
phyCORE-PXA270

OSELAS.BSP()
Phytec phyCORE-PXA270

Quick Start Manual
http://www.oselas.com

© 2006 by Pengutronix, Hildesheim. All Rights Reserved.

$Rev: 314 $ $Date: 2006-05-10 21:07:56 +0200 (Wed, 10 May 2006) $

1

Contents

1 PTXdist Installation 3
1.1 Building Blocks . 3
1.2 Prerequisites . 3
1.3 Installation from the Sources . 4

2 Toolchain 7
2.1 Using Existing Toolchains . 8
2.2 Toolchain Building . 8

3 Building the ”light” Image for phyCORE-PXA270 10
3.1 Preparing a Build . 10
3.2 Compiling the Root Filesystem . 11
3.3 Building a Flash Image . 11

4 Booting Linux 12
4.1 Target Side Preparation . 13
4.2 Default U-Boot environment . 13
4.3 Remote-Booting Linux . 16

4.3.1 Development Host Preparations . 16
4.3.2 Preparations on the Embedded Board 17
4.3.3 Booting the Embedded Board . 17

4.4 Stand-Alone Booting Linux . 17
4.4.1 Development Host Preparations . 17
4.4.2 Preparations on the Embedded Board 18
4.4.3 Booting the Embedded Board . 18

5 Accessing Peripherals 20
5.1 NOR Flash . 21
5.2 PWM Units . 21
5.3 GPIO . 23
5.4 GPIO Events . 24
5.5 CAN Bus . 24

2

Contents

5.5.1 Socket-CAN . 25
5.5.2 Starting and Configuring Interfaces from the Command Line 25
5.5.3 Using the CAN Interfaces from the Command Line 26
5.5.4 Programming CAN Interfaces in C . 27
5.5.5 Sending CAN Messages . 28
5.5.6 Receiving CAN Messages . 29
5.5.7 Closing Interfaces & Further Reading 30
5.5.8 Getting help . 30

5.6 Network . 31
5.7 LCD Graphics . 31
5.8 LCD Backlight . 31
5.9 SPI . 32
5.10 GPIO Expander . 32
5.11 AC97 Based Audio . 33

5.11.1 Sound Output . 33
5.11.2 Sound Record . 33
5.11.3 Advanced Sound Handling . 34

5.12 AC97 Based Touchscreen . 35
5.13 AC97 Based Analogue Converter . 37
5.14 AC97 Based GPIO . 37
5.15 X11 Graphics . 38
5.16 USB Host Controller . 38
5.17 I²C Master . 38

5.17.1 I²C Realtime Clock (RTC8564) . 38
5.18 Status LEDs . 39

6 Some hints on using phyCORE-PXA270 40
6.1 Manually Setting up Flash Based Root Filesystem 40

6.1.1 Partitioning the Local Flash Device . 40
6.1.2 Writing a Root Filesystem into Flash . 41
6.1.3 Booting from Local Flash . 42
6.1.4 Using Local Flash at Runtime . 42

6.2 Decreasing Boot Time . 43
6.2.1 Disabling Console Output During Kernel Startup 43

7 Getting help 44
7.1 Mailing lists . 44
7.2 News groups . 44
7.3 Chat/IRC . 45
7.4 Miscellaneous . 45

3

Contents

8 Customer Support 46
8.1 Free of charge support . 46
8.2 Commercial support . 46

4

1 PTXdist Installation

1.1 Building Blocks

The main tool of the OSELAS.BoardSupport() Package is PTXdist. So before starting any
work we’ll have to install PTXdist on the development host.

PTXdist consists of the following parts:

• The ptxdist program, which is installed on the development host during the in-
stallation process. ptxdist is called to trigger any actions, like building a software
packet, cleaning a tree etc. Usually the ptxdist program is used in a workspace di-
rectory, which contains all project relevant files.

• A configuration system. The config system is used to customize a configuration, which
contains information about which packages have to be built and which options are
selected.

• Patches. Due to the fact that some upstream packages are not bug free – especially
with regard to cross compilation – it is often necessary to patch the original soft-
ware. PTXdist contains a mechanism to automatically apply patches to packages.
The patches are bundled into a separate archive. Nevertheless, they are necessary to
build a working system.

• Package descriptions. For each software component there is a ”recipe” file, specify-
ing which actions have to be done to prepare and compile the software. Additionally,
packages contain their configuration sniplet for the config system.

