW0

F000 2528H U, SV U, SV XXXX XXXXH

– Reserved F000 252CH nBE nBE –

ADC1_
CHSTAT0

ADC1 Channel Status
Register 0

F000 2530H U, SV – XXXX XXXXH

ADC1_
CHSTAT1

ADC1 Channel Status
Register 1

F000 2534H U, SV – XXXX XXXXH

ADC1_
CHSTAT2

ADC1 Channel Status
Register 2

F000 2538H U, SV – XXXX XXXXH

ADC1_
CHSTAT3

ADC1 Channel Status
Register 3

F000 253CH U, SV – XXXX XXXXH

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-49 V2.0, 2001-02

TC1775
System Units

Register Overview
ADC1_
CHSTAT4

ADC1 Channel Status
Register 4

F000 2540H U, SV – XXXX XXXXH

ADC1_
CHSTAT5

ADC1 Channel Status
Register 5

F000 2544H U, SV – XXXX XXXXH

ADC1_
CHSTAT6

ADC1 Channel Status
Register 6

F000 2548H U, SV – XXXX XXXXH

ADC1_
CHSTAT7

ADC1 Channel Status
Register 7

F000 254CH U, SV – XXXX XXXXH

ADC1_
CHSTAT8

ADC1 Channel Status
Register 8

F000 2550H U, SV – XXXX XXXXH

ADC1_
CHSTAT9

ADC1 Channel Status
Register 9

F000 2554H U, SV – XXXX XXXXH

ADC1_
CHSTAT10

ADC1 Channel Status
Register 10

F000 2558H U, SV – XXXX XXXXH

ADC1_
CHSTAT11

ADC1 Channel Status
Register 11

F000 255CH U, SV – XXXX XXXXH

ADC1_
CHSTAT12

ADC1 Channel Status
Register 12

F000 2560H U, SV – XXXX XXXXH

ADC1_
CHSTAT13

ADC1 Channel Status
Register 13

F000 2564H U, SV – XXXX XXXXH

ADC1_
CHSTAT14

ADC1 Channel Status
Register 14

F000 2568H U, SV – XXXX XXXXH

ADC1_
CHSTAT15

ADC1 Channel Status
Register 15

F000 256CH U, SV – XXXX XXXXH

ADC1_
QUEUE0

ADC1 Queue Status
Register

F000 2570H U, SV – XXXX XXXXH

– Reserved F000 2574H-
F000 257CH

nBE nBE –

ADC1_
SW0CRP

ADC1 Software SW0
Conv. Request Pending
Register

F000 2580H U, SV – 0000 0000H

– Reserved F000 2584H nBE nBE –

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-50 V2.0, 2001-02

TC1775
System Units

Register Overview
ADC1_
ASCRP

ADC1 Auto Scan
Conversion Request
Pending Register

F000 2588H U, SV – 0000 0000H

– Reserved F000 258CH nBE nBE –

ADC1_
SYSTAT

ADC1 Synchronization
Status Register

F000 2590H U, SV – 0000 0000H

– Reserved F000 2594H-
F000 259CH

nBE nBE –

– Reserved; these locations
must not be written

F000 25A0H-
F000 25A4H

nE nE –

– Reserved F000 25A8H-
F000 25ACH

nBE nBE –

ADC1_
TSTAT

ADC1 Timer Status Reg. F000 25B0H U, SV – 0000 0000H

ADC1_
STAT

ADC1 Converter Status
Register

F000 25B4H U, SV – 0000 0000H

ADC1_
TCRP

ADC1 Timer Conversion
Request Pending Register

F000 25B8H U, SV – 0000 0000H

ADC1_
EXCRP

ADC1 External
Conversion Request
Pending Register

F000 25BCH U, SV – 0000 0000H

– Reserved; this location
must not be written

F000 25C0H nE nE –

– Reserved F000 25C4H-
F000 25CCH

nBE nBE –

ADC1_
MSS0

ADC1 Service Request
Status Register 0

F000 25D0H U, SV U, SV 0000 0000H

ADC1_
MSS1

ADC1 Service Request
Status Register 1

F000 25D4H U, SV U, SV 0000 0000H

– Reserved F000 25D8H nBE nBE –

ADC1_
SRNP

ADC1 Service Request
Node Pointer Register

F000 25DCH U, SV U, SV 0000 0000H

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-51 V2.0, 2001-02

TC1775
System Units

Register Overview
– Reserved F000 25E0H-
F000 25ECH

nBE nBE –

ADC1_
SRC3

ADC1 Service Request
Control Register 3

F000 25F0H U, SV U, SV 0000 0000H

ADC1_
SRC2

ADC1 Service Request
Control Register 2

F000 25F4H U, SV U, SV 0000 0000H

ADC1_
SRC1

ADC1 Service Request
Control Register 1

F000 25F8H U, SV U, SV 0000 0000H

ADC1_
SRC0

ADC1 Service Request
Control Register 0

F000 25FCH U, SV U, SV 0000 0000H

Serial Data Link Module (SDLM)

SDLM_CLC SDLM Clock Control
Register

F000 2600H U, SV U, SV,
E

0000 0002H

– Reserved F000 2604H BE BE –

SDLM_ID SDLM Module
Identification Register

F000 2608H U, SV BE XXXXXXXXH

– Reserved F000 260CH BE BE –

SDLM_CON SDLM Global Control Reg. F000 2610H U, SV U, SV 0000 0000H

SDLM_TMG SDLM Timing Register F000 2614H U, SV U, SV 0014 0000H

SDLM_IFR SDLM In-Frame Response
Value Register

F000 2618H U, SV U, SV 0000 0000H

SDLM_
STAT0

SDLM Status Register 0 F000 261CH U, SV U, SV 0000 0000H

SDLM_
STAT1

SDLM Status Register 1 F000 2620H U, SV U, SV 0000 0000H

SDLM_
BUFCON

SDLM Buffer Control
Register

F000 2624H U, SV U, SV 0000 0000H

SDLM_FR SDLM Flag Reset Register F000 2628H U, SV U, SV 0000 0000H

SDLM_IE SDLM Interrupt Control
Register

F000 262CH U, SV U, SV 0000 0000H

SDLM_
TXD0

SDLM Transmit Data
Register 0

F000 2630H U, SV U, SV 0000 0000H

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-52 V2.0, 2001-02

TC1775
System Units

Register Overview
SDLM_
TXD4

SDLM Transmit Data
Register 4

F000 2634H U, SV U, SV 0000 0000H

SDLM_
TXD8

SDLM Transmit Data
Register 8

F000 2638H U, SV U, SV 0000 0000H

SDLM_
TXPTR

SDLM Transmission
Pointer Register

F000 263CH U, SV U, SV 0000 0000H

SDLM_
RXD00

SDLM Receive Buffer 0
Data Reg. 0 on CPU Side

F000 2640H U, SV U, SV 0000 0000H

SDLM_
RXD04

SDLM Receive Buffer 0
Data Reg. 4 on CPU Side

F000 2644H U, SV U, SV 0000 0000H

SDLM_
RXD08

SDLM Receive Buffer 0
Data Reg. 8 on CPU Side

F000 2648H U, SV U, SV 0000 0000H

SDLM_
RXPTR

SDLM Receive Pointer
Register on CPU Side

F000 264CH U, SV U, SV 0000 0000H

SDLM_
RXD10

SDLM Receive Buffer 1
Data Reg. 0 on Bus Side

F000 2650H U, SV U, SV 0000 0000H

SDLM_
RXD14

SDLM Receive Buffer 1
Data Reg. 4 on Bus Side

F000 2654H U, SV U, SV 0000 0000H

SDLM_
RXD18

SDLM Receive Buffer 1
Data Reg. 8 on Bus Side

F000 2658H U, SV U, SV 0000 0000H

SDLM_
RXPTRB

SDLM Receive Pointer
Register on Bus Side

F000 265CH U, SV U, SV 0000 0000H

SDLM_
SPTR

SDLM Start of Frame
Pointer Register

F000 2660H U, SV U, SV 0000 0000H

– Reserved F000 2664H-
F000 26F4H

BE BE –

SDLM_
SRC1

SDLM Service Request
Control Register 1

F000 26F8H U, SV U, SV 0000 0000H

SDLM_
SRC0

SDLM Service Request
Control Register 0

F000 26FCH U, SV U, SV 0000 0000H

Port 0

– Reserved F000 2800H-
F000 280CH

BE BE –

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-53 V2.0, 2001-02

TC1775
System Units

Register Overview
P0_OUT Port 0 Data Output Reg. F000 2810H U, SV U, SV 0000 0000H

P0_IN Port 0 Data Input Register F000 2814H U, SV U, SV 0000 XXXXH

P0_DIR Port 0 Direction Register F000 2818H U, SV U, SV 0000 0000H

– Reserved F000 281CH-
F000 2824H

BE BE –

P0_
PUDSEL

Port 0 Pull-Up/Pull-Down
Select Register

F000 2828H U, SV U, SV 0000 0000H

P0_PUDEN Port 0 Pull-Up/Pull-Down
Enable Register

F000 282CH U, SV U, SV 0000 0000H

– Reserved F000 2830H-
F000 28FCH

BE BE –

Port 1

– Reserved F000 2900H-
F000 290CH

BE BE –

P1_OUT Port 1 Data Output Reg. F000 2910H U, SV U, SV 0000 0000H

P1_IN Port 1 Data Input Register F000 2914H U, SV U, SV 0000 XXXXH

P1_DIR Port 1 Direction Register F000 2918H U, SV U, SV 0000 0000H

– Reserved F000 291CH-
F000 2924H

BE BE –

P1_
PUDSEL

Port 1 Pull-Up/Pull-Down
Select Register

F000 2928H U, SV U, SV 0000 0000H

P1_PUDEN Port 1 Pull-Up/Pull-Down
Enable Register

F000 292CH U, SV U, SV 0000 0000H

– Reserved F000 2930H-
F000 29FCH

BE BE –

Port 2

– Reserved F000 2A00H-
F000 2A0CH

BE BE –

P2_OUT Port 2 Data Output Reg. F000 2A10H U, SV U, SV 0000 0000H

P2_IN Port 2 Data Input Register F000 2A14H U, SV U, SV 0000 XXXXH

P2_DIR Port 2 Direction Register F000 2A18H U, SV U, SV 0000 0000H

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-54 V2.0, 2001-02

TC1775
System Units

Register Overview
– Reserved F000 2A1CH-
F000 2A24H

BE BE –

P2_
PUDSEL

Port 2 Pull-Up/Pull-Down
Select Register

F000 2A28H U, SV U, SV 0000 0000H

P2_PUDEN Port 2 Pull-Up/Pull-Down
Enable Register

F000 2A2CH U, SV U, SV 0000 0000H

– Reserved F000 2A30H-
F000 2AFCH

BE BE –

Port 3

– Reserved F000 2B00H-
F000 2B0CH

BE BE –

P3_OUT Port 3 Data Output Reg. F000 2B10H U, SV U, SV 0000 0000H

P3_IN Port 3 Data Input Register F000 2B14H U, SV U, SV 0000 XXXXH

P3_DIR Port 3 Direction Register F000 2B18H U, SV U, SV 0000 0000H

– Reserved F000 2B1CH-
F000 2B24H

BE BE –

P3_
PUDSEL

Port 3 Pull-Up/Pull-Down
Select Register

F000 2B28H U, SV U, SV 0000 FC00H

P3_PUDEN Port 3 Pull-Up/Pull-Down
Enable Register

F000 2B2CH U, SV U, SV 0000 FC00H

– Reserved F000 2B30H-
F000 2B40H

BE BE –

P3_
ALTSEL0

Port 3 Alternate Select
Register 0

F000 2B44H U, SV U, SV 0000 0000H

– Reserved F000 2B48H-
F000 2BFCH

BE BE –

Port 4

– Reserved F000 2C00H-
F000 2C0CH

BE BE –

P4_OUT Port 4 Data Output Reg. F000 2C10H U, SV U, SV 0000 0000H

P4_IN Port 4 Data Input Register F000 2C14H U, SV U, SV 0000 XXXXH

P4_DIR Port 4 Direction Register F000 2C18H U, SV U, SV 0000 0000H

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-55 V2.0, 2001-02

TC1775
System Units

Register Overview
– Reserved F000 2C1CH-
F000 2C24H

BE BE –

P4_
PUDSEL

Port 4 Pull-Up/Pull-Down
Select Register

F000 2C28H U, SV U, SV 0000 FFFBH

P4_PUDEN Port 4 Pull-Up/Pull-Down
Enable Register

F000 2C2CH U, SV U, SV 0000 FFFFH

– Reserved F000 2C30H-
F000 2CFCH

BE BE –

Port 5

– Reserved F000 2D00H-
F000 2D0CH

BE BE –

P5_OUT Port 5 Data Output Reg. F000 2D10H U, SV U, SV 0000 0000H

P5_IN Port 5 Data Input Register F000 2D14H U, SV U, SV 0000 XXXXH

P5_DIR Port 5 Direction Register F000 2D18H U, SV U, SV 0000 0000H

– Reserved F000 2D1CH-
F000 2D24H

BE BE –

P5_
PUDSEL

Port 5 Pull-Up/Pull-Down
Select Register

F000 2D28H U, SV U, SV 0000 0000H

P5_PUDEN Port 5 Pull-Up/Pull-Down
Enable Register

F000 2D2CH U, SV U, SV 0000 0000H

– Reserved F000 2D30H-
F000 2DFCH

BE BE –

Port 6 & 7 (no register available)

– Reserved F000 2E00H-
F000 2FFCH

BE BE –

Port 8

– Reserved F000 3000H-
F000 300CH

BE BE –

P8_OUT Port 8 Data Output Reg. F000 3010H U, SV U, SV 0000 0000H

P8_IN Port 8 Data Input Register F000 3014H U, SV U, SV 0000 XXXXH

P8_DIR Port 8 Direction Register F000 3018H U, SV U, SV 0000 0000H

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-56 V2.0, 2001-02

TC1775
System Units

Register Overview
P8_OD Port 8 Open Drain Mode
Register

F000 301CH U, SV U, SV 0000 0000H

– Reserved F000 3020H-
F000 3024H

BE BE –

P8_
PUDSEL

Port 8 Pull-Up/Pull-Down
Select Register

F000 3028H U, SV U, SV 0000 0000H

P8_PUDEN Port 8 Pull-Up/Pull-Down
Enable Register

F000 302CH U, SV U, SV 0000 0000H

P8_
POCON0

Port 8 Output Charact.
Control Register 0

F000 3030H U, SV U, SV 0000 0000H

P8_
POCON1

Port 8 Output Charact.
Control Register 1

F000 3034H U, SV U, SV 0000 0000H

P8_
POCON2

Port 8 Output Charact.
Control Register 2

F000 3038H U, SV U, SV 0000 0000H

P8_
POCON3

Port 8 Output Charact.
Control Register 3

F000 303CH U, SV U, SV 0000 0000H

P8_PICON Port 8 Input Configuration
Register

F000 3040H U, SV U, SV 0000 0000H

– Reserved F000 3044H-
F000 30FCH

BE BE –

Port 9

– Reserved F000 3100H-
F000 310CH

BE BE –

P9_OUT Port 9 Data Output Reg. F000 3110H U, SV U, SV 0000 0000H

P9_IN Port 9 Data Input Register F000 3114H U, SV U, SV 0000 XXXXH

P9_DIR Port 9 Direction Register F000 3118H U, SV U, SV 0000 0000H

P9_OD Port 9 Open Drain Mode
Register

F000 311CH U, SV U, SV 0000 0000H

– Reserved F000 3120H-
F000 3124H

BE BE –

P9_
PUDSEL

Port 9 Pull-Up/Pull-Down
Select Register

F000 3128H U, SV U, SV 0000 0000H

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-57 V2.0, 2001-02

TC1775
System Units

Register Overview
P9_PUDEN Port 9 Pull-up/Pull-down
Enable Register

F000 312CH U, SV U, SV 0000 0000H

P9_
POCON0

Port 9 Output Charact.
Control Register 0

F000 3130H U, SV U, SV 0000 0000H

P9_
POCON1

Port 9 Output Charact.
Control Register 1

F000 3134H U, SV U, SV 0000 0000H

P9_
POCON2

Port 9 Output Charact.
Control Register 2

F000 3138H U, SV U, SV 0000 0000H

P9_
POCON3

Port 9 Output Charact.
Control Register 3

F000 313CH U, SV U, SV 0000 0000H

P9_PICON Port 9 Input Configuration
Register

F000 3140H U, SV U, SV 0000 0000H

– Reserved F000 3144H-
F000 31FCH

BE BE –

Port 10

– Reserved F000 3200H-
F000 320CH

BE BE –

P10_OUT Port 10 Data Output
Register

F000 3210H U, SV U, SV 0000 0000H

P10_IN Port 10 Data Input Reg. F000 3214H U, SV U, SV 0000 XXXXH

P10_DIR Port 10 Direction Register F000 3218H U, SV U, SV 0000 0000H

P10_OD Port 10 Open Drain Mode
Register

F000 321CH U, SV U, SV 0000 0000H

– Reserved F000 3220H-
F000 3224H

BE BE –

P10_
PUDSEL

Port 10 Pull-Up/Pull-Down
Select Reg.

F000 3228H U, SV U, SV 0000 0000H

P10_
PUDEN

Port 10 Pull-Up/Pull-Down
Enable Register

F000 322CH U, SV U, SV 0000 0000H

P10_
POCON0

Port 10 Output Charact.
Control Register 0

F000 3230H U, SV U, SV 0000 0000H

P10_
POCON1

Port 10 Output Charact.
Control Register 1

F000 3234H U, SV U, SV 0000 0000H

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-58 V2.0, 2001-02

TC1775
System Units

Register Overview
P10_
POCON2

Port 10 Output Charact.
Control Register 2

F000 3238H U, SV U, SV 0000 0000H

P10_
POCON3

Port 10 Output Charact.
Control Register 3

F000 323CH U, SV U, SV 0000 0000H

P10_PICON Port 10 Input Configuration
Register

F000 3240H U, SV U, SV 0000 0000H

– Reserved F000 3244H-
F000 32FCH

BE BE –

Port 11

– Reserved F000 3300H-
F000 330CH

BE BE –

P11_OUT Port 11 Data Output Reg. F000 3310H U, SV U, SV 0000 0000H

P11_IN Port 11 Data Input Reg. F000 3314H U, SV U, SV 0000 XXXXH

P11_DIR Port 11 Direction Register F000 3318H U, SV U, SV 0000 0000H

P11_OD Port 11 Open Drain Mode
Register

F000 331CH U, SV U, SV 0000 0000H

– Reserved F000 3320H-
F000 3324H

BE BE –

P11_
PUDSEL

Port 11 Pull-Up/Pull-Down
Select Register

F000 3328H U, SV U, SV 0000 0000H

P11_
PUDEN

Port 11 Pull-Up/Pull-Down
Enable Register

F000 332CH U, SV U, SV 0000 0000H

P11_
POCON0

Port 11 Output Charact.
Control Register 0

F000 3330H U, SV U, SV 0000 0000H

P11_
POCON1

Port 11 Output Charact.
Control Register 1

F000 3334H U, SV U, SV 0000 0000H

P11_
POCON2

Port 11 Output Charact.
Control Register 2

F000 3338H U, SV U, SV 0000 0000H

P11_
POCON3

Port 11 Output Charact.
Control Register 3

F000 333CH U, SV U, SV 0000 0000H

P11_PICON Port 11 Input Configuration
Register

F000 3340H U, SV U, SV 0000 0000H

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-59 V2.0, 2001-02

TC1775
System Units

Register Overview
– Reserved F000 3344H-
F000 33FCH

BE BE –

Port 12

– Reserved F000 3400H-
F000 340CH

BE BE –

P12_OUT Port 12 Data Output Reg. F000 3410H U, SV U, SV 0000 0000H

P12_IN Port 12 Data Input Reg. F000 3414H U, SV U, SV 0000 XXXXH

P12_DIR Port 12 Direction Register F000 3418H U, SV U, SV 0000 0000H

P12_OD Port 12 Open Drain Mode
Register

F000 341CH U, SV U, SV 0000 0000H

– Reserved F000 3420H-
F000 3424H

BE BE –

P12_
PUDSEL

Port 12 Pull-Up/Pull-Down
Select Register

F000 3428H U, SV U, SV 0000 0000H

P12_
PUDEN

Port 12 Pull-Up/Pull-Down
Enable Register

F000 342CH U, SV U, SV 0000 0000H

P12_
POCON0

Port 12 Output Charact.
Control Register 0

F000 3430H U, SV U, SV 0000 0000H

P12_
POCON1

Port 12 Output Charact.
Control Register 1

F000 3434H U, SV U, SV 0000 0000H

P12_
POCON2

Port 12 Output Charact.
Control Register 2

F000 3438H U, SV U, SV 0000 0000H

P12_
POCON3

Port 12 Output Charact.
Control Register 3

F000 343CH U, SV U, SV 0000 0000H

P12_
PICON

Port 12 Input Configuration
Register

F000 3440H U, SV U, SV 0000 0000H

P12_
ALTSEL0

Port 12 Alternate Select
Register 0

F000 3444H U, SV U, SV 0000 0000H

– Reserved F000 3448H-
F000 34FCH

BE BE –

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-60 V2.0, 2001-02

TC1775
System Units

Register Overview
Port 13

– Reserved F000 3500H-
F000 350CH

BE BE –

P13_OUT Port 13 Data Output Reg. F000 3510H U, SV U, SV 0000 0000H

P13_IN Port 13 Data Input Reg. F000 3514H U, SV U, SV 0000 XXXXH

P13_DIR Port 13 Direction Reg. F000 3518H U, SV U, SV 0000 0000H

P13_OD Port 13 Open Drain Mode
Register

F000 351CH U, SV U, SV 0000 0000H

– Reserved F000 3520H-
F000 3524H

BE BE –

P13_
PUDSEL

Port 13 Pull-Up/Pull-Down
Select Register

F000 3528H U, SV U, SV 0000 0000H

P13_
PUDEN

Port 13 Pull-Up/Pull-Down
Enable Register

F000 352CH U, SV U, SV 0000 0000H

P13_
POCON0

Port 13 Output Charact.
Control Register 0

F000 3530H U, SV U, SV 0000 0000H

P13_
POCON1

Port 13 Output Charact.
Control Register 1

F000 3534H U, SV U, SV 0000 0000H

P13_
POCON2

Port 13 Output Charact.
Control Register 2

F000 3538H U, SV U, SV 0000 0000H

P13_
POCON3

Port 13 Output Charact.
Control Register 3

F000 353CH U, SV U, SV 0000 0000H

P13_
PICON

Port 13 Input Configuration
Register

F000 3540H U, SV U, SV 0000 0000H

P13_
ALTSEL0

Port 13 Alternate Select
Register 0

F000 3544H U, SV U, SV 0000 0000H

P13_
ALTSEL1

Port 13 Alternate Select
Register 1

F000 3548H U, SV U, SV 0000 0000H

Central Port Control

– Reserved F000 3800H-
F000 3804H

BE BE –

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-61 V2.0, 2001-02

TC1775
System Units

Register Overview
CPC_ID Central Port Control
Identification Register

F000 3808H U, SV BE XXXX XXXXH

– Reserved F000 380CH BE BE –

– Reserved; this location
must not be written

F000 3810H nE nE –

– Reserved F000 3810H-
F000 38FCH

BE BE –

Peripheral Control Processor (PCP)

– Reserved; this location
must not be written

F000 3F00H nE nE –

– Reserved F000 3F04H BE BE –

PCP_ID PCP Module Identification
Register

F000 3F08H U, SV BE XXXXXXXXH

– Reserved F000 3F0CH BE BE –

PCP_CS PCP Control/Status
Register

F000 3F10H U, SV,
32

SV, E,
32

0000 0000H

PCP_ES PCP Error/Debug Status
Register

F000 3F14H U, SV,
32

SV,32 0000 0000H

– Reserved F000 3F18H-
F000 3F1CH

BE BE –

PCP_ICR PCP Interrupt Control
Register

F000 3F20H U, SV,
32

SV,32 0000 0000H

– Reserved F000 3F24H-
F000 3FECH

BE BE –

PCP_SRC3 PCP Service Request
Control Register 3

F000 3FF0H U, SV,
32

BE 0000 1400H

PCP_SRC2 PCP Service Request
Control Register 2

F000 3FF4H U, SV,
32

BE 0000 1400H

PCP_SRC1 PCP Service Request
Control Register 1

F000 3FF8H U, SV,
32

BE 0000 1000H

PCP_SRC0 PCP Service Request
Control Register 0

F000 3FFCH U, SV,
32

BE 0000 1000H

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-62 V2.0, 2001-02

TC1775
System Units

Register Overview
Controller Area Network Module (CAN)

CAN_CLC CAN Clock Control Reg. F010 0000H U, SV U, SV,
E

0000 0002H

– Reserved F010 0004H BE BE –

CAN_ID CAN Module Identification
Register

F010 0008H U, SV BE XXXXXXXXH

– Reserved F010 000CH-
F010 01FCH

BE BE –

CAN_ACR CAN Node A Control Reg. F010 0200H U, SV U, SV 0000 0001H

CAN_ASR CAN Node A Status Reg. F010 0204H U, SV U, SV 0000 0000H

CAN_AIR CAN Node A Interrupt
Pending Register

F010 0208H U, SV U, SV 0000 0000H

CAN_ABTR CAN Node A Bit Timing
Register

F010 020CH U, SV U, SV 0000 0000H

CAN_
AGINP

CAN Node A Global Int.
Node Pointer Register

F010 0210H U, SV U, SV 0000 0000H

CAN_
AFCR

CAN Node A Frame
Counter Register

F010 0214H U, SV U, SV 0000 0000H

CAN_
AIMR0

CAN Node A INTID Mask
Register 0

F010 0218H U, SV U, SV 0000 0000H

CAN_
AIMR4

CAN Node A INTID Mask
Register 4

F010 021CH U, SV U, SV 0000 0000H

CAN_
AECNT

CAN Node A Error Counter
Register

F010 0220H U, SV U, SV 0060 0000H

– Reserved F010 0224H-
F010 023CH

BE BE –

CAN_BCR CAN Node B Control Reg. F010 0240H U, SV U, SV 0000 0001H

CAN_BSR CAN Node B Status Reg. F010 0244H U, SV U, SV 0000 0000H

CAN_BIR CAN Node B Interrupt
Pending Register

F010 0248H U, SV U, SV 0000 0000H

CAN_BBTR CAN Node B Bit Timing
Register

F010 024CH U, SV U, SV 0000 0000H

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-63 V2.0, 2001-02

TC1775
System Units

Register Overview
CAN_
BGINP

CAN Node B Global Int.
Node Pointer Register

F010 0250H U, SV U, SV 0000 0000H

CAN_BFCR CAN Node B Frame
Counter Register

F010 0254H U, SV U, SV 0000 0000H

CAN_
BIMR0

CAN Node B INTID Mask
Register 0

F010 0258H U, SV U, SV 0000 0000H

CAN_
BIMR4

CAN Node B INTID Mask
Register 4

F010 025CH U, SV U, SV 0000 0000H

CAN_
BECNT

CAN Node B Error Counter
Register

F010 0260H U, SV U, SV 0060 0000H

– Reserved F010 0264H-
F010 0280H

BE BE –

CAN_
RXIPND

CAN Receive Interrupt
Pending Register

F010 0284H U, SV U, SV 0000 0000H

CAN_
TXIPND

CAN Transmit Interrupt
Pending Register

F010 0288H U, SV U, SV 0000 0000H

– Reserved F010 028CH-
F010 02FCH

BE BE –

CAN_
MSGDR00

CAN Message Object 0
Data Register 0

F010 0300H U, SV U, SV 0000 0000H

CAN_
MSGDR04

CAN Message Object 0
Data Register 4

F010 0304H U, SV U, SV 0000 0000H

CAN_
MSGAR0

CAN Message Object 0
Arbitration Register

F010 0308H U, SV U, SV 0000 0000H

CAN_
MSGAMR0

CAN Message Object 0
Acceptance Mask Reg.

F010 030CH U, SV U, SV FFFF FFFFH

CAN_
MSGCTR0

CAN Message Object 0
Message Control Register

F010 0310H U, SV U, SV 0000 5555H

CAN_
MSGCFG0

CAN Message Object 0
Message Config. Register

F010 0314H U, SV U, SV 0000 0000H

CAN_
MSGFGCR0

CAN Message Object 0
FIFO/Gateway Control
Register

F010 0318H U, SV U, SV 0000 0000H

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-64 V2.0, 2001-02

TC1775
System Units

Register Overview
– Reserved F010 031CH BE BE –

CAN_
MSGDR10

CAN Message Object 1
Data Register 0

F010 0320H U, SV U, SV 0000 0000H

CAN_
MSGDR14

CAN Message Object 1
Data Register 4

F010 0324H U, SV U, SV 0000 0000H

CAN_
MSGAR1

CAN Message Object 1
Arbitration Register

F010 0328H U, SV U, SV 0000 0000H

CAN_
MSGAMR1

CAN Message Object 1
Acceptance Mask Reg.

F010 032CH U, SV U, SV FFFF FFFFH

CAN_
MSGCTR1

CAN Message Object 1
Message Control Register

F010 0330H U, SV U, SV 0000 5555H

CAN_
MSGCFG1

CAN Message Object 1
Message Config. Register

F010 0334H U, SV U, SV 0000 0000H

CAN_
MSGFGCR1

CAN Message Object 1
FIFO/Gateway Control
Register

F010 0338H U, SV U, SV 0000 0000H

– Reserved F010 033CH BE BE –

CAN_
MSGDR20

CAN Message Object 2
Data Register 0

F010 0340H U, SV U, SV 0000 0000H

CAN_
MSGDR24

CAN Message Object 2
Data Register 4

F010 0344H U, SV U, SV 0000 0000H

CAN_
MSGAR2

CAN Message Object 2
Arbitration Register

F010 0348H U, SV U, SV 0000 0000H

CAN_
MSGAMR2

CAN Message Object 2
Acceptance Mask Reg.

F010 034CH U, SV U, SV FFFF FFFFH

CAN_
MSGCTR2

CAN Message Object 2
Message Control Register

F010 0350H U, SV U, SV 0000 5555H

CAN_
MSGCFG2

CAN Message Object 2
Message Config. Register

F010 0354H U, SV U, SV 0000 0000H

CAN_
MSGFGCR2

CAN Message Object 2
FIFO/Gateway Control
Register

F010 0358H U, SV U, SV 0000 0000H

– Reserved F010 035CH BE BE –

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-65 V2.0, 2001-02

TC1775
System Units

Register Overview
CAN_
MSGDR30

CAN Message Object 3
Data Register 0

F010 0360H U, SV U, SV 0000 0000H

CAN_
MSGDR34

CAN Message Object 3
Data Register 4

F010 0364H U, SV U, SV 0000 0000H

CAN_
MSGAR3

CAN Message Object 3
Arbitration Register

F010 0368H U, SV U, SV 0000 0000H

CAN_
MSGAMR3

CAN Message Object 3
Acceptance Mask Reg.

F010 036CH U, SV U, SV FFFF FFFFH

CAN_
MSGCTR3

CAN Message Object 3
Message Control Register

F010 0370H U, SV U, SV 0000 5555H

CAN_
MSGCFG3

CAN Message Object 3
Message Config. Register

F010 0374H U, SV U, SV 0000 0000H

CAN_
MSGFGCR3

CAN Message Object 3
FIFO/Gateway Control
Register

F010 0378H U, SV U, SV 0000 0000H

– Reserved F010 037CH BE BE –

CAN_
MSGDR40

CAN Message Object 4
Data Register 0

F010 0380H U, SV U, SV 0000 0000H

CAN_
MSGDR44

CAN Message Object 4
Data Register 4

F010 0384H U, SV U, SV 0000 0000H

CAN_
MSGAR4

CAN Message Object 4
Arbitration Register

F010 0388H U, SV U, SV 0000 0000H

CAN_
MSGAMR4

CAN Message Object 4
Acceptance Mask Reg.

F010 038CH U, SV U, SV FFFF FFFFH

CAN_
MSGCTR4

CAN Message Object 4
Message Control Register

F010 0390H U, SV U, SV 0000 5555H

CAN_
MSGCFG4

CAN Message Object 4
Message Config. Register

F010 0394H U, SV U, SV 0000 0000H

CAN_
MSGFGCR4

CAN Message Object 4
FIFO/Gateway Control
Register

F010 0398H U, SV U, SV 0000 0000H

– Reserved F010 039CH BE BE –

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-66 V2.0, 2001-02

TC1775
System Units

Register Overview
CAN_
MSGDR50

CAN Message Object 5
Data Register 0

F010 03A0H U, SV U, SV 0000 0000H

CAN_
MSGDR54

CAN Message Object 5
Data Register 4

F010 03A4H U, SV U, SV 0000 0000H

CAN_
MSGAR5

CAN Message Object 5
Arbitration Register

F010 03A8H U, SV U, SV 0000 0000H

CAN_
MSGAMR5

CAN Message Object 5
Acceptance Mask Reg.

F010 03ACH U, SV U, SV FFFF FFFFH

CAN_
MSGCTR5

CAN Message Object 5
Message Control Register

F010 03B0H U, SV U, SV 0000 5555H

CAN_
MSGCFG5

CAN Message Object 5
Message Config. Register

F010 03B4H U, SV U, SV 0000 0000H

CAN_
MSGFGCR5

CAN Message Object 5
FIFO/Gateway Control
Register

F010 03B8H U, SV U, SV 0000 0000H

– Reserved F010 03BCH BE BE –

CAN_
MSGDR60

CAN Message Object 6
Data Register 0

F010 03C0H U, SV U, SV 0000 0000H

CAN_
MSGDR64

CAN Message Object 6
Data Register 4

F010 03C4H U, SV U, SV 0000 0000H

CAN_
MSGAR6

CAN Message Object 6
Arbitration Register

F010 03C8H U, SV U, SV 0000 0000H

CAN_
MSGAMR6

CAN Message Object 6
Acceptance Mask Reg.

F010 03CCH U, SV U, SV FFFF FFFFH

CAN_
MSGCTR6

CAN Message Object 6
Message Control Register

F010 03D0H U, SV U, SV 0000 5555H

CAN_
MSGCFG6

CAN Message Object 6
Message Config. Register

F010 03D4H U, SV U, SV 0000 0000H

CAN_
MSGFGCR6

CAN Message Object 6
FIFO/Gateway Control
Register

F010 03D8H U, SV U, SV 0000 0000H

– Reserved F010 03DCH BE BE –

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-67 V2.0, 2001-02

TC1775
System Units

Register Overview
CAN_
MSGDR70

CAN Message Object 7
Data Register 0

F010 03E0H U, SV U, SV 0000 0000H

CAN_
MSGDR74

CAN Message Object 7
Data Register 4

F010 03E4H U, SV U, SV 0000 0000H

CAN_
MSGAR7

CAN Message Object 7
Arbitration Register

F010 03E8H U, SV U, SV 0000 0000H

CAN_
MSGAMR7

CAN Message Object 7
Acceptance Mask Reg.

F010 03ECH U, SV U, SV FFFF FFFFH

CAN_
MSGCTR7

CAN Message Object 7
Message Control Register

F010 03F0H U, SV U, SV 0000 5555H

CAN_
MSGCFG7

CAN Message Object 7
Message Config. Register

F010 03F4H U, SV U, SV 0000 0000H

CAN_
MSGFGCR7

CAN Message Object 7
FIFO/Gateway Control
Register

F010 03F8H U, SV U, SV 0000 0000H

– Reserved F010 03FCH BE BE –

CAN_
MSGDR80

CAN Message Object 8
Data Register 0

F010 0400H U, SV U, SV 0000 0000H

CAN_
MSGDR84

CAN Message Object 8
Data Register 4

F010 0404H U, SV U, SV 0000 0000H

CAN_
MSGAR8

CAN Message Object 8
Arbitration Register

F010 0408H U, SV U, SV 0000 0000H

CAN_
MSGAMR8

CAN Message Object 8
Acceptance Mask Reg.

F010 040CH U, SV U, SV FFFF FFFFH

CAN_
MSGCTR8

CAN Message Object 8
Message Control Register

F010 0410H U, SV U, SV 0000 5555H

CAN_
MSGCFG8

CAN Message Object 8
Message Config. Register

F010 0414H U, SV U, SV 0000 0000H

CAN_
MSGFGCR8

CAN Message Object 8
FIFO/Gateway Control
Register

F010 0418H U, SV U, SV 0000 0000H

– Reserved F010 041CH BE BE –

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-68 V2.0, 2001-02

TC1775
System Units

Register Overview
CAN_
MSGDR90

CAN Message Object 9
Data Register 0

F010 0420H U, SV U, SV 0000 0000H

CAN_
MSGDR94

CAN Message Object 9
Data Register 4

F010 0424H U, SV U, SV 0000 0000H

CAN_
MSGAR9

CAN Message Object 9
Arbitration Register

F010 0428H U, SV U, SV 0000 0000H

CAN_
MSGAMR9

CAN Message Object 9
Acceptance Mask Reg.

F010 042CH U, SV U, SV FFFF FFFFH

CAN_
MSGCTR9

CAN Message Object 9
Message Control Register

F010 0430H U, SV U, SV 0000 5555H

CAN_
MSGCFG9

CAN Message Object 9
Message Config. Register

F010 0434H U, SV U, SV 0000 0000H

CAN_
MSGFGCR9

CAN Message Object 9
FIFO/Gateway Control
Register

F010 0438H U, SV U, SV 0000 0000H

– Reserved F010 043CH BE BE –

CAN_
MSGDR100

CAN Message Object 10
Data Register 0

F010 0440H U, SV U, SV 0000 0000H

CAN_
MSGDR104

CAN Message Object 10
Data Register 4

F010 0444H U, SV U, SV 0000 0000H

CAN_
MSGAR10

CAN Message Object 10
Arbitration Register

F010 0448H U, SV U, SV 0000 0000H

CAN_
MSGAMR10

CAN Message Object 10
Acceptance Mask Reg.