1.2 Prerequisites

Before PTXdist can be installed it has to be checked if all necessary programs are installed
on the development host. The configure script will stop if it discovers that something is
missing.

5

1 PTXdist Installation

1.3 Installation from the Sources

To install PTXdist, three archives have to be extracted:

• ptxdist-0.10.4.tgz , containing the software
• ptxdist-patches-0.10.4.tar.gz , containing all patches for upstream packets
• OSELAS.BSP-phyCORE-PXA270-3.tar.gz , containing the board support pack-

age (project) for the Phytec phyCORE-PXA270 board.

The PTXdist and patches packets have to be extracted into some temporary directory, for
example the local directory in the user’s home. If this directory does not exist, we have
to create it and change into it

˜# cd
˜# mkdir local
˜# cd local

At this point we mount the CDROM with the PTXdist tar files and inflate the first two of
them into the temporary directory.

˜/local# mount /media/cdrom
˜/local# tar -zxf /media/cdrom/

OSELAS.BSP-phyCORE-PXA270-3/
ptxdist-0.10.4.tgz

˜/local# tar -zxf /media/cdrom/
OSELAS.BSP-phyCORE-PXA270-3/
ptxdist-0.10.4-patches.tar.gz

If everything goes well, we now have a PTXdist-0.10.4 directory, so we can change into it:

˜/local# cd ptxdist-0.10.4
˜/local/ptxdist-0.10.4# ls -l

total 168
-rw-r--r-- 1 rsc ptx 1547 Jan 26 17:29 COMPILE-TEST
-rw-r--r-- 1 rsc ptx 18361 Dec 27 12:46 COPYING
-rw-r--r-- 1 rsc ptx 2084 Jan 31 08:20 CREDITS
-rw-r--r-- 1 rsc ptx 41309 Feb 3 08:23 ChangeLog
drwxr-sr-x 3 rsc ptx 4096 Dec 27 12:46 Documentation
-rw-r--r-- 1 rsc ptx 58 Dec 27 12:46 INSTALL
-rw-r--r-- 1 rsc ptx 1275 Mar 8 18:05 Makefile
-rw-r--r-- 1 rsc ptx 1216 Mar 8 18:03 Makefile.in

6

1.3 Installation from the Sources

-rw-r--r-- 1 rsc ptx 3415 Feb 19 22:58 README
-rw-r--r-- 1 rsc ptx 949 Jan 26 17:29 README.Toolchains
-rw-r--r-- 1 rsc ptx 835 Dec 27 12:46 SPECIFICATION
-rw-r--r-- 1 rsc ptx 8927 Mar 1 07:36 TODO
-rw-r--r-- 1 rsc ptx 1901 Jan 26 17:29 TOOLCHAINS
drwxr-sr-x 3 rsc ptx 4096 Mar 8 18:44 bin
drwxr-sr-x 11 rsc ptx 4096 Mar 8 19:36 config
-rwxr-xr-x 1 rsc ptx 2306 Mar 8 18:03 configure
drwxr-sr-x 106 rsc ptx 4096 Mar 5 16:12 patches
drwxr-sr-x 4 rsc ptx 4096 Dec 27 12:45 pending_patches
drwxr-sr-x 35 rsc ptx 4096 Mar 4 16:49 projects
drwxr-sr-x 4 rsc ptx 20480 Mar 8 20:03 rules
drwxr-sr-x 7 rsc ptx 4096 Mar 8 18:07 scripts
drwxr-sr-x 3 rsc ptx 4096 Feb 11 13:42 tests

The PTXdist installation is based on GNU autotools, so the first thing to be done now is to
configure the packet:

˜/local/ptxdist-0.10.4# ./configure
checking version=0.10.4
checking prefix=/usr/local
checking topdir=/home/username/tmp/ptxdist-0.10.4
checking instdir=/usr/local/lib/ptxdist-0.10.4
creating Makefile
creating rules/Kconfig

Without further arguments PTXdist is configured to be installed into /usr/local , which
is the standard location for user installed programs. To change the installation path to
anything non-standard, we use the --prefix argument to the configure script. The
--help option offers more information about what else can be changed for the installation
process.

The installation paths are configured in a way that several PTXdist versions can be installed
in parallel. So if an old version of PTXdist is already installed there is no need to remove it.

One of the most important tasks for the configure script is to find out if all the programs
PTXdist depends on are already present on the development host. The script will stop with
an error message in case something is missing. If this happens, the missing tools have to
be installed from the distribution befor re-running the configure script.

7

1 PTXdist Installation

��
��
!

In this early PTXdist version not all tests are implemented in the configure
script yet. So if something goes wrong or you don’t understand some error
messages send a mail to support@pengutronix.de and help us improve
the tool.

When the configure script is finished successfully, we can now run

˜/local/ptxdist-0.10.4# make

All program parts are being compiled, and if there are no errors we can now install PTXdist
into it’s final location. In order to write to /usr/local , this step has to be performed as
root:

˜/local/ptxdist-0.10.4# su
[enter root password]
/home/username/local/ptxdist-0.10.4# make install
[...]

If we don’t have root access to the machine it is also possible to install into some other di-
rectory with the --prefix option. We need to take care that the bin/ directory below the
new installation dir is added to our $PATHenvironment variable (for example by exporting
it in ˜/.bashrc).

The installation is now done, so the temporary folder may now be removed

˜/local/ptxdist-0.10.4# cd
˜# rm -fr local/ptxdist-0.10.4

8

2 Toolchain

Before we can start building our first userland we need a cross toolchain. On Linux,
toolchains are no monolithic beasts. Most parts of what we need to cross compile code
for the embedded target comes from the GNU Compiler Collection, gcc. The gcc packet
includes the compiler frontend, gcc , plus several backend tools (cc1, g++, ld etc.) which
actually perform the different stages of the compile process. gcc does not contain the as-
sembler, so we also need the GNU Binutils package which provides lowlevel stuff.

Cross compilers and tools are usually named like the corresponding host tool, but with a
prefix – the GNU target. For example, the cross compilers for ARM and powerpc may look
like

• arm-softfloat-linux-gnu-gcc
• powerpc-unknown-linux-gnu-gcc

With these compiler frontends we can convert e.g. a C program into binary code for the
machine. So for example if a C program is to be compiled natively, it works like this:

˜# gcc test.c -o test

To build the same binary for the ARM architecture we have to use the cross compiler in-
stead of the native one:

˜# arm-softfloat-linux-gnu-gcc test.c -o test

Also part of what we consider to be the ”toolchain” is the runtime library (libc, dynamic
linker). All programs running on the embedded system are linked against the libc, which
also offers the interface from user space functions to the kernel.

The compiler and libc are very tightly coupled components: the second stage compiler,
which is used to build normal user space code, is being built against the libc itself. For
example, if the target does not contain a hardware floating point unit, but the toolchain
generates floating point code, it will fail. This is also the case when the toolchain builds
code optimized for i686 CPUs, whereas the target is i586.

9

2 Toolchain

So in order to make things working consistently it is necessary that the runtime libc is
identical with the libc the compiler was built against.

PTXdist doesn’t contain a pre-built binary toolchain. Remember that it’s not a distribution
but a development tool. But it can be used to build a toolchain for our target. Building the
toolchain usually has only to be done once. It may be a good idea to do that over night,
because it may take several hours, depending on the target architecture and development
host power.

2.1 Using Existing Toolchains

If a toolchain is already installed which is known to be working, the toolchain building step
with PTXdist may be omitted. We have to make sure that the PATH environment variable
points to the directory containing the toolchain components.

��
��
!

The projects shipped with PTXdist have been tested with the toolchains built
with the same PTXdist version. So if an external toolchain is being used which
isn’t known to be stable, a target may fail. Note that not all compiler versions
work properly in a cross environment.

2.2 Toolchain Building

PTXdist has several example projects included to build toolchains for different architec-
tures. To find out which example projects are being shipped with PTXdist we use the
ptxdist projects command.

As toolchain projects always start with toolchain , we can restrict the output to only
showing the toolchains:

˜# ptxdist projects | grep toolchain_
toolchain_arm-softfloat-linux-gnu-4.0.2_glibc_2.3.6_linux_2.6.14
toolchain_i586-unknown-linux-gnu-4.0.2_glibc_2.3.6_linux_2.6.14
toolchain_powerpc-unknown-linux-gnu-4.0.2_glibc-2.3.6_linux_2.6.13

PTXdist toolchains, internally built with crosstool (a community provided script to
build cross toolchains in a unified way), by default are being installed into the stan-
dard directory /opt/ptxdist-0.10.4/ <gcc-glibc-version >/ <gnu-target >.