F010 044CH U, SV U, SV FFFF FFFFH

CAN_
MSGCTR10

CAN Message Object 10
Message Control Register

F010 0450H U, SV U, SV 0000 5555H

CAN_
MSGCFG10

CAN Message Object 10
Message Config. Register

F010 0454H U, SV U, SV 0000 0000H

CAN_MSG
FGCR10

CAN Message Object 10
FIFO/Gateway Control
Register

F010 0458H U, SV U, SV 0000 0000H

– Reserved F010 045CH BE BE –

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-69 V2.0, 2001-02

TC1775
System Units

Register Overview
CAN_
MSGDR110

CAN Message Object 11
Data Register 0

F010 0460H U, SV U, SV 0000 0000H

CAN_
MSGDR114

CAN Message Object 11
Data Register 4

F010 0464H U, SV U, SV 0000 0000H

CAN_
MSGAR11

CAN Message Object 11
Arbitration Register

F010 0468H U, SV U, SV 0000 0000H

CAN_
MSGAMR11

CAN Message Object 11
Acceptance Mask Reg.

F010 046CH U, SV U, SV FFFF FFFFH

CAN_
MSGCTR11

CAN Message Object 11
Message Control Register

F010 0470H U, SV U, SV 0000 5555H

CAN_
MSGCFG11

CAN Message Object 11
Message Config. Register

F010 0474H U, SV U, SV 0000 0000H

CAN_MSG
FGCR11

CAN Message Object 11
FIFO/Gateway Control
Register

F010 0478H U, SV U, SV 0000 0000H

– Reserved F010 047CH BE BE –

CAN_
MSGDR120

CAN Message Object 12
Data Register 0

F010 0480H U, SV U, SV 0000 0000H

CAN_
MSGDR124

CAN Message Object 12
Data Register 4

F010 0484H U, SV U, SV 0000 0000H

CAN_
MSGAR12

CAN Message Object 12
Arbitration Register

F010 0488H U, SV U, SV 0000 0000H

CAN_
MSGAMR12

CAN Message Object 12
Acceptance Mask Reg.

F010 048CH U, SV U, SV FFFF FFFFH

CAN_
MSGCTR12

CAN Message Object 12
Message Control Register

F010 0490H U, SV U, SV 0000 5555H

CAN_
MSGCFG12

CAN Message Object 12
Message Config. Register

F010 0494H U, SV U, SV 0000 0000H

CAN_MSG
FGCR12

CAN Message Object 12
FIFO/Gateway Control
Register

F010 0498H U, SV U, SV 0000 0000H

– Reserved F010 049CH BE BE –

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-70 V2.0, 2001-02

TC1775
System Units

Register Overview
CAN_
MSGDR130

CAN Message Object 13
Data Register 0

F010 04A0H U, SV U, SV 0000 0000H

CAN_
MSGDR134

CAN Message Object 13
Data Register 4

F010 04A4H U, SV U, SV 0000 0000H

CAN_
MSGAR13

CAN Message Object 13
Arbitration Register

F010 04A8H U, SV U, SV 0000 0000H

CAN_
MSGAMR13

CAN Message Object 13
Acceptance Mask Reg.

F010 04ACH U, SV U, SV FFFF FFFFH

CAN_
MSGCTR13

CAN Message Object 13
Message Control Register

F010 04B0H U, SV U, SV 0000 5555H

CAN_
MSGCFG13

CAN Message Object 13
Message Config. Register

F010 04B4H U, SV U, SV 0000 0000H

CAN_MSG
FGCR13

CAN Message Object 13
FIFO/Gateway Control
Register

F010 04B8H U, SV U, SV 0000 0000H

– Reserved F010 04BCH BE BE –

CAN_
MSGDR140

CAN Message Object 14
Data Register 0

F010 04C0H U, SV U, SV 0000 0000H

CAN_
MSGDR144

CAN Message Object 14
Data Register 4

F010 04C4H U, SV U, SV 0000 0000H

CAN_
MSGAR14

CAN Message Object 14
Arbitration Register

F010 04C8H U, SV U, SV 0000 0000H

CAN_
MSGAMR14

CAN Message Object 14
Acceptance Mask Reg.

F010 04CCH U, SV U, SV FFFF FFFFH

CAN_
MSGCTR14

CAN Message Object 14
Message Control Register

F010 04D0H U, SV U, SV 0000 5555H

CAN_
MSGCFG14

CAN Message Object 14
Message Config. Register

F010 04D4H U, SV U, SV 0000 0000H

CAN_MSG
FGCR14

CAN Message Object 14
FIFO/Gateway Control
Register

F010 04D8H U, SV U, SV 0000 0000H

– Reserved F010 04DCH BE BE –

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-71 V2.0, 2001-02

TC1775
System Units

Register Overview
CAN_
MSGDR150

CAN Message Object 15
Data Register 0

F010 04E0H U, SV U, SV 0000 0000H

CAN_
MSGDR154

CAN Message Object 15
Data Register 4

F010 04E4H U, SV U, SV 0000 0000H

CAN_
MSGAR15

CAN Message Object 15
Arbitration Register

F010 04E8H U, SV U, SV 0000 0000H

CAN_
MSGAMR15

CAN Message Object 15
Acceptance Mask Reg.

F010 04ECH U, SV U, SV FFFF FFFFH

CAN_
MSGCTR15

CAN Message Object 15
Message Control Register

F010 04F0H U, SV U, SV 0000 5555H

CAN_
MSGCFG15

CAN Message Object 15
Message Config. Register

F010 04F4H U, SV U, SV 0000 0000H

CAN_MSG
FGCR15

CAN Message Object 15
FIFO/Gateway Control
Register

F010 04F8H U, SV U, SV 0000 0000H

– Reserved F010 04FCH BE BE –

CAN_
MSGDR160

CAN Message Object 16
Data Register 0

F010 0500H U, SV U, SV 0000 0000H

CAN_
MSGDR164

CAN Message Object 16
Data Register 4

F010 0504H U, SV U, SV 0000 0000H

CAN_
MSGAR16

CAN Message Object 16
Arbitration Register

F010 0508H U, SV U, SV 0000 0000H

CAN_
MSGAMR16

CAN Message Object 16
Acceptance Mask Reg.

F010 050CH U, SV U, SV FFFF FFFFH

CAN_
MSGCTR16

CAN Message Object 16
Message Control Register

F010 0510H U, SV U, SV 0000 5555H

CAN_
MSGCFG16

CAN Message Object 16
Message Config. Register

F010 0514H U, SV U, SV 0000 0000H

CAN_MSG
FGCR16

CAN Message Object 16
FIFO/Gateway Control
Register

F010 0518H U, SV U, SV 0000 0000H

– Reserved F010 051CH BE BE –

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-72 V2.0, 2001-02

TC1775
System Units

Register Overview
CAN_
MSGDR170

CAN Message Object 17
Data Register 0

F010 0520H U, SV U, SV 0000 0000H

CAN_
MSGDR174

CAN Message Object 17
Data Register 4

F010 0524H U, SV U, SV 0000 0000H

CAN_
MSGAR17

CAN Message Object 17
Arbitration Register

F010 0528H U, SV U, SV 0000 0000H

CAN_
MSGAMR17

CAN Message Object 17
Acceptance Mask Reg.

F010 052CH U, SV U, SV FFFF FFFFH

CAN_
MSGCTR17

CAN Message Object 17
Message Control Register

F010 0530H U, SV U, SV 0000 5555H

CAN_
MSGCFG17

CAN Message Object 17
Message Config. Register

F010 0534H U, SV U, SV 0000 0000H

CAN_MSG
FGCR17

CAN Message Object 17
FIFO/Gateway Control
Register

F010 0538H U, SV U, SV 0000 0000H

– Reserved F010 053CH BE BE –

CAN_
MSGDR180

CAN Message Object 18
Data Register 0

F010 0540H U, SV U, SV 0000 0000H

CAN_
MSGDR184

CAN Message Object 18
Data Register 4

F010 0544H U, SV U, SV 0000 0000H

CAN_
MSGAR18

CAN Message Object 18
Arbitration Register

F010 0548H U, SV U, SV 0000 0000H

CAN_
MSGAMR18

CAN Message Object 18
Acceptance Mask Reg.

F010 054CH U, SV U, SV FFFF FFFFH

CAN_
MSGCTR18

CAN Message Object 18
Message Control Register

F010 0550H U, SV U, SV 0000 5555H

CAN_
MSGCFG18

CAN Message Object 18
Message Config. Register

F010 0554H U, SV U, SV 0000 0000H

CAN_MSG
FGCR18

CAN Message Object 18
FIFO/Gateway Control
Register

F010 0558H U, SV U, SV 0000 0000H

– Reserved F010 055CH BE BE –

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-73 V2.0, 2001-02

TC1775
System Units

Register Overview
CAN_
MSGDR190

CAN Message Object 19
Data Register 0

F010 0560H U, SV U, SV 0000 0000H

CAN_
MSGDR194

CAN Message Object 19
Data Register 4

F010 0564H U, SV U, SV 0000 0000H

CAN_
MSGAR19

CAN Message Object 19
Arbitration Register

F010 0568H U, SV U, SV 0000 0000H

CAN_
MSGAMR19

CAN Message Object 19
Acceptance Mask Reg.

F010 056CH U, SV U, SV FFFF FFFFH

CAN_
MSGCTR19

CAN Message Object 19
Message Control Register

F010 0570H U, SV U, SV 0000 5555H

CAN_
MSGCFG19

CAN Message Object 19
Message Config. Register

F010 0574H U, SV U, SV 0000 0000H

CAN_MSG
FGCR19

CAN Message Object 19
FIFO/Gateway Control
Register

F010 0578H U, SV U, SV 0000 0000H

– Reserved F010 057CH BE BE –

CAN_
MSGDR200

CAN Message Object 20
Data Register 0

F010 0580H U, SV U, SV 0000 0000H

CAN_
MSGDR204

CAN Message Object 20
Data Register 4

F010 0584H U, SV U, SV 0000 0000H

CAN_
MSGAR20

CAN Message Object 20
Arbitration Register

F010 0588H U, SV U, SV 0000 0000H

CAN_
MSGAMR20

CAN Message Object 20
Acceptance Mask Reg.

F010 058CH U, SV U, SV FFFF FFFFH

CAN_
MSGCTR20

CAN Message Object 20
Message Control Register

F010 0590H U, SV U, SV 0000 5555H

CAN_
MSGCFG20

CAN Message Object 20
Message Config. Register

F010 0594H U, SV U, SV 0000 0000H

CAN_MSG
FGCR20

CAN Message Object 20
FIFO/Gateway Control
Register

F010 0598H U, SV U, SV 0000 0000H

– Reserved F010 059CH BE BE –

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-74 V2.0, 2001-02

TC1775
System Units

Register Overview
CAN_
MSGDR210

CAN Message Object 21
Data Register 0

F010 05A0H U, SV U, SV 0000 0000H

CAN_
MSGDR214

CAN Message Object 21
Data Register 4

F010 05A4H U, SV U, SV 0000 0000H

CAN_
MSGAR21

CAN Message Object 21
Arbitration Register

F010 05A8H U, SV U, SV 0000 0000H

CAN_
MSGAMR21

CAN Message Object 21
Acceptance Mask Reg.

F010 05ACH U, SV U, SV FFFF FFFFH

CAN_
MSGCTR21

CAN Message Object 21
Message Control Register

F010 05B0H U, SV U, SV 0000 5555H

CAN_
MSGCFG21

CAN Message Object 21
Message Config. Register

F010 05B4H U, SV U, SV 0000 0000H

CAN_MSG
FGCR21

CAN Message Object 21
FIFO/Gateway Control
Register

F010 05B8H U, SV U, SV 0000 0000H

– Reserved F010 05BCH BE BE –

CAN_
MSGDR220

CAN Message Object 22
Data Register 0

F010 05C0H U, SV U, SV 0000 0000H

CAN_
MSGDR224

CAN Message Object 22
Data Register 4

F010 05C4H U, SV U, SV 0000 0000H

CAN_
MSGAR22

CAN Message Object 22
Arbitration Register

F010 05C8H U, SV U, SV 0000 0000H

CAN_
MSGAMR22

CAN Message Object 22
Acceptance Mask Reg.

F010 05CCH U, SV U, SV FFFF FFFFH

CAN_
MSGCTR22

CAN Message Object 22
Message Control Register

F010 05D0H U, SV U, SV 0000 5555H

CAN_
MSGCFG22

CAN Message Object 22
Message Config. Register

F010 05D4H U, SV U, SV 0000 0000H

CAN_MSG
FGCR22

CAN Message Object 22
FIFO/Gateway Control
Register

F010 05D8H U, SV U, SV 0000 0000H

– Reserved F010 05DCH BE BE –

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-75 V2.0, 2001-02

TC1775
System Units

Register Overview
CAN_
MSGDR230

CAN Message Object 23
Data Register 0

F010 05E0H U, SV U, SV 0000 0000H

CAN_
MSGDR234

CAN Message Object 23
Data Register 4

F010 05E4H U, SV U, SV 0000 0000H

CAN_
MSGAR23

CAN Message Object 23
Arbitration Register

F010 05E8H U, SV U, SV 0000 0000H

CAN_
MSGAMR23

CAN Message Object 23
Acceptance Mask Reg.

F010 05ECH U, SV U, SV FFFF FFFFH

CAN_
MSGCTR23

CAN Message Object 23
Message Control Register

F010 05F0H U, SV U, SV 0000 5555H

CAN_
MSGCFG23

CAN Message Object 23
Message Config. Register

F010 05F4H U, SV U, SV 0000 0000H

CAN_MSG
FGCR23

CAN Message Object 23
FIFO/Gateway Control
Register

F010 05F8H U, SV U, SV 0000 0000H

– Reserved F010 05FCH BE BE –

CAN_
MSGDR240

CAN Message Object 24
Data Register 0

F010 0600H U, SV U, SV 0000 0000H

CAN_
MSGDR244

CAN Message Object 24
Data Register 4

F010 0604H U, SV U, SV 0000 0000H

CAN_
MSGAR24

CAN Message Object 24
Arbitration Register

F010 0608H U, SV U, SV 0000 0000H

CAN_
MSGAMR24

CAN Message Object 24
Acceptance Mask Reg.

F010 060CH U, SV U, SV FFFF FFFFH

CAN_
MSGCTR24

CAN Message Object 24
Message Control Register

F010 0610H U, SV U, SV 0000 5555H

CAN_
MSGCFG24

CAN Message Object 24
Message Config. Register

F010 0614H U, SV U, SV 0000 0000H

CAN_MSG
FGCR24

CAN Message Object 24
FIFO/Gateway Control
Register

F010 0618H U, SV U, SV 0000 0000H

– Reserved F010 061CH BE BE –

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-76 V2.0, 2001-02

TC1775
System Units

Register Overview
CAN_
MSGDR250

CAN Message Object 25
Data Register 0

F010 0620H U, SV U, SV 0000 0000H

CAN_
MSGDR254

CAN Message Object 25
Data Register 4

F010 0624H U, SV U, SV 0000 0000H

CAN_
MSGAR25

CAN Message Object 25
Arbitration Register

F010 0628H U, SV U, SV 0000 0000H

CAN_
MSGAMR25

CAN Message Object 25
Acceptance Mask Reg.

F010 062CH U, SV U, SV FFFF FFFFH

CAN_
MSGCTR25

CAN Message Object 25
Message Control Register

F010 0630H U, SV U, SV 0000 5555H

CAN_
MSGCFG25

CAN Message Object 25
Message Config. Register

F010 0634H U, SV U, SV 0000 0000H

CAN_MSG
FGCR25

CAN Message Object 25
FIFO/Gateway Control
Register

F010 0638H U, SV U, SV 0000 0000H

– Reserved F010 063CH BE BE –

CAN_
MSGDR260

CAN Message Object 26
Data Register 0

F010 0640H U, SV U, SV 0000 0000H

CAN_
MSGDR264

CAN Message Object 26
Data Register 4

F010 0644H U, SV U, SV 0000 0000H

CAN_
MSGAR26

CAN Message Object 26
Arbitration Register

F010 0648H U, SV U, SV 0000 0000H

CAN_
MSGAMR26

CAN Message Object 26
Acceptance Mask Reg.

F010 064CH U, SV U, SV FFFF FFFFH

CAN_
MSGCTR26

CAN Message Object 26
Message Control Register

F010 0650H U, SV U, SV 0000 5555H

CAN_
MSGCFG26

CAN Message Object 26
Message Config. Register

F010 0654H U, SV U, SV 0000 0000H

CAN_MSG
FGCR26

CAN Message Object 26
FIFO/Gateway Control
Register

F010 0658H U, SV U, SV 0000 0000H

– Reserved F010 065CH BE BE –

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-77 V2.0, 2001-02

TC1775
System Units

Register Overview
CAN_
MSGDR270

CAN Message Object 27
Data Register 0

F010 0660H U, SV U, SV 0000 0000H

CAN_
MSGDR274

CAN Message Object 27
Data Register 4

F010 0664H U, SV U, SV 0000 0000H

CAN_
MSGAR27

CAN Message Object 27
Arbitration Register

F010 0668H U, SV U, SV 0000 0000H

CAN_
MSGAMR27

CAN Message Object 27
Acceptance Mask Reg.

F010 066CH U, SV U, SV FFFF FFFFH

CAN_
MSGCTR27

CAN Message Object 27
Message Control Register

F010 0670H U, SV U, SV 0000 5555H

CAN_
MSGCFG27

CAN Message Object 27
Message Config. Register

F010 0674H U, SV U, SV 0000 0000H

CAN_MSG
FGCR27

CAN Message Object 27
FIFO/Gateway Control
Register

F010 0678H U, SV U, SV 0000 0000H

– Reserved F010 067CH BE BE –

CAN_
MSGDR280

CAN Message Object 28
Data Register 0

F010 0680H U, SV U, SV 0000 0000H

CAN_
MSGDR284

CAN Message Object 28
Data Register 4

F010 0684H U, SV U, SV 0000 0000H

CAN_
MSGAR28

CAN Message Object 28
Arbitration Register

F010 0688H U, SV U, SV 0000 0000H

CAN_
MSGAMR28

CAN Message Object 28
Acceptance Mask Reg.

F010 068CH U, SV U, SV FFFF FFFFH

CAN_
MSGCTR28

CAN Message Object 28
Message Control Register

F010 0690H U, SV U, SV 0000 5555H

CAN_
MSGCFG28

CAN Message Object 28
Message Config. Register

F010 0694H U, SV U, SV 0000 0000H

CAN_MSG
FGCR28

CAN Message Object 28
FIFO/Gateway Control
Register

F010 0698H U, SV U, SV 0000 0000H

– Reserved F010 069CH BE BE –

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-78 V2.0, 2001-02

TC1775
System Units

Register Overview
CAN_
MSGDR290

CAN Message Object 29
Data Register 0

F010 06A0H U, SV U, SV 0000 0000H

CAN_
MSGDR294

CAN Message Object 29
Data Register 4

F010 06A4H U, SV U, SV 0000 0000H

CAN_
MSGAR29

CAN Message Object 29
Arbitration Register

F010 06A8H U, SV U, SV 0000 0000H

CAN_
MSGMR29

CAN Message Object 29
Acceptance Mask Reg.

F010 06ACH U, SV U, SV FFFF FFFFH

CAN_
MSGCTR29

CAN Message Object 29
Message Control Register

F010 06B0H U, SV U, SV 0000 5555H

CAN_
MSGCFG29

CAN Message Object 29
Message Config. Register

F010 06B4H U, SV U, SV 0000 0000H

CAN_MSG
FGCR29

CAN Message Object 29
FIFO/Gateway Control
Register

F010 06B8H U, SV U, SV 0000 0000H

– Reserved F010 06BCH BE BE –

CAN_
MSGDR300

CAN Message Object 30
Data Register 0

F010 06C0H U, SV U, SV 0000 0000H

CAN_
MSGDR304

CAN Message Object 30
Data Register 4

F010 06C4H U, SV U, SV 0000 0000H

CAN_
MSGAR30

CAN Message Object 30
Arbitration Register

F010 06C8H U, SV U, SV 0000 0000H

CAN_
MSGAMR30

CAN Message Object 30
Acceptance Mask Reg.