10

2.2 Toolchain Building

So for example for the gcc-4.0.2 and glibc-2.3.6 based ARM toolchain with soft-
ware floating point support mentioned above, the toolchain directory shall be
/opt/ptxdist-0.10.4/gcc-4.0.2-glibc-2.3.6/arm-softfloat-linux-gnu .

A PTXdist project generally allows to build into some project defined directory; all
toolchain projects that come with PTXdist are configured to use the standard installation
paths mentioned above.

��
��
!

Usually the /opt directory is not world writable. So in order to build our
toolchain into that directory we need to use a root account to change the per-
missions so that the user can write (mkdir /opt/ptxdist-0.10.4;
chown <username> /opt/ptxdist- 0.10.4; chmod a+rwx
/opt/ptxdist-0.10.4).

To compile and install the toolchains we have to clone one of the predefined PTXdist
toolchain projects. In this book we will build all of our stuff in $HOME/work. If this
directory does not exist yet, we create it and change into it with

˜# cd
˜# mkdir work
˜# cd work

Now we clone the ARM toolchain project for the phyCORE-PXA270. ”Cloning” means that
we create a local working copy of the project shipped with PTXdist:

˜/work# ptxdist clone
toolchain arm-softfloat-linux-gnu-4.0.2 glibc 2.3.6 linux 2.6.14
cross-toolchain

The first argument to the ptxdist clone command is the project to be cloned, the second
one is the name of our working copy.

Now that we have changed into the toolchain project directory we can order PTXdist to
build our toolchain:

˜/work# cd cross-toolchain
˜/work/cross-toolchain# ptxdist go

At this stage we have to go to our boss and tell him that it’s probably time to go home for
the day. Even on reasonably fast machines the time to build a cross toolchain is something
like around 30 minutes up to one hour. Another possibility is to read the next chapters of
this manual, to find out how to start a new project.

When the compiler is finished, PTXdist is ready for prime time and we can continue with
our first project.

11

3 Building the ”light” Image for
phyCORE-PXA270

3.1 Preparing a Build

After having successfully built a toolchain for the target CPU, we can proceed with building
our first ”project”. Following the PTXdist nomenclature, a ”project” is a configuration that
specifies which ”packets” (programs) should go into a root filesystem.

In order to build a project we have to unpack the OSELAS.BSP-phyCORE-PXA270-3 for
the phyCORE-PXA270:

˜$ tar -zxf OSELAS.BSP-phyCORE-PXA270-3.tar.gz
˜$ cd OSELAS.BSP-phyCORE-PXA270-3

In a PTXdist project there always exists a ptxconfig file which defines the ”sched-
ule”, telling the build system which packets to build and which options to use. As the
phyCORE-PXA270 development kit is available in versions with and without a display,
the OSELAS.BSP-phyCORE-PXA270-3 contains two ptxconfig files. So for users who hap-
pen to have a kit without a display it is not necessary to build a full blown system including
an x.org server.

So what we have to do first is to select one of the ptxconfig files, ptxconfig.light :

˜/OSELAS.BSP-phyCORE-PXA270-3$ ptxdist select ptxconfig.light

The select command links the ptxconfig.light file to ptxconfig , which is the de-
fault file name for PTXdist project configuration files. Now for PTXdist it looks like there
is only one configuration, and that’s what we want.

Before we can actually start compiling our project, we’ll have to specify which toolchain
shall be used:

˜/OSELAS.BSP-phyCORE-PXA270-3$ ptxdist toolchain
/opt/ptxdist-0.10.4/gcc-4.0.2-glibc-2.3.6/
arm-softfloat-linux-gnu/bin

12

3.2 Compiling the Root Filesystem

3.2 Compiling the Root Filesystem

Now everything is prepared for PTXdist to compile our root filesystem. Starting the en-
gines is simply done with:

˜/OSELAS.BSP-phyCORE-PXA270-3$ ptxdist go

PTXdist does now automatically find out from the ptxconfig file which packages belong
to the projects and starts compiling their ”targetinstall” stages (that one that actually puts
the compiled binaries into the root filesystem). While doing this, PTXdist finds out about
all the dependencies between the packets and brings them into the correct order.

While the command ptxdist go is running we can watch it building all the different
stages of a packet. In the end the final root filesystem for the target board can be found in
the root/ directory and a bunch of .ipkg packets in the images/ directory, containing the
single applications the root filesystem consists of.