F010 06CCH U, SV U, SV FFFF FFFFH

CAN_
MSGCTR30

CAN Message Object 30
Message Control Register

F010 06D0H U, SV U, SV 0000 5555H

CAN_
MSGCFG30

CAN Message Object 30
Message Config. Register

F010 06D4H U, SV U, SV 0000 0000H

CAN_MSG
FGCR30

CAN Message Object 30
FIFO/Gateway Control
Register

F010 06D8H U, SV U, SV 0000 0000H

– Reserved F010 06DCH BE BE –

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-79 V2.0, 2001-02

TC1775
System Units

Register Overview
CAN_
MSGDR310

CAN Message Object 31
Data Register 0

F010 06E0H U, SV U, SV 0000 0000H

CAN_
MSGDR314

CAN Message Object 31
Data Register 4

F010 06E4H U, SV U, SV 0000 0000H

CAN_
MSGAR31

CAN Message Object 31
Arbitration Register

F010 06E8H U, SV U, SV 0000 0000H

CAN_
MSGAMR31

CAN Message Object 31
Acceptance Mask Reg.

F010 06ECH U, SV U, SV FFFF FFFFH

CAN_
MSGCTR31

CAN Message Object 31
Message Control Register

F010 06F0H U, SV U, SV 0000 5555H

CAN_
MSGCFG31

CAN Message Object 31
Message Config. Register

F010 06F4H U, SV U, SV 0000 0000H

CAN_MSG
FGCR31

CAN Message Object 31
FIFO/Gateway Control
Register

F010 06F8H U, SV U, SV 0000 0000H

– Reserved F010 06FCH-
F010 0ADCH

BE BE –

CAN_SRC7 CAN Service Request
Control Register 7

F010 0AE0H U, SV U, SV 0000 0000H

CAN_SRC6 CAN Service Request
Control Register 6

F010 0AE4H U, SV U, SV 0000 0000H

CAN_SRC5 CAN Service Request
Control Register 5

F010 0AE8H U, SV U, SV 0000 0000H

CAN_SRC4 CAN Service Request
Control Register 4

F010 0AECH U, SV U, SV 0000 0000H

CAN_SRC3 CAN Service Request
Control Register 3

F010 0AF0H U, SV U, SV 0000 0000H

CAN_SRC2 CAN Service Request
Control Register 2

F010 0AF4H U, SV U, SV 0000 0000H

CAN_SRC1 CAN Service Request
Control Register 1

F010 0AF8H U, SV U, SV 0000 0000H

CAN_SRC0 CAN Service Request
Control Register 0

F010 0AFCH U, SV U, SV 0000 0000H

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-80 V2.0, 2001-02

TC1775
System Units

Register Overview
– Reserved F010 0B00H
-
F010 0BFFH

BE BE –

CPU Slave Interface Registers (CPS)

– Reserved FFFE FF00H-
FFFE FF04H

BE BE –

CPU_ID CPU Module Identification
Register

FFFE FF08H U, SV BE XXXXXXXXH

– Reserved FFFE FF0CH
-
FFFE FFB8H

BE BE –

SBSRC0 Software Break Service
Request Control Reg. 0

FFFE FFBCH U, SV SV 0000 0000H

– Reserved FFFE FFC0H
-
FFFE FFECH

BE BE –

CPU_SRC3 CPU Service Request
Control Register 3

FFFE FFF0H U, SV SV 0000 0000H

CPU_SRC2 CPU Service Request
Control Register 2

FFFE FFF4H U, SV SV 0000 0000H

CPU_SRC1 CPU Service Request
Control Register 1

FFFE FFF8H U, SV SV 0000 0000H

CPU_SRC0 CPU Service Request
Control Register 0

FFFE FFFCH U, SV SV 0000 0000H

Memory Protection Registers

DPR0_0L Data Seg. Protect. Reg.
Set 0, Range 0, Lower

FFFF C000H U, SV,
32

SV,
32

0000 0000H

DPR0_0U Data Seg. Protect. Reg.
Set 0, Range 0, Upper

FFFF C004H U, SV,
32

SV,
32

0000 0000H

DPR0_1L Data Seg. Protect. Reg.
Set 0, Range 1, Lower

FFFF C008H U, SV,
32

SV,
32

0000 0000H

DPR0_1U Data Seg. Protect. Reg.
Set 0, Range 1, Upper

FFFF C00CH U, SV,
32

SV,
32

0000 0000H

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-81 V2.0, 2001-02

TC1775
System Units

Register Overview
DPR0_2L Data Seg. Protect. Reg.
Set 0, Range 2, Lower

FFFF C010H U, SV,
32

SV,
32

0000 0000H

DPR0_2U Data Seg. Protect. Reg.
Set 0, Range 2, Upper

FFFF C014H U, SV,
32

SV,
32

0000 0000H

DPR0_3L Data Seg. Protect. Reg.
Set 0, Range 3, Lower

FFFF C018H U, SV,
32

SV,
32

0000 0000H

DPR0_3U Data Seg. Protect. Reg.
Set 0, Range 3, Upper

FFFF C01CH U, SV,
32

SV,
32

0000 0000H

– Reserved FFFF C020H-
FFFF C3FCH

nE nE –

DPR1_0L Data Seg. Protect. Reg.
Set 1, Range 0, Lower

FFFF C400H U, SV,
32

SV,
32

0000 0000H

DPR1_0U Data Seg. Protect. Reg.
Set 1, Range 0, Upper

FFFF C404H U, SV,
32

SV,
32

0000 0000H

DPR1_1L Data Seg. Protect. Reg.
Set 1, Range 1, Lower

FFFF C408H U, SV,
32

SV,
32

0000 0000H

DPR1_1U Data Seg. Protect. Reg.
Set 1, Range 1, Upper

FFFF C40CH U, SV,
32

SV,
32

0000 0000H

DPR1_2L Data Seg. Protect. Reg.
Set 1, Range 2, Lower

FFFF C410H U, SV,
32

SV,
32

0000 0000H

DPR1_2U Data Seg. Protect. Reg.
Set 1, Range 2, Upper

FFFF C414H U, SV,
32

SV,
32

0000 0000H

DPR1_3L Data Seg. Protect. Reg.
Set 1, Range 3, Lower

FFFF C418H U, SV,
32

SV,
32

0000 0000H

DPR1_3U Data Seg. Protect. Reg.
Set 1, Range 3, Upper

FFFF C41CH U, SV,
32

SV,
32

0000 0000H

– Reserved FFFF C420H-
FFFF CFFCH

nE nE –

CPR0_0L Code Seg. Prot. Register
Set 0, Range 0, Lower

FFFF D000H U, SV,
32

SV,
32

0000 0000H

CPR0_0U Code Seg. Prot. Register
Set 0, Range 0, Upper

FFFF D004H U, SV,
32

SV,
32

0000 0000H

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-82 V2.0, 2001-02

TC1775
System Units

Register Overview
CPR0_1L Code Seg. Prot. Register
Set 0, Range 1, Lower

FFFF D008H U, SV,
32

SV,
32

0000 0000H

CPR0_1U Code Seg. Prot. Register
Set 0, Range 1, Upper

FFFF D00CH U, SV,
32

SV,
32

0000 0000H

– Reserved FFFF D010H-
FFFF D3FCH

nE nE –

CPR1_0L Code Seg. Prot. Register
Set 1, Range 0, Lower

FFFF D400H U, SV,
32

SV,
32

0000 0000H

CPR1_0U Code Seg. Prot. Register
Set 1, Range 0, Upper

FFFF D404H U, SV,
32

SV,
32

0000 0000H

CPR1_1L Code Seg. Prot. Register
Set 1, Range 1, Lower

FFFF D408H U, SV,
32

SV,
32

0000 0000H

CPR1_1U Code Seg. Prot. Register
Set 1, Range 1, Upper

FFFF D40CH U, SV,
32

SV,
32

0000 0000H

– Reserved FFFF D410H-
FFFF DFFCH

nE nE –

DPM0 Data Memory Protection
Mode Register 0

FFFF E000H U, SV,
32

SV,
32

0000 0000H

– Reserved FFFF E004H-
FFFF E07CH

nE nE –

DPM1 Data Memory Protection
Mode Register 1

FFFF E080H U, SV,
32

SV,
32

0000 0000H

– Reserved FFFF E084H-
FFFF E1FCH

nE nE –

CPM0 Code Memory Protection
Mode Register 0

FFFF E200H U, SV,
32

SV,
32

0000 0000H

– Reserved FFFF E204H-
FFFF E27CH

nE nE –

CPM1 Code Memory Protection
Mode Register 1

FFFF E280H U, SV,
32

SV,
32

0000 0000H

– Reserved FFFF E284H-
FFFF FCFCH

nE nE –

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-83 V2.0, 2001-02

TC1775
System Units

Register Overview
Core Debug Register (OCDS)

DBGSR Debug Status Register FFFF FD00H U, SV,
32

SV,
32

0000 0000H

– Reserved FFFF FD04H nE nE –

EXEVT External Break Input Event
Specifier Register

FFFF FD08H U, SV,
32

SV,
32

0000 0000H

CREVT Emulator Resource
Protection Event Specifier
Register

FFFF FD0CH U, SV,
32

SV,
32

0000 0000H

SWEVT Software Break Event
Specifier Register

FFFF FD10H U, SV,
32

SV,
32

0000 0000H

– Reserved FFFF FD14H
-
FFFF FD1CH

nBE nBE –

TR0EVT Trigger Event 0 Specifier
Register

FFFF FD20H U, SV,
32

SV,
32

0000 0000H

TR1EVT Trigger Event 1 Specifier
Register

FFFF FD24H U, SV,
32

SV,
32

0000 0000H

– Reserved FFFFFD28H-
FFFFFDFCH

nBE nBE –

Core Special Function Registers (CSFR)

PCXI Previous Context
Information Register

FFFF FE00H U, SV,
32

SV,
32

0000 0000H

PSW Program Status Word FFFF FE04H U, SV,
32

SV,
32

0000 0B80H

PC Program Counter FFFF FE08H U, SV,
32

SV,
32

acc. boot cfg.

– Reserved FFFFFE0CH-
FFFFFE10H

nBE nBE –

SYSCON System Configuration
Register

FFFF FE14H U, SV,
32

SV,32 0000 0000H

– Reserved FFFF FE18H-
FFFF FE1CH

nBE nBE –

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-84 V2.0, 2001-02

TC1775
System Units

Register Overview
BIV Interrupt Vector Table
Pointer

FFFF FE20H U, SV,
32

SV, E;
32

0000 0000H

BTV Trap Vector Table Pointer FFFF FE24H U, SV,
32

SV, E;
32

A000 0100H

ISP Interrupt Stack Pointer FFFF FE28H U, SV,
32

SV, E;
32

0000 0100H

ICR ICU Interrupt Control
Register

FFFF FE2CH U, SV,
32

SV,
32

0000 0000H

– Reserved FFFF FE30H-
FFFF FE34H

nBE nBE –

FCX Free Context List Head
Pointer

FFFF FE38H U, SV,
32

SV,
32

0000 0000H

LCX Free Context List Limit
Pointer

FFFF FE3CH U, SV,
32

SV,
32

0000 0000H

– Reserved FFFF FE40H-
FFFF FEFCH

nBE nBE –

General Purpose Register (GPR)

D0 Data Register D0 (DGPR) FFFF FF00H – – XXXX XXXXH

D1 Data Register D1 (DGPR) FFFF FF04H – – XXXX XXXXH

D2 Data Register D2 (DGPR) FFFF FF08H – – XXXX XXXXH

D3 Data Register D3 (DGPR) FFFF FF0CH – – XXXX XXXXH

D4 Data Register D4 (DGPR) FFFF FF10H – – XXXX XXXXH

D5 Data Register D5 (DGPR) FFFF FF14H – – XXXX XXXXH

D6 Data Register D6 (DGPR) FFFF FF18H – – XXXX XXXXH

D7 Data Register D7 (DGPR) FFFF FF1CH – – XXXX XXXXH

D8 Data Register D8 (DGPR) FFFF FF20H – – XXXX XXXXH

D9 Data Register D9 (DGPR) FFFF FF24H – – XXXX XXXXH

D10 Data Register 10 (DGPR) FFFF FF28H – – XXXX XXXXH

D11 Data Register 11 (DGPR) FFFF FF2CH – – XXXX XXXXH

D12 Data Register 12 (DGPR) FFFF FF30H – – XXXX XXXXH

D13 Data Register 13 (DGPR) FFFF FF34H – – XXXX XXXXH

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-85 V2.0, 2001-02

TC1775
System Units

Register Overview
D14 Data Register 14 (DGPR) FFFF FF38H – – XXXX XXXXH

D15 Data Register 15 (DGPR) FFFF FF3CH – – XXXX XXXXH

– Reserved FFFF FF40H-
FFFF FF7CH

nE nE –

A0 Address Reg. 0 (AGPR)
Global Address Register

FFFF FF80H – – XXXX XXXXH

A1 Address Reg. 1 (AGPR)
Global Address Register

FFFF FF84H – – XXXX XXXXH

A2 Address Register 2
(AGPR)

FFFF FF88H – – XXXX XXXXH

A3 Address Register 3
(AGPR)

FFFF FF8CH – – XXXX XXXXH

A4 Address Register 4
(AGPR)

FFFF FF90H – – XXXX XXXXH

A5 Address Register 5
(AGPR)

FFFF FF94H – – XXXX XXXXH

A6 Address Register 6
(AGPR)

FFFF FF98H – – XXXX XXXXH

A7 Address Register 7
(AGPR)

FFFF FF9CH – – XXXX XXXXH

A8 Address Reg. 8 (AGPR)
Global Address Register

FFFF FFA0H – – XXXX XXXXH

A9 Address Reg. 9 (AGPR)
Global Address Register

FFFF FFA4H – – XXXX XXXXH

A10 (SP) Address Reg. 10 (AGPR)
Stack Pointer

FFFF FFA8H – – XXXX XXXXH

A11 (RA) Address Reg. 11 (AGPR)
Return Address

FFFF FFACH – – XXXX XXXXH

A12 Address Reg. 12 (AGPR) FFFF FFB0H – – XXXX XXXXH

A13 Address Reg. 13 (AGPR) FFFF FFB4H – – XXXX XXXXH

A14 Address Reg. 14 (AGPR) FFFF FFB8H – – XXXX XXXXH

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-86 V2.0, 2001-02

TC1775
System Units

Register Overview
A15 Address Reg. 15 (AGPR) FFFF FFBCH – – XXXX XXXXH

– Reserved FFFFFFC0H-
FFFFFFFCH

nE nE –

Table 21-5 Detailed Address Map of Segment 15 (cont’d)

Short Name Description Address Access Mode Reset Value

Read Write
User’s Manual 21-87 V2.0, 2001-02

TC1775
System Units

Index
22 Index

22.1 Keyword Index

This section lists a number of keywords which refer to specific details of the TC1775 in
terms of its architecture, its functional units. or functions. Bold page number entries
identify the main definition material for a topic.
A
Abbreviations 1-4
Address map 7-2, 7-6

B
BCU

Block diagram 16-4
Registers 16-10

Address range 16-10
BCU_CON 16-11
BCU_EADD 16-14
BCU_ECON 16-13
BCU_EDAT 16-14
BCU_SRC 16-15
Offset addresses 16-10
Overview 16-10

Block diagram 1-9
Boot operation 5-13–5-16

Boot configuration handling 5-15
Boot selection table 5-14
Debug boot options 5-15
Hardware boot 5-13
Normal boot options 5-15
Software boot 5-13

BROM 8-7
Burst mode timings 12-50

C
Clock gating and power management 3-14

CLC register implementations 3-22
Module clock control register 3-17
Module clock generation 3-16

Clock generation unit 3-3–3-13

Clock control and status register 3-11
Oscillator circuit 3-4
PLL loss and lock 3-13
PLL operation 3-5
Setup of system clock frequency 3-7
Startup operation 3-12

Clock system block diagram 3-2
CPS 2-31
CPU 2-1

Block diagram 2-2
Core SFRs

Address table 2-32–2-33
BIV 2-27
BTV 2-28
FCX 2-23
ISP 2-26
LCX 2-25
PC 2-16
PCX 2-24
PCXI 2-21
PSW 2-17

Execution unit 2-4
Instruction fetch unit 2-3
Service request nodes 13-24

CPU architecture overview 2-1
Addressing modes 2-7
Data types 2-7
Instruction formats 2-7
Interrupt system 2-10
Processor registers 2-13–2-30

Context management registers
2-23
Debug registers 2-30
User’s Manual 22-1 V2.0, 2001-02

TC1775
System Units

Index
Interrupt/trap control registers 2-27
Memory protection registers 2-30
Program state registers 2-16
Stack registers 2-26
System control register 2-29

Program state registers 2-6
Protection system 2-11–2-12
Reset system 2-12
Tasks and contexts 2-7
Trap system 2-10

CPU General purpose register file 2-5

D
Data memory unit 9-1–9-18

Address map 9-2
Block diagram 9-1
Bus error 9-3
DMU overly operation 9-5
DMU register access error 9-4
DMU trap generation 9-3
Range error 9-4
Registers 9-10

Address range 9-11
DMU_ATR 9-13
DMU_CON 9-11
DMU_EOCRn 9-15
DMU_IOCRn 9-14
DMU_IORBAP 9-18
DMU_POCR 9-17
DMU_STR 9-12
Offset addresses 9-10
Overview 9-10

DMU, see “Data memory unit”
Document

Abbreviations 1-4
Structure 1-1
Terminology 1-3
Textual conventions 1-1

E
EBU, see “External bus interface unit”
Endinit function 18-3
External bus interface unit 12-1–12-71

Address region parameters 12-17
Address region selection 12-14
Basic access timing 12-21

Demultiplexed mode 12-21
Multiplexed mode 12-25

Basic operation 12-4
Block diagram 12-1
Boot process 12-42

External boot memory configura-
tion word 12-43
Timing 12-44

Data width 12-18
Emulation support 12-45

Emulation boot 12-45
Overlay memory 12-45

Example configuration 12-5
External bus arbitration 12-34, 12-35

Arbitration sequence 12-38
Modes 12-36
Signals 12-36
Signals master mode 12-37
Signals slave mode 12-37

External to internal operation
12-6, 12-29

Access control 12-32
Address extension diagram 12-31
Address translation 12-30
Basic timing 12-33
Signal direction 12-29

Features 12-3
Instruction fetches 12-47

Basic functions 12-47
External instruction fetch control
register 12-48
Typical external burst mode Flash
memory configuration 12-56

Internal to external operation
12-6, 12-13
Overview 12-2
Registers 12-57

Address range 12-71
EBU_ADDSELx 12-61
EBU_BUSCONx 12-62
User’s Manual 22-2 V2.0, 2001-02

TC1775
System Units

Index
EBU_CLC 12-58
EBU_CON 12-59
EBU_EMUAS 12-69
EBU_EMUBC 12-66
EBU_EMUCON 12-65
EBU_EXTCON 12-70
Offset addresses 12-57
Overview 12-57