There are two things which are different between the ”final” root filesystem to be flashed
into the embedded system and the root/ tree: the device nodes are missing1 and the access
permissions are incorrect2.

3.3 Building a Flash Image

PTXdist can build a flash image from the root/ tree. As all necessary parameters for the
phyCORE-PXA270 are configured in the ptxconfig file, all we need to do is to run

˜/OSELAS.BSP-phyCORE-PXA270-3$ ptxdist images

Now the images/ directory contains a JFFS2 image (root.jffs2).

So after running ”ptxdist go ” and ”ptxdist images ”, we generally find the follow-
ing directories in the project workspace:

• in root/ a complete root filesystem to run on our target
(to be used as an NFS based filesystem)

• in images/ everything we need on our target packetised for easy handling
(to be used for running the target stand alone)

• in local/ a build environment to be used for external software projects

1There is no way to build them as a normal user, and PTXdist should never be run with root permissions.
2It is not possible to chown files for example to root.

13

4 Booting Linux

Now that there is a root filesystem in our workspace we’ll have to make it visible to the
phyCORE-PXA270. There are two possibilities to do this:

1. Booting from the development host, via network.
2. Making the root filesystem persistent in the onboard flash.

Figure 4.1: Booting the root filesystem, built with PTXdist, from the host via network and from flash.

Figure 4.1 shows both methods. On the left side the development host is connected to the
phyCORE-PXA270 with a serial nullmodem cable and via ethernet; the embedded board
boots into the bootloader, then issues a TFTP request on the network and boots the kernel
from the TFTP server on the host. Then, after decompressing the kernel into the RAM and
starting it, the kernel mounts it’s root filesystem via NFS from the original location of the
root/ directory in our PTXdist workspace.

14

4.1 Target Side Preparation

The other way is to provide all needed components to run on the traget itself. The Linux
kernel and the root filesystem is persistent in target’s flash. This means the only connection
needed is the nullmodem cable to see what is happen on our target.

This chapter describes how to setup our target with features supported by PTXdist to sim-
plify this challange.

4.1 Target Side Preparation

The phyCORE-PXA270 uses U-Boot as its bootloader. U-Boot can be customised with en-
vironment variables to support any boot constellation. OSELAS.BSP-phyCORE-PXA270-3
comes with a predefined environment setup to easily bring up the phyCORE-PXA270.

4.2 Default U-Boot environment

This is the default U-Boot environment, saved onto the target when ”ptxdist test setenv”
was run in advance. It is a general purpose environment and works for running with
network or as standalone (see next chapter for explanation).

Variable Value Meaning
ipaddr ip address IP of the target (if no DHCP is

used). Will be configured with
ptxdist boardsetup

serverip ip address IP of the server, needed for
loading the kernel image and
mounting the NFS root filesys-
tem (if no DHCP is used). Will
be configured with ptxdist
boardsetup

gatewayip ip address Gateway to use (if no DHCP is
used). Will be configured with
ptxdist boardsetup

netmask network mask Netmask to use (if no DHCP is
used). Will be configured with
ptxdist boardsetup

continued on next page

15

4 Booting Linux

continued from previous page
Variable Value Meaning
mtdids nor0=phys mapped flash Where to load kernel images in

the case flash is used as source
(standalone mode)

mtdparts mtdparts=phys mapped flash:256k(u-
boot)ro,4096k(system),-(root)

Description how the flash mem-
ory is partitioned. Note the dou-
ble mtdparts are required!

uimage uImage-pcm027 This filename will be used when
booting remotely

jffs2 root-pcm027.jffs2 This file will be used when up-
dating the rootfs in flash (see
variable prg jffs2).

bootargs base setenv bootargs console=ttyS0,115200 This is one part of the kernel pa-
rameters used by all configura-
tions. It defines the serial con-
sole to be used and its settings.

bootargs mtd setenv bootargs $(bootargs)
$(mtdparts)

This adds the flash partitioning
information to the kernel pa-
rameters.

bootargs flash setenv bootargs $(bootargs)
root=/dev/mtdblock2
rootfstype=jffs2

Defines the flash specific
bootargs to kernel for stan-
dalone mode

bootargs nfs setenv bootargs $(bootargs)
root=/dev/nfs ip=dhcp
nfsroot=$(serverip):$(nfsrootfs),v3,tcp

Defines the NFS specific
bootargs to kernel for remote
mode

nfsrootfs path to rootfs This directory is used in remote
mode. Will be configured with
ptxdist boardsetup

bootcmd flash run bootargs base bootargs mtd
bootargs flash; bootm 0x40000

This defines a command that
combines the kernel parameters
and boots a kernel from flash

bootcmd net run bootargs base bootargs mtd
bootargs nfs; tftpboot 0xa0200000
$(uimage);

This defines a command that
combines the kernel parameters
and boots a kernel from network

bootcmd run bootcmd flash Defines the command that
should run after powerup

continued on next page

16

4.2 Default U-Boot environment

continued from previous page
Variable Value Meaning
prg kernel tftpboot 0xa0200000 $(uimage); erase

nor0,1; cp.b 0xa0200000 0x40000
$(filesize)

This command is for conve-
nience only and replaces the ker-
nel image in flash

prg jffs2 tftpboot 0xa0200000 $(jffs2); erase
nor0,2; cp.b 0xa0200000 0x440000
$(filesize)

This command is for conve-
nience only and replaces the
root filesystem image in flash

Note: All identifiers in U-Boot are variables. But some contain other commands and vari-
able references. To run their contents, we can simple enter run variablename . If we do
so, variable references get replaced by their contents and commands are run.

Usually the environment doesn’t have to be set manually on our target. PTXdist comes
with an automated setup procedure to achieve a correct environment on the target.

Due to the fact some of the values of these U-Boot’s environment variables must meet our
local network environment and development host settings we have to define them prior to
running the automated setup procedure.

Note: At this point of time it makes sense to check if the serial connection is already work-
ing, because it is essential for any further step we will do.
We can try to connect to the target with our favorite terminal application (minicom or
kermit for example). With a powered target we identify the correct physical serial port
and ensure that the communication is working.
Make sure to leave this terminal application to unlock the serial port prior to the next steps.

To set up development host and target specific value settings we run the command

˜# ptxdist boardsetup

We navigate to ”Network Configuration” and replace the default settings with our local
network settings. In the next step we also should check if the ”Host’s Serial Configuration”
entries meet our local development host settings. Especially the ”serial port” must corre-
spond to our real physical connection. At least - to make the automated setup procedure
work - the ”uboot prompt” entry must be uboot > .

”Exit” the dialouge and and save your new settings.

The command

˜# ptxdist test setenv

now will automatically set up a correct default environment on the phyCORE-PXA270.
It should output a line like this when it was successfull:

u-boot: flashing standard environment PASS

17

4 Booting Linux

Note: If it fails, reading test.log will give further information about why it has failed.

We now must restart the phyCORE-PXA270 to activate the new environment settings. Then
we should run the ping command on the target’s ip address to check if the network settings
are working correctly on the target.

4.3 Remote-Booting Linux

The first method we probably want to try after building a root filesystem is the network-
remote boot variant. All we need is a network interface on the embedded board and a
network aware bootloader which can fetch the kernel from a TFTP server.

The network boot method has the advantage that we don’t have to do any flashing at all
to ”see” a file on the target board: All we have to do is to copy it to some location in
the root/ directory and it simply ”appears” on the embedded device. This is especially
helpful during the development phase of a project, where things are changing frequently.

4.3.1 Development Host Preparations

On the development host a TFTP server has to be installed and configured. The exact
method to do this is distribution specific; as the TFTP server is usually started by one of the
inetd servers, the manual sections describing inetd or xinetd should be consulted.

Usually TFTP servers are using the /tftpboot directory to fetch files from, so if we want
to push kernel images to this directory we have to make sure we are able to write there.
As the access permissions are normally configured in a way to let only user root write to
/tftpboot we have to gain access; a safe method is to use the sudo(8) command to push
our kernel:

˜# sudo cp images/linuximage /tftpboot/uImage-pcm027

The NFS server is not restricted to a certain filesystem location, so all we have to do on
most distributions is to configure /etc/exports and export our root filesystem to the
embedded network. In this example file the whole work directory is exported, and the
”lab network” between the development host is 192.168.23.0, so the IP addresses have to
be adapted to the local needs:

/home/<user>/work 192.168.23.0/255.255.255.0(rw,no_root_squash,sync)

Note: Replace <user> with your home directory name.

18

4.4 Stand-Alone Booting Linux

4.3.2 Preparations on the Embedded Board

We already provided the phyCORE-PXA270 with the default environment at page 15. So
there is no additional preparation required here.