Signal description 12-7
External overlay memory 12-45

F
Features 1-6

CPU 1-6
Development support 1-8
External bus interface 1-7
I/O lines 1-8
Instruction set 1-7
Interrupt system 1-7
On-chip memory 1-7
Peripheral control processor 1-8

FPI Bus
Arbitration 16-5
Block diagram 16-3
Bus agents 16-5
Error handling 16-6
Overview 16-1
Power saving mode 16-9
Starvation protection 16-6

I
ICACHE 8-4
Instruction set overview 2-34

Arithmetic comparison 2-53
Arithmetic instructions 2-34–2-45
Branch instructions 2-54–2-56
Compare instructions 2-46–2-52
Context related instructions 2-60
DSP arithmetic 2-42
Load/store instructions 2-57–2-60
System instructions 2-61

Interrupt system 13-1–13-26
Arbitration cycles 13-13

Arbitration process 13-13
Block diagram 13-3
External interrupts 13-4
Hints for applications 13-19–13-23
Interrupt control unit 13-9
Interrupt vector table 13-16
Overview 13-2
Service request control register 13-4
Service request nodes 13-4
Service routine entering 13-14
Service routine exiting 13-15

M
Memories, see On-chip memories
Memory protection system 10-1–10-19

Configuration example 10-17
Memory access checking 10-18
Overview 10-1
Registers

Address Range 10-6
Control by PSW bits/bit fields 10-7
for code memory protection 10-14
for data memory protection 10-11
Offset addresses 10-4
Overview 10-2

N
NMI 14-12

NMI input 14-13
PLL NMI 14-13
Status register NMISR 14-12
Watchdog timer NMI 14-14

O
OCDS 20-1
On-chip debug support 20-1–20-32

Block diagram 20-1
Cerberus 20-24

Cimmunication mode 20-26
Registers 20-28
RW mode 20-25
System security 20-26

PCP debugging 20-16
User’s Manual 22-3 V2.0, 2001-02

TC1775
System Units

Index
Registers 20-8
Address ranges 20-32
CREVT 20-12
DBGSR 20-9
EXEVT 20-11
Offset addresses 20-8
Overview 20-8
SBSRC0 20-15
SWEVT 20-13
TR0EVT 20-14
TR1EVT 20-14

Trace module 20-17
TriCore CPU debugging 20-2

BRKOUT pin 20-6
External debug event 20-3
Instruction debug event 20-3
Protection violation triggers 20-4
Software debug event 20-3

On-chip memories 7-1–7-7
Address map of segment 15 7-6
General address map 7-2

On-chip peripherals overview 1-10
Analog/digital converters 1-24
Serial interfaces 1-11

Async./sync serial interface 1-11
High-speed sync. serial interface
1-13
Serial data link interface 1-17
TwinCAN interface 1-15

Timer units 1-19
General purpose timer array 1-21
General purpose timer unit 1-19

P
Parallel ports 11-1–11-58

Block diagram 11-1
General operation 11-2
General port structure 11-4
Kernel registers 11-5

Alternate function select register
11-17
Data input register 11-8
Data output register 11-7

Direction control register 11-9
Input configuration register 11-11
Offset addresses 11-5
Open drain control register 11-10
Output driver characteristics
register 11-14
Pull-up/-down control
registers 11-12
Px_ALTSELn 11-17
Px_DIR 11-9
Px_IN 11-8
Px_OD 11-10
Px_OUT 11-7
Px_PICON 11-11
Px_POCON0 11-14
Px_POCON1 11-15
Px_POCON2 11-15
Px_POCON3 11-15
Px_PUDSEL 11-12

Port 0 11-18
Configuration diagram 11-19

Port 1 11-20
Configuration diagram 11-21

Port 10 11-43
Configuration diagram 11-44

Port 11 11-45
Configuration diagram 11-46

Port 12 11-47
Configuration diagram
11-48, 11-49

Port 13 11-52
Configuration diagram
11-53, 11-54

Port 2 11-22
Configuration diagram 11-23

Port 3 11-24
Configuration diagram
11-25, 11-26

Port 4 11-31
Configuration diagram 11-32

Port 5 11-35
Configuration diagram 11-36

Port 6 11-37
User’s Manual 22-4 V2.0, 2001-02

TC1775
System Units

Index
Port 7 11-38
Port 8 11-39

Configuration diagram 11-40
Port 9 11-41

Configuration diagram 11-42
PCP 15-1

Architecture 15-2
Channel programs 15-18
Context models 15-10
Control and interrupt registers 15-43
Error handling 15-30
General purpose registers 15-6
Implementation in TC-1775 15-93
Instruction set details 15-55
Instruction set overview 15-32
Interrupt operation 15-25
Overview 15-1
Programming 15-83
Programming model 15-6
Programming tips 15-88
Registers

Address range 15-93
Offset addresses 15-43
Overview 15-43
PCP_CS 15-44
PCP_ES 15-47
PCP_ICR 15-49
PCP_SRC0 15-51
PCP_SRC1 15-52
PCP_SRC2 15-53
PCP_SRC3 15-54

Peripheral control processor, see PCP
Pin configuration 1-26
Pin definitions and functions 1-28–1-43
Pin diagram 1-27
PMU, see Program memory unit
Ports, see “Parallel ports”
Power Management 6-1–6-10

Mode description 6-6
Deep sleep mode 6-8
Idle mode 6-6
Sleep mode 6-7

Mode summary 6-1, 6-10

Overview 6-1
Registers 6-3

Address range 6-3
Offset addresses 6-3
Overview 6-3
PMG_CON 6-4
PMG_CSR 6-5

Program memory unit 8-1
Block diagram 8-1
Boot ROM 8-7
External instruction fetch example 8-7
External instruction fetches 8-6
Instruction cache 8-4
Registers 8-8–8-13

Offset addresses 8-8
Overview 8-8
PMU_CON 8-9
PMU_EIFCON 8-11

Related memories 8-2
Scratch-pad code RAM 8-3

R
Real time clock 19-1–19-16

Accuracy 19-6
Block diagram 19-3
Clock control register 19-14
Implementation details 19-12
Interrupt cycles 19-16
Interrupt registers 19-15
Kernel registers 19-7
Operation 19-4
Registers

Address range 19-16
CNT 19-9
CON 19-8
ISNC 19-11
Offset addresses 19-7
Overview 19-7
REL 19-10
T14 19-9

Reset operation 5-1–5-12
Deep sleep wake-up reset 5-10
External hardware reset 5-7
User’s Manual 22-5 V2.0, 2001-02

TC1775
System Units

Index
Overview 5-1
Power-on reset 5-7
Registers

Address range 5-2
Offset addresses 5-2
Overview 5-2
RST_REQ 5-5
RST_SR 5-3

Reset register table 5-9
Software reset 5-8
States after reset 5-11
Watchdog timer reset 5-9

Revision history 4
RTC 19-1
RTC clock generator 3-23

S
SCU, see “System control unit”
SPRAM 8-3
STM, see “System timer”
System control unit 4-1–4-10

Address range 4-2
Overview 4-1
Port 5 trace control 4-6
Registers

CHIPID 4-9
MANID 4-8
Offset addresses 4-2
Overview 4-2
RTID 4-10
SCU_CON 4-3
SCU_TRSTAT 4-7

System timer
Block diagram 17-2
Overview 17-1
Registers

Address range 17-8
CAP 17-6
Offset addresses 17-4
Overview 17-4
TIM0 17-5
TIM1 17-5
TIM2 17-5

TIM3 17-5
TIM4 17-6
TIM5 17-6
TIM6 17-6

Resolutions and ranges 17-3

T
Trap system 14-1–14-14

Asynchronous traps 14-5
Hardware traps 14-5
Overview 14-1
Service routine 14-11
Software traps 14-5
Synchronous traps 14-5
Trap classes 14-3
Trap descriptions 14-6
Trap vector table 14-10

W
Watchdog timer 18-1–18-34

Double watchdog error 18-17
During power-saving modes 18-17
Endinit function 18-3
Features 18-2
Functional description 18-5
in OCDS suspend mode 18-17
Modes of operation 18-7

Disable mode 18-8, 18-15
Normal mode 18-8, 18-14
Prewarning mode 18-9, 18-16
Time-out mode 18-8, 18-13

Modify access to WDT_CON0 18-11
Monitoring diagram 18-26
Operation sequence example 18-5
Overview 18-1
Period calculation 18-18
Period in power-saving modes 18-21
Registers 18-28

Offset addresses 18-28
WDT_CON0 18-29
WDT_CON1 18-31
WDT_SR 18-32

Service sequence diagram 18-25
User’s Manual 22-6 V2.0, 2001-02

TC1775
System Units

Index
Servicing 18-23
System initialization 18-22
Time-out period 18-19
Watchdog timer reset lock 5-9

WDT, see “Watchdog timer”
User’s Manual 22-7 V2.0, 2001-02

TC1775
System Units

Index
22.2 Register Index

This section lists the references to the Special Function Registers of the TC1775.

A
A0 2-32, 21-86
A1 2-33, 21-86
A10 2-33, 21-86
A11 2-33, 21-86
A12 2-33, 21-86
A13 2-33, 21-86
A14 2-33, 21-86
A15 2-33, 21-87
A2 2-33, 21-86
A3 2-33, 21-86
A4 2-33, 21-86
A5 2-33, 21-86
A6 2-33, 21-86
A7 2-33, 21-86
A8 2-33, 21-86
A9 2-33, 21-86
ADC0_AP 21-43
ADC0_ASCRP 21-46
ADC0_CHCON0 21-42
ADC0_CHCON1 21-42
ADC0_CHCON10 21-43
ADC0_CHCON11 21-43
ADC0_CHCON12 21-43
ADC0_CHCON13 21-43
ADC0_CHCON14 21-43
ADC0_CHCON15 21-43
ADC0_CHCON2 21-42
ADC0_CHCON3 21-42
ADC0_CHCON4 21-42
ADC0_CHCON5 21-42
ADC0_CHCON6 21-42
ADC0_CHCON7 21-42
ADC0_CHCON8 21-43
ADC0_CHCON9 21-43
ADC0_CHIN 21-44
ADC0_CHSTAT0 21-44

ADC0_CHSTAT1 21-44
ADC0_CHSTAT10 21-45
ADC0_CHSTAT11 21-45
ADC0_CHSTAT12 21-45
ADC0_CHSTAT13 21-45
ADC0_CHSTAT14 21-45
ADC0_CHSTAT15 21-45
ADC0_CHSTAT2 21-44
ADC0_CHSTAT3 21-44
ADC0_CHSTAT4 21-45
ADC0_CHSTAT5 21-45
ADC0_CHSTAT6 21-45
ADC0_CHSTAT7 21-45
ADC0_CHSTAT8 21-45
ADC0_CHSTAT9 21-45
ADC0_CLC 21-42
ADC0_CON 21-44
ADC0_EXCRP 21-46
ADC0_EXEVC 21-43
ADC0_EXTC0 21-43
ADC0_EXTC1 21-43
ADC0_ID 21-42
ADC0_LCCON0 21-44
ADC0_LCCON1 21-44
ADC0_LCCON2 21-44
ADC0_LCCON3 21-44
ADC0_MSS0 21-46
ADC0_MSS1 21-46
ADC0_QR 21-44
ADC0_QUEUE0 21-45
ADC0_REQ0 21-44
ADC0_SAL 21-43
ADC0_SCN 21-44
ADC0_SRC0 21-47
ADC0_SRC1 21-47
ADC0_SRC2 21-47
ADC0_SRC3 21-47
User’s Manual 22-8 V2.0, 2001-02

TC1775
System Units

Index
ADC0_SRNP 21-46
ADC0_STAT 21-46
ADC0_SW0CRP 21-45
ADC0_SYSTAT 21-46
ADC0_TCON 21-44
ADC0_TCRP 21-46
ADC0_TSTAT 21-46
ADC0_TTC 21-43
ADC1_AP 21-48
ADC1_ASCRP 21-51
ADC1_CHCON0 21-47
ADC1_CHCON1 21-47
ADC1_CHCON10 21-48
ADC1_CHCON11 21-48
ADC1_CHCON12 21-48
ADC1_CHCON13 21-48
ADC1_CHCON14 21-48
ADC1_CHCON15 21-48
ADC1_CHCON2 21-47
ADC1_CHCON3 21-47
ADC1_CHCON4 21-47
ADC1_CHCON5 21-47
ADC1_CHCON7 21-47
ADC1_CHCON8 21-48
ADC1_CHCON9 21-48
ADC1_CHIN 21-49
ADC1_CHSTAT0 21-49
ADC1_CHSTAT1 21-49
ADC1_CHSTAT10 21-50
ADC1_CHSTAT11 21-50
ADC1_CHSTAT12 21-50
ADC1_CHSTAT13 21-50
ADC1_CHSTAT14 21-50
ADC1_CHSTAT15 21-50
ADC1_CHSTAT2 21-49
ADC1_CHSTAT3 21-49
ADC1_CHSTAT4 21-50
ADC1_CHSTAT5 21-50
ADC1_CHSTAT6 21-50
ADC1_CHSTAT7 21-50
ADC1_CHSTAT8 21-50
ADC1_CHSTAT9 21-50
ADC1_CLC 21-47

ADC1_CON 21-49
ADC1_EXCRP 21-51
ADC1_EXEVC 21-48
ADC1_EXTC0 21-48
ADC1_EXTC1 21-48
ADC1_ID 21-47
ADC1_LCCON0 21-49
ADC1_LCCON1 21-49
ADC1_LCCON2 21-49
ADC1_LCCON3 21-49
ADC1_MSS0 21-51
ADC1_MSS1 21-51
ADC1_QR 21-49
ADC1_QUEUE0 21-50
ADC1_REQ0 21-49
ADC1_SAL 21-48
ADC1_SCN 21-49
ADC1_SRC0 21-52
ADC1_SRC1 21-52
ADC1_SRC2 21-52
ADC1_SRC3 21-52
ADC1_SRNP 21-51
ADC1_STAT 21-51
ADC1_SW0CRP 21-50
ADC1_SYSTAT 21-51
ADC1_TCON 21-49
ADC1_TCRP 21-51
ADC1_TSTAT 21-51
ADC1_TTC 21-48
ASC0_BG 21-19
ASC0_CLC 21-19
ASC0_CON 21-19
ASC0_ESRC 21-20
ASC0_FDV 21-19
ASC0_ID 21-19
ASC0_PISEL 21-19
ASC0_RBUF 21-19
ASC0_RSRC 21-19
ASC0_TBSRC 21-20
ASC0_TBUF 21-19
ASC0_TSRC 21-19
ASC1_BG 21-20
ASC1_CLC 21-20
User’s Manual 22-9 V2.0, 2001-02

TC1775
System Units

Index
ASC1_CON 21-20
ASC1_ESRC 21-21
ASC1_FDV 21-20
ASC1_ID 21-20
ASC1_PISEL 21-20
ASC1_RBUF 21-20
ASC1_RSRC 21-20
ASC1_TBSRC 21-21
ASC1_TBUF 21-20
ASC1_TSRC 21-20

B
BCU module registers 16-10
BCU_CON 16-11, 21-14
BCU_EADD 16-14, 21-14
BCU_ECON 16-13, 21-14
BCU_EDAT 16-14, 21-14
BCU_ID 21-14
BCU_SRC 16-15, 21-14
BIV 2-27, 2-32, 21-85
BTV 2-28, 2-32, 21-85

C
CAN_ABTR 21-63
CAN_ACR 21-63
CAN_AECNT 21-63
CAN_AFCR 21-63
CAN_AGINP 21-63
CAN_AIMR0 21-63
CAN_AIMR4 21-63
CAN_AIR 21-63
CAN_ASR 21-63
CAN_BBTR 21-63
CAN_BCR 21-63
CAN_BECNT 21-64
CAN_BFCR 21-64
CAN_BGINP 21-64
CAN_BIMR0 21-64
CAN_BIMR4 21-64
CAN_BIR 21-63
CAN_BSR 21-63
CAN_CLC 21-63
CAN_ID 21-63

CAN_MSGAMR0 21-64
CAN_MSGAMR1 21-65
CAN_MSGAMR10 21-69
CAN_MSGAMR11 21-70
CAN_MSGAMR12 21-70
CAN_MSGAMR13 21-71
CAN_MSGAMR14 21-71
CAN_MSGAMR15 21-72
CAN_MSGAMR16 21-72
CAN_MSGAMR17 21-73
CAN_MSGAMR18 21-73
CAN_MSGAMR19 21-74
CAN_MSGAMR2 21-65
CAN_MSGAMR20 21-74
CAN_MSGAMR21 21-75
CAN_MSGAMR22 21-75
CAN_MSGAMR23 21-76
CAN_MSGAMR24 21-76
CAN_MSGAMR25 21-77
CAN_MSGAMR26 21-77
CAN_MSGAMR27 21-78
CAN_MSGAMR28 21-78
CAN_MSGAMR29 21-79
CAN_MSGAMR3 21-66
CAN_MSGAMR30 21-79
CAN_MSGAMR31 21-80
CAN_MSGAMR4 21-66
CAN_MSGAMR5 21-67
CAN_MSGAMR6 21-67
CAN_MSGAMR7 21-68
CAN_MSGAMR8 21-68
CAN_MSGAMR9 21-69
CAN_MSGAR0 21-64
CAN_MSGAR1 21-65
CAN_MSGAR10 21-69
CAN_MSGAR11 21-70
CAN_MSGAR12 21-70
CAN_MSGAR13 21-71
CAN_MSGAR14 21-71
CAN_MSGAR15 21-72
CAN_MSGAR16 21-72
CAN_MSGAR17 21-73
CAN_MSGAR18 21-73
User’s Manual 22-10 V2.0, 2001-02

TC1775
System Units

Index
CAN_MSGAR19 21-74
CAN_MSGAR2 21-65
CAN_MSGAR20 21-74
CAN_MSGAR21 21-75
CAN_MSGAR22 21-75
CAN_MSGAR23 21-76
CAN_MSGAR24 21-76
CAN_MSGAR25 21-77
CAN_MSGAR26 21-77
CAN_MSGAR27 21-78
CAN_MSGAR28 21-78
CAN_MSGAR29 21-79
CAN_MSGAR3 21-66
CAN_MSGAR30 21-79
CAN_MSGAR31 21-80
CAN_MSGAR4 21-66
CAN_MSGAR5 21-67
CAN_MSGAR6 21-67
CAN_MSGAR7 21-68
CAN_MSGAR8 21-68
CAN_MSGAR9 21-69
CAN_MSGCFG0 21-64
CAN_MSGCFG1 21-65
CAN_MSGCFG10 21-69
CAN_MSGCFG11 21-70
CAN_MSGCFG12 21-70
CAN_MSGCFG13 21-71
CAN_MSGCFG14 21-71
CAN_MSGCFG15 21-72
CAN_MSGCFG16 21-72
CAN_MSGCFG17 21-73
CAN_MSGCFG18 21-73
CAN_MSGCFG19 21-74
CAN_MSGCFG2 21-65
CAN_MSGCFG20 21-74
CAN_MSGCFG21 21-75
CAN_MSGCFG22 21-75
CAN_MSGCFG23 21-76
CAN_MSGCFG24 21-76
CAN_MSGCFG25 21-77
CAN_MSGCFG26 21-77
CAN_MSGCFG27 21-78
CAN_MSGCFG28 21-78

CAN_MSGCFG29 21-79
CAN_MSGCFG3 21-66
CAN_MSGCFG30 21-79
CAN_MSGCFG31 21-80
CAN_MSGCFG4 21-66
CAN_MSGCFG5 21-67
CAN_MSGCFG6 21-67
CAN_MSGCFG7 21-68
CAN_MSGCFG8 21-68
CAN_MSGCFG9 21-69
CAN_MSGCTR0 21-64
CAN_MSGCTR1 21-65
CAN_MSGCTR10 21-69
CAN_MSGCTR11 21-70
CAN_MSGCTR12 21-70
CAN_MSGCTR13 21-71
CAN_MSGCTR14 21-71
CAN_MSGCTR15 21-72
CAN_MSGCTR16 21-72
CAN_MSGCTR17 21-73
CAN_MSGCTR18 21-73
CAN_MSGCTR19 21-74
CAN_MSGCTR2 21-65
CAN_MSGCTR20 21-74
CAN_MSGCTR21 21-75
CAN_MSGCTR22 21-75
CAN_MSGCTR23 21-76
CAN_MSGCTR24 21-76
CAN_MSGCTR25 21-77
CAN_MSGCTR26 21-77
CAN_MSGCTR27 21-78
CAN_MSGCTR28 21-78
CAN_MSGCTR29 21-79
CAN_MSGCTR3 21-66
CAN_MSGCTR30 21-79
CAN_MSGCTR31 21-80
CAN_MSGCTR4 21-66
CAN_MSGCTR5 21-67
CAN_MSGCTR6 21-67
CAN_MSGCTR7 21-68
CAN_MSGCTR8 21-68
CAN_MSGCTR9 21-69
CAN_MSGDR00 21-64
User’s Manual 22-11 V2.0, 2001-02

TC1775
System Units

Index
CAN_MSGDR04 21-64
CAN_MSGDR10 21-65
CAN_MSGDR100 21-69
CAN_MSGDR104 21-69
CAN_MSGDR110 21-70
CAN_MSGDR114 21-70
CAN_MSGDR120 21-70
CAN_MSGDR124 21-70
CAN_MSGDR130 21-71
CAN_MSGDR134 21-71
CAN_MSGDR14 21-65
CAN_MSGDR140 21-71
CAN_MSGDR144 21-71
CAN_MSGDR150 21-72
CAN_MSGDR154 21-72
CAN_MSGDR160 21-72
CAN_MSGDR164 21-72
CAN_MSGDR170 21-73
CAN_MSGDR174 21-73
CAN_MSGDR180 21-73
CAN_MSGDR184 21-73
CAN_MSGDR190 21-74
CAN_MSGDR194 21-74
CAN_MSGDR20 21-65
CAN_MSGDR200 21-74
CAN_MSGDR204 21-74
CAN_MSGDR210 21-75
CAN_MSGDR214 21-75
CAN_MSGDR220 21-75
CAN_MSGDR224 21-75
CAN_MSGDR230 21-76
CAN_MSGDR234 21-76
CAN_MSGDR24 21-65
CAN_MSGDR240 21-76
CAN_MSGDR244 21-76
CAN_MSGDR250 21-77
CAN_MSGDR254 21-77
CAN_MSGDR260 21-77
CAN_MSGDR264 21-77
CAN_MSGDR270 21-78
CAN_MSGDR274 21-78
CAN_MSGDR280 21-78
CAN_MSGDR284 21-78

CAN_MSGDR290 21-79
CAN_MSGDR294 21-79
CAN_MSGDR30 21-66
CAN_MSGDR300 21-79
CAN_MSGDR304 21-79
CAN_MSGDR310 21-80
CAN_MSGDR314 21-80
CAN_MSGDR34 21-66
CAN_MSGDR40 21-66
CAN_MSGDR44 21-66
CAN_MSGDR50 21-67
CAN_MSGDR54 21-67
CAN_MSGDR60 21-67
CAN_MSGDR64 21-67
CAN_MSGDR70 21-68
CAN_MSGDR74 21-68
CAN_MSGDR80 21-68
CAN_MSGDR84 21-68
CAN_MSGDR90 21-69
CAN_MSGDR94 21-69
CAN_MSGFCR0 21-64
CAN_MSGFCR1 21-65
CAN_MSGFCR10 21-69
CAN_MSGFCR11 21-70
CAN_MSGFCR12 21-70
CAN_MSGFCR13 21-71
CAN_MSGFCR14 21-71
CAN_MSGFCR15 21-72
CAN_MSGFCR16 21-72
CAN_MSGFCR17 21-73
CAN_MSGFCR18 21-73
CAN_MSGFCR19 21-74
CAN_MSGFCR2 21-65
CAN_MSGFCR20 21-74
CAN_MSGFCR21 21-75
CAN_MSGFCR22 21-75
CAN_MSGFCR23 21-76
CAN_MSGFCR24 21-76
CAN_MSGFCR25 21-77
CAN_MSGFCR26 21-77
CAN_MSGFCR27 21-78
CAN_MSGFCR28 21-78
CAN_MSGFCR29 21-79
User’s Manual 22-12 V2.0, 2001-02

TC1775
System Units

Index
CAN_MSGFCR3 21-66
CAN_MSGFCR30 21-79
CAN_MSGFCR31 21-80
CAN_MSGFCR4 21-66
CAN_MSGFCR5 21-67
CAN_MSGFCR6 21-67
CAN_MSGFCR7 21-68
CAN_MSGFCR8 21-68
CAN_MSGFCR9 21-69
CAN_RXIPND 21-64
CAN_SRC0 21-80
CAN_SRC1 21-80
CAN_SRC2 21-80
CAN_SRC3 21-80
CAN_SRC4 21-80
CAN_SRC5 21-80
CAN_SRC6 21-80
CAN_SRC7 21-80
CAN_TXIPND 21-64
CHIPID 4-9, 21-13
COMDATA 21-15
CPM0 10-15, 21-83
CPM1 10-15, 21-83
CPR0_0L 10-14, 21-82
CPR0_0U 10-14, 21-82
CPR0_1L 10-14, 21-83
CPR0_1U 10-14, 21-83
CPR1_0L 10-14, 21-83
CPR1_0U 10-14, 21-83
CPR1_1L 10-14, 21-83
CPR1_1U 10-14, 21-83
CPU_ID 21-81
CPU_SRC0 13-24, 21-81
CPU_SRC1 13-24, 21-81
CPU_SRC2 13-24, 21-81
CPU_SRC3 13-24, 21-81
CREVT 20-12, 21-84

D
D0 2-32, 21-85
D1 2-32, 21-85
D10 2-32, 21-85
D11 2-32, 21-85

D12 2-32, 21-85
D13 2-32, 21-85
D14 2-32, 21-86
D15 2-32, 21-86
D2 2-32, 21-85
D3 2-32, 21-85
D4 2-32, 21-85
D5 2-32, 21-85
D6 2-32, 21-85
D7 2-32, 21-85
D8 2-32, 21-85
D9 2-32, 21-85
DBGSR 20-9, 21-84
DMU module registers 9-10
DMU_ATR 9-13, 21-4
DMU_CON 9-11, 21-4
DMU_EOCR0 9-15, 21-6
DMU_EOCR1 9-15, 21-6
DMU_ID 21-4
DMU_IOCR0 9-14, 21-5
DMU_IOCR1 9-14, 21-5
DMU_IOCR2 9-14, 21-6
DMU_IOCR3 9-14, 21-6
DMU_IORBAP 9-18, 21-6
DMU_POCR 9-17, 21-6
DMU_STR 9-12, 21-4
DPM0 10-12, 21-83
DPM1 10-12, 21-83
DPR0_0L 10-11, 21-81
DPR0_0U 10-11, 21-81
DPR0_1L 10-11, 21-81
DPR0_1U 10-11, 21-81
DPR0_2L 10-11, 21-82
DPR0_2U 10-11, 21-82
DPR0_3L 10-11, 21-82
DPR0_3U 10-11, 21-82
DPR1_0L 10-11, 21-82
DPR1_0U 10-11, 21-82
DPR1_1L 10-11, 21-82
DPR1_1U 10-11, 21-82
DPR1_2L 10-11, 21-82
DPR1_2U 10-11, 21-82
DPR1_3L 10-11, 21-82
User’s Manual 22-13 V2.0, 2001-02

TC1775
System Units

Index
DPR1_3U 10-11, 21-82

E
EBU module registers 12-57
EBU_ADDSEL0 12-61, 21-15
EBU_ADDSEL1 12-61, 21-16
EBU_ADDSEL2 12-61, 21-16
EBU_ADDSEL3 12-61, 21-16
EBU_BUSCON0 12-62, 21-16
EBU_BUSCON1 12-62, 21-16
EBU_BUSCON2 12-62, 21-16
EBU_BUSCON3 12-62, 21-16
EBU_CLC 12-58, 21-15
EBU_CON 12-59, 21-15
EBU_EMUAS 12-69, 21-16
EBU_EMUBC 12-66, 21-16
EBU_EMUCON 12-65, 21-16
EBU_EXTCON 12-70
EBU_ID 21-15
EXEVT 20-11, 21-84

F
FCX 2-23, 2-32, 21-85

G
GPTA_ADCCTR 21-23
GPTA_CKBCTR 21-26
GPTA_CLC 21-22
GPTA_DCMCAV0 21-24
GPTA_DCMCAV1 21-25
GPTA_DCMCAV2 21-25
GPTA_DCMCAV3 21-25
GPTA_DCMCOV0 21-24
GPTA_DCMCOV1 21-25
GPTA_DCMCOV2 21-25
GPTA_DCMCOV3 21-25
GPTA_DCMCTR0 21-24
GPTA_DCMCTR1 21-24
GPTA_DCMCTR2 21-25
GPTA_DCMCTR3 21-25
GPTA_DCMTIM0 21-24
GPTA_DCMTIM1 21-25
GPTA_DCMTIM2 21-25

GPTA_DCMTIM3 21-25
GPTA_EMGCTR0 21-23
GPTA_EMGCTR1 21-23
GPTA_FPCCOM0 21-23
GPTA_FPCCOM1 21-23
GPTA_FPCCOM2 21-24
GPTA_FPCCOM3 21-24
GPTA_FPCCOM4 21-24
GPTA_FPCCOM5 21-24
GPTA_FPCCTR1 21-23
GPTA_FPCCTR2 21-23
GPTA_FPCTIM0 21-23
GPTA_FPCTIM1 21-23
GPTA_FPCTIM2 21-24
GPTA_FPCTIM3 21-24
GPTA_FPCTIM4 21-24
GPTA_FPCTIM5 21-24
GPTA_GTCCTR00 21-26
GPTA_GTCCTR01 21-26
GPTA_GTCCTR02 21-27
GPTA_GTCCTR03 21-27
GPTA_GTCCTR04 21-27
GPTA_GTCCTR05 21-27
GPTA_GTCCTR06 21-27
GPTA_GTCCTR07 21-27
GPTA_GTCCTR08 21-27
GPTA_GTCCTR09 21-27
GPTA_GTCCTR10 21-28
GPTA_GTCCTR11 21-28
GPTA_GTCCTR12 21-28
GPTA_GTCCTR13 21-28
GPTA_GTCCTR14 21-28
GPTA_GTCCTR15 21-28
GPTA_GTCCTR16 21-28
GPTA_GTCCTR17 21-28
GPTA_GTCCTR18 21-29
GPTA_GTCCTR19 21-29
GPTA_GTCCTR20 21-29
GPTA_GTCCTR21 21-29
GPTA_GTCCTR22 21-29
GPTA_GTCCTR23 21-29
GPTA_GTCCTR24 21-29
GPTA_GTCCTR25 21-29
User’s Manual 22-14 V2.0, 2001-02

TC1775
System Units

Index
GPTA_GTCCTR26 21-30
GPTA_GTCCTR27 21-30
GPTA_GTCCTR28 21-30
GPTA_GTCCTR29 21-30
GPTA_GTCCTR30 21-30
GPTA_GTCCTR31 21-30
GPTA_GTCTR0 21-26
GPTA_GTCTR1 21-26
GPTA_GTCXR00 21-26
GPTA_GTCXR01 21-26
GPTA_GTCXR02 21-27
GPTA_GTCXR03 21-27
GPTA_GTCXR04 21-27
GPTA_GTCXR05 21-27
GPTA_GTCXR06 21-27
GPTA_GTCXR07 21-27
GPTA_GTCXR08 21-27
GPTA_GTCXR09 21-27
GPTA_GTCXR10 21-28
GPTA_GTCXR11 21-28
GPTA_GTCXR12 21-28
GPTA_GTCXR13 21-28
GPTA_GTCXR14 21-28
GPTA_GTCXR15 21-28
GPTA_GTCXR16 21-28
GPTA_GTCXR17 21-28
GPTA_GTCXR18 21-29
GPTA_GTCXR19 21-29
GPTA_GTCXR20 21-29
GPTA_GTCXR21 21-29
GPTA_GTCXR22 21-29
GPTA_GTCXR23 21-29
GPTA_GTCXR24 21-29
GPTA_GTCXR25 21-29
GPTA_GTCXR26 21-30
GPTA_GTCXR27 21-30
GPTA_GTCXR28 21-30
GPTA_GTCXR29 21-30
GPTA_GTCXR30 21-30
GPTA_GTCXR31 21-30
GPTA_GTREV0 21-26
GPTA_GTREV1 21-26
GPTA_GTTIM0 21-26

GPTA_GTTIM1 21-26
GPTA_ID 21-22
GPTA_LTCCTR00 21-30
GPTA_LTCCTR01 21-30
GPTA_LTCCTR02 21-31
GPTA_LTCCTR03 21-31
GPTA_LTCCTR04 21-31
GPTA_LTCCTR05 21-31
GPTA_LTCCTR06 21-31
GPTA_LTCCTR07 21-31
GPTA_LTCCTR08 21-31
GPTA_LTCCTR09 21-31
GPTA_LTCCTR10 21-32
GPTA_LTCCTR11 21-32
GPTA_LTCCTR12 21-32
GPTA_LTCCTR13 21-32
GPTA_LTCCTR14 21-32
GPTA_LTCCTR15 21-32
GPTA_LTCCTR16 21-32
GPTA_LTCCTR17 21-32
GPTA_LTCCTR18 21-33
GPTA_LTCCTR19 21-33
GPTA_LTCCTR20 21-33
GPTA_LTCCTR21 21-33
GPTA_LTCCTR22 21-33
GPTA_LTCCTR23 21-33
GPTA_LTCCTR24 21-33
GPTA_LTCCTR25 21-33
GPTA_LTCCTR26 21-34
GPTA_LTCCTR27 21-34
GPTA_LTCCTR28 21-34
GPTA_LTCCTR29 21-34
GPTA_LTCCTR30 21-34
GPTA_LTCCTR31 21-34
GPTA_LTCCTR32 21-34
GPTA_LTCCTR33 21-34
GPTA_LTCCTR34 21-35
GPTA_LTCCTR35 21-35
GPTA_LTCCTR36 21-35
GPTA_LTCCTR37 21-35
GPTA_LTCCTR38 21-35
GPTA_LTCCTR39 21-35
GPTA_LTCCTR40 21-35
User’s Manual 22-15 V2.0, 2001-02

TC1775
System Units

Index
GPTA_LTCCTR41 21-35
GPTA_LTCCTR42 21-36
GPTA_LTCCTR43 21-36
GPTA_LTCCTR44 21-36
GPTA_LTCCTR45 21-36
GPTA_LTCCTR46 21-36
GPTA_LTCCTR47 21-36
GPTA_LTCCTR48 21-36
GPTA_LTCCTR49 21-36
GPTA_LTCCTR50 21-37
GPTA_LTCCTR51 21-37
GPTA_LTCCTR52 21-37
GPTA_LTCCTR53 21-37
GPTA_LTCCTR54 21-37
GPTA_LTCCTR55 21-37
GPTA_LTCCTR56 21-37
GPTA_LTCCTR57 21-37
GPTA_LTCCTR58 21-38
GPTA_LTCCTR59 21-38
GPTA_LTCCTR60 21-38
GPTA_LTCCTR61 21-38
GPTA_LTCCTR62 21-38
GPTA_LTCCTR63 21-38
GPTA_LTCXR00 21-30
GPTA_LTCXR01 21-30
GPTA_LTCXR02 21-31
GPTA_LTCXR03 21-31
GPTA_LTCXR04 21-31
GPTA_LTCXR05 21-31
GPTA_LTCXR06 21-31
GPTA_LTCXR07 21-31
GPTA_LTCXR08 21-31
GPTA_LTCXR09 21-31
GPTA_LTCXR10 21-32
GPTA_LTCXR11 21-32
GPTA_LTCXR12 21-32
GPTA_LTCXR13 21-32
GPTA_LTCXR14 21-32
GPTA_LTCXR15 21-32
GPTA_LTCXR16 21-32
GPTA_LTCXR17 21-32
GPTA_LTCXR18 21-33
GPTA_LTCXR19 21-33

GPTA_LTCXR20 21-33
GPTA_LTCXR21 21-33
GPTA_LTCXR22 21-33
GPTA_LTCXR23 21-33
GPTA_LTCXR24 21-33
GPTA_LTCXR25 21-33
GPTA_LTCXR26 21-34
GPTA_LTCXR27 21-34
GPTA_LTCXR28 21-34
GPTA_LTCXR29 21-34
GPTA_LTCXR30 21-34
GPTA_LTCXR31 21-34
GPTA_LTCXR32 21-34
GPTA_LTCXR33 21-34
GPTA_LTCXR34 21-35
GPTA_LTCXR35 21-35
GPTA_LTCXR36 21-35
GPTA_LTCXR37 21-35
GPTA_LTCXR38 21-35
GPTA_LTCXR39 21-35
GPTA_LTCXR40 21-35
GPTA_LTCXR41 21-35
GPTA_LTCXR42 21-36
GPTA_LTCXR43 21-36
GPTA_LTCXR44 21-36
GPTA_LTCXR45 21-36
GPTA_LTCXR46 21-36
GPTA_LTCXR47 21-36
GPTA_LTCXR48 21-36
GPTA_LTCXR49 21-36
GPTA_LTCXR50 21-37
GPTA_LTCXR51 21-37
GPTA_LTCXR52 21-37
GPTA_LTCXR53 21-37
GPTA_LTCXR54 21-37
GPTA_LTCXR55 21-37
GPTA_LTCXR56 21-37
GPTA_LTCXR57 21-37
GPTA_LTCXR58 21-38
GPTA_LTCXR59 21-38
GPTA_LTCXR60 21-38
GPTA_LTCXR61 21-38
GPTA_LTCXR62 21-38
User’s Manual 22-16 V2.0, 2001-02

TC1775
System Units

Index
GPTA_LTCXR63 21-38
GPTA_OMR0 21-23
GPTA_OMR1 21-23
GPTA_OMR2 21-23
GPTA_OMR3 21-23
GPTA_PDLCTR 21-24
GPTA_PLLCNT 21-26
GPTA_PLLCTR 21-25
GPTA_PLLDTR 21-26
GPTA_PLLMTI 21-26
GPTA_PLLREV 21-26
GPTA_PLLSTP 21-26
GPTA_SRC00 21-42
GPTA_SRC01 21-42
GPTA_SRC02 21-42
GPTA_SRC03 21-41
GPTA_SRC04 21-41
GPTA_SRC05 21-41
GPTA_SRC06 21-41
GPTA_SRC07 21-41
GPTA_SRC08 21-41
GPTA_SRC09 21-41
GPTA_SRC10 21-41
GPTA_SRC11 21-41
GPTA_SRC12 21-41
GPTA_SRC13 21-41
GPTA_SRC14 21-41
GPTA_SRC15 21-41
GPTA_SRC16 21-41
GPTA_SRC17 21-41
GPTA_SRC18 21-41
GPTA_SRC19 21-40
GPTA_SRC20 21-40
GPTA_SRC21 21-40
GPTA_SRC22 21-40
GPTA_SRC23 21-40
GPTA_SRC24 21-40
GPTA_SRC25 21-40
GPTA_SRC26 21-40
GPTA_SRC27 21-40
GPTA_SRC28 21-40
GPTA_SRC29 21-40
GPTA_SRC30 21-40

GPTA_SRC31 21-40
GPTA_SRC32 21-40
GPTA_SRC33 21-40
GPTA_SRC34 21-40
GPTA_SRC35 21-39
GPTA_SRC36 21-39
GPTA_SRC37 21-39
GPTA_SRC38 21-39
GPTA_SRC39 21-39
GPTA_SRC40 21-39
GPTA_SRC41 21-39
GPTA_SRC42 21-39
GPTA_SRC43 21-39
GPTA_SRC44 21-39
GPTA_SRC45 21-39
GPTA_SRC46 21-39
GPTA_SRC47 21-39
GPTA_SRC48 21-39
GPTA_SRC49 21-39
GPTA_SRC50 21-39
GPTA_SRC51 21-38
GPTA_SRC52 21-38
GPTA_SRC53 21-38
GPTA_SRS0 21-22
GPTA_SRS1 21-22
GPTA_SRS2 21-23
GPTA_SRS3 21-23
GPTU_CLC 21-16
GPTU_ID 21-16
GPTU_OSEL 21-17
GPTU_OUT 21-17
GPTU_SRC0 21-19
GPTU_SRC1 21-19
GPTU_SRC2 21-18
GPTU_SRC3 21-18
GPTU_SRC4 21-18
GPTU_SRC5 21-18
GPTU_SRC6 21-18
GPTU_SRC7 21-18
GPTU_SRSEL 21-18
GPTU_T012RUN 21-18
GPTU_T01IRS 21-17
GPTU_T01OTS 21-17
User’s Manual 22-17 V2.0, 2001-02

TC1775
System Units

Index
GPTU_T0CBA 21-17
GPTU_T0DCBA 21-17
GPTU_T0RCBA 21-17
GPTU_T0RDCBA 21-17
GPTU_T1CBA 21-18
GPTU_T1DCBA 21-17
GPTU_T1RCBA 21-18
GPTU_T1RDCBA 21-18
GPTU_T2 21-18
GPTU_T2AIS 21-17
GPTU_T2BIS 21-17
GPTU_T2CON 21-17
GPTU_T2ES 21-17
GPTU_T2RC0 21-18
GPTU_T2RC1 21-18
GPTU_T2RCCON 21-17

I
ICR 2-32, 13-9, 21-85
IOCONF 20-28
IOSR 20-30, 21-15
ISP 2-26, 2-32, 21-85

J
JPD_ID 21-15

L
LCX 2-25, 2-32, 21-85

M
MANID 4-8, 21-13
Memory protection system registers 10-4

N
NMISR 14-13, 21-12

O
OCDS module registers 20-8

P
P0_DIR 11-9, 21-54
P0_IN 11-8, 21-54
P0_OUT 11-7, 21-54

P0_PUDEN 11-13, 21-54
P0_PUDSEL 11-12, 21-54
P1_DIR 11-9, 21-54
P1_IN 11-8, 21-54
P1_OUT 11-7, 21-54
P1_PUDEN 11-13, 21-54
P1_PUDSEL 11-12, 21-54
P10_DIR 11-9, 21-58
P10_IN 11-8, 21-58
P10_OD 11-10, 21-58
P10_OUT 11-7, 21-58
P10_PICON 11-11, 21-59
P10_POCON0 11-14, 21-58
P10_POCON1 11-15, 21-58
P10_POCON2 11-15, 21-59
P10_POCON3 11-15, 21-59
P10_PUDEN 11-13, 21-58
P10_PUDSEL 11-12, 21-58
P11_DIR 11-9, 21-59
P11_IN 11-8, 21-59
P11_OD 11-10, 21-59
P11_OUT 11-7, 21-59
P11_PICON 11-11, 21-59
P11_POCON0 11-14, 21-59
P11_POCON1 11-15, 21-59
P11_POCON2 11-15, 21-59
P11_POCON3 11-15, 21-59
P11_PUDEN 11-13, 21-59
P11_PUDSEL 11-12, 21-59
P12_ALTSEL0 11-17, 21-60
P12_DIR 11-9, 21-60
P12_IN 11-8, 21-60
P12_OD 11-10, 21-60
P12_OUT 11-7, 11-8, 11-9, 11-10, 11-11,

11-12, 11-13, 21-60
P12_PICON 11-11, 21-60
P12_POCON0 11-14, 21-60
P12_POCON1 11-15, 21-60
P12_POCON2 11-15, 21-60
P12_POCON3 11-15, 21-60
P12_PUDEN 11-13, 21-60
P12_PUDSEL 11-12, 21-60
P13_ALTSEL0 11-17, 21-61
User’s Manual 22-18 V2.0, 2001-02

TC1775
System Units

Index
P13_ALTSEL1 11-17, 21-61
P13_DIR 11-9, 21-61
P13_IN 11-8, 21-61
P13_OD 11-10, 21-61
P13_OUT 11-7, 21-61
P13_PICON 11-11, 21-61
P13_POCON0 11-14, 21-61
P13_POCON1 11-15, 21-61
P13_POCON2 11-15, 21-61
P13_POCON3 11-15, 21-61
P13_PUDEN 11-13, 21-61
P13_PUDSEL 11-12, 21-61
P2_DIR 11-9, 21-54
P2_IN 11-8, 21-54
P2_OUT 11-7, 21-54
P2_PUDEN 11-13, 21-55
P2_PUDSEL 11-12, 21-55
P3_ALTSEL0 21-55
P3_DIR 11-9, 21-55
P3_IN 11-8, 21-55
P3_OUT 11-7, 21-55
P3_PUDEN 11-13, 21-55
P3_PUDSEL 11-12, 21-55
P4_ALTSEL0 11-17
P4_DIR 11-9, 21-55
P4_IN 11-8, 21-55
P4_OUT 11-7, 21-55
P4_PUDEN 11-13, 21-56
P4_PUDSEL 11-12, 21-56
P5_DIR 11-9, 21-56
P5_IN 11-8, 21-56
P5_OUT 11-7, 21-56
P5_PUDEN 11-13, 21-56
P5_PUDSEL 11-12, 21-56
P8_DIR 11-9, 21-56
P8_IN 11-8, 21-56
P8_OD 11-10, 21-57
P8_OUT 11-7, 21-56
P8_PICON 11-11, 21-57
P8_POCON0 11-14, 21-57
P8_POCON1 11-15, 21-57
P8_POCON2 11-15, 21-57
P8_POCON3 11-15, 21-57

P8_PUDEN 11-13, 21-57
P8_PUDSEL 11-12, 21-57
P9_DIR 11-9, 21-57
P9_IN 11-8, 21-57
P9_OD 11-10, 21-57
P9_OUT 11-7, 21-57
P9_PICON 11-11, 21-58
P9_POCON0 11-14, 21-58
P9_POCON1 11-15, 21-58
P9_POCON2 11-15, 21-58
P9_POCON3 11-15, 21-58
P9_PUDEN 11-13, 21-58
P9_PUDSEL 11-12, 21-57
PC 2-17, 2-32, 21-84
PCP module registers 15-43
PCP_CS 15-44, 21-62
PCP_ES 15-47, 21-62
PCP_ICR 15-49, 21-62
PCP_ID 21-62
PCP_SRC0 15-51, 21-62
PCP_SRC1 15-52, 21-62
PCP_SRC2 15-53, 21-62
PCP_SRC3 15-54, 21-62
PCX 2-24
PCXI 2-22, 2-32, 21-84
PLL_CLC 3-11, 21-12
PMG_CON 6-4, 21-12
PMG_CSR 6-5, 21-12
PMU module registers 8-8
PMU_CON 8-9, 21-4
PMU_EIFCON 8-11, 12-48, 21-4
PMU_ID 21-4
Power management registers 6-3
PSW 2-18, 2-32, 10-7, 21-84
Px_...- Port kernel registers 11-5

R
Reset registers 5-2
RST_REQ 5-5, 21-12
RST_SR 5-3, 21-12
RTC module registers 19-7
RTC_CLC 19-14, 21-13
RTC_CNT 19-9, 21-13
User’s Manual 22-19 V2.0, 2001-02

TC1775
System Units

Index
RTC_CON 19-8, 21-13
RTC_ID 21-13
RTC_ISNC 19-11, 21-13
RTC_REL 19-10, 21-13
RTC_SRC 19-15, 21-13
RTC_T14 19-9, 21-13
RTID 4-10, 21-13

S
SBSRC0 20-15, 21-81
SCU_CON 4-3, 21-13
SCU_ID 21-12
SCU_TRSTAT 4-7, 21-13
SDLM_BUFCON 21-52
SDLM_CLC 21-52
SDLM_CON 21-52
SDLM_FR 21-52
SDLM_ID 21-52
SDLM_IE 21-52
SDLM_IFR 21-52
SDLM_RXD00 21-53
SDLM_RXD04 21-53
SDLM_RXD08 21-53
SDLM_RXD10 21-53
SDLM_RXD14 21-53
SDLM_RXD18 21-53
SDLM_RXPTR 21-53
SDLM_RXPTRB 21-53
SDLM_SPTR 21-53
SDLM_SRC0 21-53
SDLM_SRC1 21-53
SDLM_STAT0 21-52
SDLM_STAT1 21-52
SDLM_TMG 21-52
SDLM_TXD0 21-52
SDLM_TXD4 21-53
SDLM_TXD8 21-53
SDLM_TXPTR 21-53
SSC0_BR 21-21
SSC0_CLC 21-21
SSC0_CON 21-21
SSC0_ESRC 21-21
SSC0_ID 21-21

SSC0_RB 21-21
SSC0_RSRC 21-21
SSC0_TB 21-21
SSC0_TSRC 21-21
SSC1_BR 21-22
SSC1_CLC 21-21
SSC1_CON 21-22
SSC1_ESRC 21-22
SSC1_ID 21-22
SSC1_RB 21-22
SSC1_RSRC 21-22
SSC1_TB 21-22
SSC1_TSRC 21-22
STM module registers 17-4
STM_CAP 17-6, 21-15
STM_CLC 17-7, 21-14
STM_ID 21-14
STM_TIM0 17-5, 21-14
STM_TIM1 17-5, 21-14
STM_TIM2 17-5, 21-14
STM_TIM3 17-5, 21-14
STM_TIM4 17-6, 21-14
STM_TIM5 17-6, 21-15
STM_TIM6 17-6, 21-15
SWEVT 20-13, 21-84
SYSCON 2-29, 2-32, 21-84

T
TR0EVT 20-14, 21-84
TR1EVT 20-14, 21-84

W
WDT module registers 18-28
WDT_CON0 18-29, 21-12
WDT_CON1 18-31, 21-12
WDT_SR 18-32, 21-12
User’s Manual 22-20 V2.0, 2001-02

h t t p : / / w w w . i n f i n e o n . c o m

Published by Infineon Technologies AG

Infineon goes for Business Excellence

“Business excellence means intelligent approaches and clearly
defined processes, which are both constantly under review and
ultimately lead to good operating results.
Better operating results and business excellence mean less
idleness and wastefulness for all of us, more professional
success, more accurate information, a better overview and,
thereby, less frustration and more satisfaction.”

Dr. Ulrich Schumacher

	Table of Contents
	1 Introduction
	1.1 About this Document
	1.1.1 Related Documentations
	1.1.2 Textual Conventions
	1.1.3 Reserved, Undefined, and Unimplemented Terminology
	1.1.4 Register Access Modes
	1.1.5 Abbreviations

	1.2 System Architecture Features of the TC1775
	1.3 Block Diagram
	1.4 On-Chip Peripheral Units of the TC1775
	1.4.1 Serial Interfaces
	1.4.1.1 Asynchronous/Synchronous Serial Interfaces
	1.4.1.2 High-Speed Synchronous Serial Interfaces
	1.4.1.3 TwinCAN Interface
	1.4.1.4 Serial Data Link Interface

	1.4.2 Timer Units
	1.4.2.1 General Purpose Timer Unit
	1.4.2.2 General Purpose Timer Array

	1.4.3 Analog-to-Digital Converters

	1.5 Pin Definitions and Functions

	2 TC1775 Processor Architecture
	2.1 Central Processing Unit
	2.1.1 Instruction Fetch Unit
	2.1.2 Execution Unit
	2.1.3 General Purpose Register File
	2.1.4 Program State Registers
	2.1.5 Data Types
	2.1.6 Addressing Modes
	2.1.7 Instruction Formats
	2.1.8 Tasks and Contexts
	2.1.8.1 Upper and Lower Contexts
	2.1.8.2 Context Save Areas
	2.1.8.3 Fast Context Switching

	2.1.9 Interrupt System
	2.1.10 Trap System
	2.1.11 Protection System
	2.1.11.1 Permission Levels
	2.1.11.2 Memory Protection Model
	2.1.11.3 Watchdog Timer and ENDINIT Protection

	2.1.12 Reset System

	2.2 Processor Registers
	2.2.1 Program State Information Registers
	2.2.1.1 Program Counter (PC)
	2.2.1.2 Program Status Word (PSW)
	2.2.1.3 Previous Context Information Register (PCXI)

	2.2.2 Context Management Registers
	2.2.2.1 Free Context List Head Pointer (FCX)
	2.2.2.2 Previous Context Pointer (PCX)

	2.2.3 Free Context List Limit Pointer (LCX)
	2.2.4 Stack Management
	2.2.4.1 Interrupt Stack Pointer (ISP)

	2.2.5 Interrupt and Trap Control
	2.2.5.1 Interrupt Vector Table Pointer (BIV)
	2.2.5.2 Trap Vector Table Pointer (BTV)

	2.2.6 System Control Register
	2.2.7 Memory Protection Registers
	2.2.8 Debug Registers
	2.2.9 CSFR Address Table

	2.3 Instruction Set Overview
	2.3.1 Arithmetic Instructions
	2.3.1.1 Integer Arithmetic
	2.3.1.2 DSP Arithmetic

	2.3.2 Compare Instructions
	2.3.3 Bit Operations
	2.3.4 Address Arithmetic
	2.3.5 Address Comparison
	2.3.6 Branch Instructions
	2.3.6.1 Unconditional Branch
	2.3.6.2 Conditional Branch
	2.3.6.3 Loop Instructions

	2.3.7 Load and Store Instructions
	2.3.7.1 Load/Store Basic Data Types
	2.3.7.2 Load Bit
	2.3.7.3 Store Bit and Bit Field

	2.3.8 Context Related Instructions
	2.3.8.1 Context Saving and Restoring
	2.3.8.2 Context Loading and Storing

	2.3.9 System Instructions
	2.3.9.1 System Call
	2.3.9.2 Synchronization Primitives
	2.3.9.3 Access to the Core Special Function Registers
	2.3.9.4 Enabling/Disabling the Interrupt System
	2.3.9.5 RET and RFE
	2.3.9.6 Trap Instructions
	2.3.9.7 No Operation

	2.3.10 16-Bit Instructions

	2.4 CPU Pipelines
	2.4.1 CPU Pipeline Overview
	2.4.2 Integer and Load/Store Pipelines
	2.4.3 Loop Pipeline
	2.4.4 Context Operations

	3 Clock System
	3.1 Clock Generation Unit
	3.1.1 Oscillator Circuit
	3.1.2 Phase-Locked Loop (PLL)
	3.1.2.1 N-Divider
	3.1.2.2 VCO Frequency Ranges
	3.1.2.3 Lock Detection
	3.1.2.4 K-Divider
	3.1.2.5 Clock Source Control
	3.1.2.6 Enable/Disable Control

	3.1.3 Determining the System Clock Frequency
	3.1.3.1 PLL Bypass Operation
	3.1.3.2 VCO Bypass Operation
	3.1.3.3 PLL Operation

	3.1.4 PLL Clock Control and Status Register
	3.1.5 Startup Operation
	3.1.6 PLL Loss of Lock Operation

	3.2 Power Management and Clock Gating
	3.2.1 Clock Control
	3.2.2 Module Clock Generation
	3.2.3 Clock Control Registers
	3.2.4 CLC Register Implementations

	3.3 RTC Clock Generator

	4 System Control Unit
	4.1 Overview
	4.2 Registers Overview
	4.3 SCU Control Register
	4.4 Port 5 Trace Control
	4.5 Identification Registers

	5 Reset and Boot Operation
	5.1 Overview
	5.2 Reset Registers
	5.2.1 Reset Status Register (RST_SR)
	5.2.2 Reset Request Register (RST_REQ)

	5.3 Reset Operations
	5.3.1 Power-On Reset
	5.3.2 External Hardware Reset
	5.3.3 Software Reset
	5.3.4 Watchdog Timer Reset
	5.3.4.1 Watchdog Timer Reset Lock
	5.3.4.2 Deep-Sleep Wake-Up Reset

	5.3.5 State of the TC1775 after Reset

	5.4 Booting Scheme
	5.4.1 Hardware Booting Scheme
	5.4.2 Software Booting Scheme
	5.4.3 Boot Options
	5.4.4 Boot Configuration Handling
	5.4.5 Normal Boot Options
	5.4.6 Debug Boot Options

	6 Power Management
	6.1 Power Management Overview
	6.2 Power Management Control Registers
	6.2.1 Power Management Control Register PMG_CON
	6.2.2 Power Management Control and Status Register PMG_CSR

	6.3 Power Management Modes
	6.3.1 Idle Mode
	6.3.2 Sleep Mode
	6.3.2.1 Entering Sleep Mode
	6.3.2.2 TC1775 State During Sleep Mode
	6.3.2.3 Exiting Sleep Mode

	6.3.3 Deep Sleep Mode
	6.3.3.1 Entering Deep Sleep Mode
	6.3.3.2 TC1775 State During Deep Sleep Mode
	6.3.3.3 Exiting Deep Sleep Mode
	6.3.3.4 Exiting Deep Sleep Mode With A Power-On Reset Signal
	6.3.3.5 Exiting Deep Sleep Mode With an NMI Signal

	6.3.4 Summary of TC1775 Power Management States

	7 Memory Map of On-Chip Local Memories
	7.1 TC1775 Address Map
	7.2 Memory Segment 15 - Peripheral Units

	8 Program Memory Unit
	8.1 Memories Controlled by PMU
	8.2 Scratch-Pad RAM, SPRAM
	8.3 Instruction Cache, ICACHE
	8.3.1 Cache Organization
	8.3.2 Cache Bypass Control
	8.3.3 Refill Buffer
	8.3.4 Refill Sequence for Cache and Refill Buffer
	8.3.5 Cache Flush Operation

	8.4 External Code Fetches via External Bus Interface Unit
	8.5 Boot ROM
	8.5.1 Bootstrap Loader Support

	8.6 PMU Registers
	8.6.1 PMU Control Register
	8.6.2 External Instruction Fetch Control Register

	9 Data Memory Unit
	9.1 DMU Trap Generation
	9.1.1 FPI Bus Error
	9.1.2 Range Error
	9.1.3 DMU Register Access Error
	9.1.4 Cache Management Error

	9.2 Overlay Functionality
	9.2.1 Redirection From External Code to Internal Data Memory
	9.2.2 Redirection From External Code to External Data Memory
	9.2.3 Redirection From External Code via CODE to External Data Memory
	9.2.4 Redirection From Ports to External Data Memory

	9.3 DMU Registers
	9.3.1 Control Register
	9.3.2 Synchronous Trap Flag Register
	9.3.3 Asynchronous Trap Flag Register
	9.3.4 Overlay Functionality Registers

	10 Memory Protection System
	10.1 Memory Protection Overview
	10.2 Memory Protection Registers
	10.2.1 PSW Protection Fields
	10.2.2 Data Memory Protection Register
	10.2.3 Code Memory Protection Register

	10.3 Sample Protection Register Set
	10.4 Memory Access Checking
	10.4.1 Permitted versus Valid Accesses
	10.4.2 Crossing Protection Boundaries

	11 Parallel Ports
	11.1 General Port Operation
	11.2 Port Kernel Registers
	11.2.1 Data Output Register
	11.2.2 Data Input Register
	11.2.3 Direction Register
	11.2.4 Open Drain Control Register
	11.2.5 Input Configuration Register
	11.2.6 Pull-Up/Pull-Down Device Control
	11.2.7 Output Characteristics Control Register
	11.2.8 Alternate Port Functions
	11.2.8.1 Alternate Input Functions
	11.2.8.2 Alternate Output Functions

	11.3 Port 0
	11.3.1 Features
	11.3.2 Registers
	11.3.3 Port Configuration and Function

	11.4 Port 1
	11.4.1 Features
	11.4.2 Registers
	11.4.3 Port Configuration and Function

	11.5 Port 2
	11.5.1 Features
	11.5.2 Registers
	11.5.3 Port Configuration and Function

	11.6 Port 3
	11.6.1 Features
	11.6.2 Registers
	11.6.3 Port Configuration and Function

	11.7 Port 4
	11.7.1 Features
	11.7.2 Registers
	11.7.3 Port Configuration and Function

	11.8 Port 5
	11.8.1 Features
	11.8.2 Registers
	11.8.3 Port Configuration and Function

	11.9 Port 6
	11.9.1 Features
	11.9.2 Port 6 Functions

	11.10 Port 7
	11.10.1 Features
	11.10.2 Port 7 Functions

	11.11 Port 8
	11.11.1 Features
	11.11.2 Registers
	11.11.3 Port Configuration and Function

	11.12 Port 9
	11.12.1 Features
	11.12.2 Registers
	11.12.3 Port Configuration and Function

	11.13 Port 10
	11.13.1 Features
	11.13.2 Registers
	11.13.3 Port Configuration and Function

	11.14 Port 11
	11.14.1 Features
	11.14.2 Registers
	11.14.3 Port Configuration and Function

	11.15 Port 12
	11.15.1 Features
	11.15.2 Registers
	11.15.3 Port Configuration and Function

	11.16 Port 13
	11.16.1 Features
	11.16.2 Registers
	11.16.3 Port Configuration and Function

	12 External Bus Unit
	12.1 Overview
	12.2 EBU Features
	12.3 Basic EBU Operation
	12.3.1 Internal to External Operation
	12.3.2 External to Internal Operation

	12.4 EBU Signal Description
	12.4.1 Output Clock, CLKOUT
	12.4.2 Address Bus, A[25:0]
	12.4.3 Address/Data Bus, AD[31:0]
	12.4.4 Read/Write Strobes, RD and RD/WR
	12.4.5 Address Latch Enable, ALE
	12.4.6 Byte Control Signals, BCx
	12.4.7 Variable Wait State Control, WAIT
	12.4.8 Chip Select Lines, CSx
	12.4.9 EBU Arbitration Signals, HOLD, HLDA and BREQ
	12.4.10 EBU Chip Select, CSFPI
	12.4.11 Instruction Fetch Indication Signal, CODE
	12.4.12 Emulation Support Signals, CSEMU and CSOVL

	12.5 Detailed Internal to External EBU Operation
	12.5.1 EBU Address Regions
	12.5.1.1 Address Region Selection
	12.5.1.2 Address Region Parameters

	12.5.2 Driver Turn-Around Wait States
	12.5.3 Data Width of External Devices
	12.5.4 Basic Access Timing
	12.5.4.1 Access to Non-Multiplexed Devices
	12.5.4.2 Access to Multiplexed Devices

	12.6 Detailed External to Internal EBU Operation
	12.6.1 EBU Signal Direction
	12.6.2 Address Translation
	12.6.3 External to Internal Access Controls
	12.6.4 Basic Access Timing

	12.7 Arbitration
	12.7.1 External Bus Arbitration
	12.7.1.1 Arbitration Modes
	12.7.1.2 Arbitration Signals
	12.7.1.3 Arbitration Sequence

	12.7.2 Internal Request to the EBU
	12.7.3 External Requests to the EBU
	12.7.4 Atomic Read-Modify-Write Accesses
	12.7.4.1 Internal to External Read-Modify-Write Access
	12.7.4.2 External to Internal Read-Modify-Write Access

	12.8 EBU Boot Process
	12.9 Emulation Support
	12.9.1 Emulation Boot
	12.9.2 Overlay Memory

	12.10 External Instruction Fetches
	12.10.1 Signal List
	12.10.2 Basic Functions
	12.10.3 External Instruction Fetch Control Register
	12.10.4 Cycle Definitions of Burst Mode Timing
	12.10.5 Typical Burst Flash Memory Configuration
	12.10.6 Arbitration between EBU and PMU for External Accesses

	12.11 EBU Registers
	12.11.1 Clock Control Register
	12.11.2 Global Control Register
	12.11.3 Address Select Registers
	12.11.4 Bus Configuration Registers
	12.11.5 Emulator Configuration Register
	12.11.6 Emulator Bus Configuration Register
	12.11.7 Emulator Address Select Register
	12.11.8 External Access Configuration Register
	12.11.9 EBU Register Address Range

	13 Interrupt System
	13.1 Overview
	13.2 External Interrupts
	13.3 Service Request Nodes
	13.3.1 Service Request Control Registers
	13.3.1.1 Service Request Flag (SRR)
	13.3.1.2 Request Set and Clear Bits (SETR, CLRR)
	13.3.1.3 Enable Bit (SRE)
	13.3.1.4 Service Request Flag (SRR)
	13.3.1.5 Type-of-Service Control (TOS)
	13.3.1.6 Service Request Priority Number (SRPN)

	13.4 Interrupt Control Units
	13.4.1 Interrupt Control Unit (ICU)
	13.4.1.1 ICU Interrupt Control Register (ICR)
	13.4.1.2 Operation of the Interrupt Control Unit (ICU)

	13.4.2 PCP Interrupt Control Unit (PICU)

	13.5 Arbitration Process
	13.5.1 Controlling the Number of Arbitration Cycles
	13.5.2 Controlling the Duration of Arbitration Cycles

	13.6 Entering an Interrupt Service Routine
	13.7 Exiting an Interrupt Service Routine
	13.8 Interrupt Vector Table
	13.9 Usage of the TC1775 Interrupt System
	13.9.1 Spanning Interrupt Service Routines Across Vector Entries
	13.9.2 Configuring Ordinary Interrupt Service Routines
	13.9.3 Interrupt Priority Groups
	13.9.4 Splitting Interrupt Service Across Different Priority Levels
	13.9.5 Using different Priorities for the same Interrupt Source
	13.9.6 Software Initiated Interrupts
	13.9.7 Interrupt Priority 1

	13.10 CPU Service Request Nodes
	13.11 Service Request Register Table

	14 Trap System
	14.1 Trap System Overview
	14.2 Trap Classes
	14.2.1 Synchronous Traps
	14.2.2 Asynchronous Traps
	14.2.3 Hardware Traps
	14.2.4 Software Traps
	14.2.5 Trap Descriptions

	14.3 Trap Vector Table
	14.3.1 Entering a Trap Service Routine

	14.4 Non-Maskable Interrupt
	14.4.1 NMI Status Register
	14.4.2 External NMI Input
	14.4.3 Phase-Locked Loop NMI
	14.4.4 Watchdog Timer NMI

	15 Peripheral Control Processor
	15.1 Peripheral Control Processor Overview
	15.2 PCP Architecture
	15.2.1 PCP Processor
	15.2.2 PCP Code Memory
	15.2.3 PCP Parameter RAM
	15.2.4 FPI Bus Interface
	15.2.5 PCP Interrupt Control Unit and Service Request Nodes

	15.3 PCP Programming Model
	15.3.1 General Purpose Register Set of the PCP
	15.3.1.1 Register R0
	15.3.1.2 Registers R1, R2, and R3
	15.3.1.3 Registers R4 and R5
	15.3.1.4 Register R6
	15.3.1.5 Register R7

	15.3.2 Contexts and Context Models
	15.3.2.1 Context Models
	15.3.2.2 Context Save Area
	15.3.2.3 Context Save and Restore Operation for CR6 and CR7
	15.3.2.4 Initialization of the Contexts

	15.3.3 Channel Programs
	15.3.3.1 Channel Restart Mode
	15.3.3.2 Channel Resume Mode

	15.4 PCP Operation
	15.4.1 PCP Initialization
	15.4.2 Channel Invocation and Context Restore Operation
	15.4.3 Channel Exit and Context Save Operation
	15.4.3.1 Normal Exit
	15.4.3.2 Error Condition Channel Exit
	15.4.3.3 Debug Exit

	15.5 PCP Interrupt Operation
	15.5.1 Issuing Service Requests to CPU or PCP
	15.5.2 PCP Interrupt Control Unit
	15.5.3 PCP Service Request Nodes
	15.5.4 Issuing PCP Service Requests
	15.5.4.1 Service Request on EXIT Instruction
	15.5.4.2 Service Request on Error
	15.5.4.3 Queue Full Operation

	15.6 PCP Error Handling
	15.6.1 Enforced PRAM Partitioning
	15.6.2 Channel Watchdog
	15.6.3 Invalid Opcode
	15.6.4 Instruction Address Error

	15.7 Instruction Set Overview
	15.7.1 DMA Primitives
	15.7.2 Load and Store
	15.7.3 Arithmetic and Logical Instructions
	15.7.4 Bit Manipulation
	15.7.5 Flow Control
	15.7.6 Addressing Modes
	15.7.6.1 FPI Bus Addressing
	15.7.6.2 PRAM Addressing
	15.7.6.3 Bit Addressing
	15.7.6.4 Flow Control Destination Addressing

	15.8 Accessing PCP Resources from the FPI Bus
	15.8.1 Access to the PCP Control Registers
	15.8.2 Access to the PRAM
	15.8.3 Access to the PCODE

	15.9 Debugging the PCP
	15.10 PCP Registers
	15.10.1 PCP Control and Status Register, PCP_CS
	15.10.2 PCP Error/Debug Status Register, PCP_ES
	15.10.3 PCP Interrupt Control Register, PCP_ICR
	15.10.4 PCP Service Request Control Register 0 (TOS = 0)
	15.10.5 PCP Service Request Control Register 1 (TOS = 0)
	15.10.6 PCP Service Request Control Register 2 (TOS = 1)
	15.10.7 PCP Service Request Control Register 3 (TOS = 1)

	15.11 PCP Instruction Set Details
	15.11.1 Instruction Codes and Fields
	15.11.1.1 Conditional Codes
	15.11.1.2 Instruction Fields

	15.11.2 Counter Operation for COPY Instruction
	15.11.3 Divide and Multiply Instructions
	15.11.4 ADD, 32-Bit Addition
	15.11.5 AND, 32-Bit Logical AND
	15.11.6 CHKB, Check Bit
	15.11.7 CLR, Clear Bit
	15.11.8 COMP, 32-Bit Compare
	15.11.9 COPY, DMA Instruction
	15.11.10 DEBUG, Debug Instruction
	15.11.11 DINIT, Divide Initialization Instruction
	15.11.12 DSTEP, Divide Instruction
	15.11.13 INB, Insert Bit
	15.11.14 EXIT, Exit Instruction
	15.11.15 JC, Jump Conditionally
	15.11.16 JL, Jump Long Unconditional
	15.11.17 LD, Load
	15.11.18 LDL, Load 16-bit Value
	15.11.19 Multiply Initialization Instruction
	15.11.20 MOV, Move Register to Register
	15.11.21 Multiply Instructions
	15.11.22 NEG, Negate
	15.11.23 NOP, No Operation
	15.11.24 NOT, Logical NOT
	15.11.25 OR, Logical OR
	15.11.26 PRI, Prioritize
	15.11.27 RL, Rotate Left
	15.11.28 RR, Rotate Right
	15.11.29 SET, Set Bit
	15.11.30 SHL, Shift Left
	15.11.31 SHR, Shift Right
	15.11.32 ST, Store
	15.11.33 SUB, 32-Bit Subtract
	15.11.34 XOR, 32-Bit Logical Exclusive OR
	15.11.35 Flag Updates of Instructions

	15.12 Programming of the PCP
	15.12.1 Initial PC of a Channel Program
	15.12.1.1 Channel Entry Table
	15.12.1.2 Channel Resume

	15.12.2 Channel Management for Small and Minimum Contexts
	15.12.3 Unused Registers as Globals or Constants
	15.12.4 Dispatch of Low Priority Tasks
	15.12.5 Code Reuse Across Channels (Call and Return)
	15.12.6 Case-like Code Switches (Computed Go-To)
	15.12.7 Simple DMA operation

	15.13 PCP Programming Notes and Tips
	15.13.1 Notes on PCP Configuration
	15.13.2 General Purpose Register Use
	15.13.3 Implementing Divide Algorithms
	15.13.4 Implementing Multiply Algorithms

	15.14 PCP Implementation in TC1775
	15.14.1 PCP Memories
	15.14.2 PCP Register Address Range

	16 FPI Bus and Bus Control
	16.1 FPI Bus Overview
	16.2 Bus Control Unit
	16.2.1 FPI Bus Arbitration
	16.2.1.1 Arbitration Priority
	16.2.1.2 Bus Starvation Protection

	16.2.2 Error Handling
	16.2.3 BCU Power Saving Mode
	16.2.4 BCU Registers
	16.2.4.1 BCU Control Register
	16.2.4.2 BCU Debug Registers
	16.2.4.3 BCU Service Request Control Register

	17 System Timer
	17.1 Overview
	17.2 Kernel Functions
	17.3 Kernel Registers
	17.4 External Register
	17.5 STM Register Address Ranges

	18 Watchdog Timer
	18.1 Watchdog Timer Overview
	18.2 Features of the Watchdog Timer
	18.3 The EndInit Function
	18.4 Watchdog Timer Operation
	18.4.1 WDT Register Overview
	18.4.2 Modes of the Watchdog Timer
	18.4.2.1 Time-Out Mode
	18.4.2.2 Normal Mode
	18.4.2.3 Disable Mode
	18.4.2.4 Prewarning Mode

	18.4.3 Password Access to WDT_CON0
	18.4.4 Modify Access to WDT_CON0
	18.4.5 Term Definitions for WDT_CON0 Accesses
	18.4.6 Detailed Descriptions of the WDT Modes
	18.4.6.1 Time-Out Mode Details
	18.4.6.2 Normal Mode Details
	18.4.6.3 Disable Mode Details
	18.4.6.4 Prewarning Mode Details
	18.4.6.5 WDT Operation During Power-Saving Modes
	18.4.6.6 WDT Operation in OCDS Suspend Mode

	18.4.7 Determining WDT Periods
	18.4.7.1 Time-out Period
	18.4.7.2 Normal Period
	18.4.7.3 WDT Period During Power-Saving Modes

	18.5 Handling the Watchdog Timer
	18.5.1 System Initialization
	18.5.2 Re-opening Access to Critical System Registers
	18.5.3 Servicing the Watchdog Timer
	18.5.4 Handling the User-Definable Password Field
	18.5.5 Determining the Required Values for a WDT Access

	18.6 Watchdog Timer Registers
	18.6.1 Watchdog Timer Control Register 0
	18.6.2 Watchdog Timer Control Register 1
	18.6.3 Watchdog Timer Status Register

	19 Real Time Clock
	19.1 RTC Kernel Description
	19.1.1 RTC Control
	19.1.2 System Clock Operation
	19.1.3 Cyclic Interrupt Generation
	19.1.4 Alarm Interrupt Generation
	19.1.5 48-bit Timer Operation
	19.1.6 Defining the RTC Time Base
	19.1.7 Increased RTC Accuracy through Software Correction
	19.1.8 Hardware-dependent RTC Accuracy
	19.1.9 Interrupts

	19.2 RTC Kernel Registers
	19.3 Implementation of the RTC
	19.3.1 RTC Module Related External Registers
	19.3.1.1 Clock Control Register
	19.3.1.2 Interrupt Register
	19.3.1.3 Interrupt Cycle Times and Reload Values

	19.3.2 RTC Register Address Ranges

	20 On-Chip Debug Support
	20.1 TriCore CPU Debug Support
	20.1.1 Basic Concepts
	20.1.2 Debug Event Generation
	20.1.2.1 External Debug Break Input
	20.1.2.2 Software Debug Event Generation
	20.1.2.3 Execution of a MTCR or MFCR Instruction
	20.1.2.4 Debug Event Generation from Debug Triggers

	20.1.3 Debug Triggers
	20.1.3.1 Protection Mechanism
	20.1.3.2 Combination of Triggers

	20.1.4 Actions taken on a Debug Event
	20.1.4.1 Assert an External Pin BRKOUT
	20.1.4.2 Halt
	20.1.4.3 Breakpoint Trap
	20.1.4.4 Software Breakpoint

	20.1.5 OCDS Registers

	20.2 PCP Debug Support
	20.3 Trace Module
	20.3.1 Overview
	20.3.2 Pipeline Status Signals
	20.3.2.1 Synchronizing with the Status and Indirect Streams

	20.3.3 Indirect Addresses
	20.3.3.1 Indirect Sync
	20.3.3.2 Example

	20.3.4 Trace Output Control

	20.4 Debugger Interface (Cerberus)
	20.4.1 RW Mode
	20.4.1.1 Entering RW Mode
	20.4.1.2 Data Type Support
	20.4.1.3 FPI Bus Master Interface

	20.4.2 Communication Mode
	20.4.3 System Security
	20.4.4 Triggered Transfers
	20.4.4.1 Tracing of Memory Locations

	20.4.5 Trace with External Bus Address
	20.4.6 Power Saving
	20.4.7 Registers
	20.4.7.1 IOCONF Register
	20.4.7.2 IOSR Register
	20.4.7.3 TRADDR Register
	20.4.7.4 IOADDR, COMDATA and RWDATA Registers

	20.5 OCDS Register Address Ranges

	21 Register Overview
	21.1 Segments 0 - 14
	21.1.1 Address Map
	21.1.2 Registers

	21.2 Segment 15 (Peripheral Units)
	21.2.1 Address Map
	21.2.2 Registers

	22 Index
	22.1 Keyword Index
	22.2 Register Index