4.3.3 Booting the Embedded Board

The default environment coming with the OSELAS.BSP-phyCORE-PXA270-3 has a prede-
fined script for booting from NFS. To use it, we can simple enter

uboot > run bootcmd net

This command should boot phyCORE-PXA270 into the login prompt.

As U-Boot automatically runs the bootcmd environment variable as a script after power-
on, we set this variable to start from NFS automatically:

uboot > setenv bootcmd ’run bootcmd net’

After the next reset or powercycle of the board it should boot the kernel from the TFTP
server, start it and mount the root filesystem via NFS.

Note: The default login account is root with an empty password.

4.4 Stand-Alone Booting Linux

Usually, after working with the NFS-Root system for some time, the rootfs has to be made
persistent in the onboard flash of the phyCORE-PXA270, without requiring the network
infrastructure any more. The following sections describe the steps necessary to bring the
rootfs into the onboard flash.

Only for preparation we need a network connection to the embedded board and a network
aware bootloader which can fetch any data from a TFTP server.

After preparation is done, the phyCORE-PXA270 can work independently from the devel-
opment host. We can ”cut” the network (and serial cable) and the phyCORE-PXA270 will
continue to work.

4.4.1 Development Host Preparations

If we already booted the phyCORE-PXA270 remotly (as described in the privious section)
all of the development host preparations are done.

19

4 Booting Linux

If not then on the development host has a TFTP server to be installed and configured. The
exact method to do this is distribution specific; as the TFTP server is usually started by one
of the inetd servers, the manual sections describing inetd or xinetd should be consulted.

Usually TFTP servers are using the /tftpboot directory to fetch files from, so if we want
to push data files to this directory we have to make sure we are able to write there. As
the access permissions are normally configured in a way to let only user root write to
/tftpboot we have to gain access.

4.4.2 Preparations on the Embedded Board

To boot phyCORE-PXA270 stand-alone anything needed to run a Linux system must be
locally accessible. So at this point of time we must replace any current content in phyCORE-
PXA270’s flash memory. To simplify this, OSELAS.BSP-phyCORE-PXA270-3 comes with
an automated setup procedure for this step.

To use this procedure run the command

˜# ptxdist test flash

Note: This command requires a serial and a network connection. The network connection
can be cut afterwards this step.

This command will automatically write a root filesystem to the correct flash partition on
the phyCORE-PXA270. It only works, if we priviously setup the environment variables
successfully (described at page 15).
The command should outputs a line like this when it was successfull:

u-boot: flashing root image PASS

Note: If it fails reading test.log will give further information about why it was failing.

4.4.3 Booting the Embedded Board

To check everything went successfully up to here, we can run the boot test.

˜# ptxdist test boot

This will check if the environment settings and flash partitioning works as expected, so the
target comes up in stand alone mode up to the login prompt.

To do it manually the default environment coming with the OSELAS.BSP-phyCORE-
PXA270-3 has a predefined script for booting stand-alone. To use it, we can simple enter

uboot > run bootcmd flash

20

4.4 Stand-Alone Booting Linux

This command should boot phyCORE-PXA270 into the login prompt.

As U-Boot automatically runs the bootcmd environment variable as a script after power-
on, we set this variable to start from NFS automatically:

uboot > setenv bootcmd ’run bootcmd flash’

After the next reset or powercycle of the board it should boot the kernel from the flash, start
it and mount the root filesystem also from flash.

Note: The default login account is root with an empty password.

21

5 Accessing Peripherals

Phytec’s phyCORE-PXA270 starter kit consists of the following individual boards:

1. The phyCORE-PXA270 module itself, containing the PXA270, RAM, flash, the GPIO
expander chip and several other peripherals.

2. The starter kit baseboard.

3. A GPIO breakout board.

To achieve maximum software re-use, the Linux kernel offers a sophisticated infrastructure,
layering software components into board specific parts. The OSELAS.BSP() tries to modu-
larize the kit features as far as possible; that means that when a customized baseboards or
even customer specific module is developed, most of the software support can be re-used
without error prone copy-and-paste. So the kernel code corresponding to the boards above
can be found in

1. arch/arm/mach-pxa/pcm027.c for the module
2. arch/arm/mach-pxa/pcm027-baseboard.c for the baseboard
3. arch/arm/mach-pxa/pcm027-gpio-expander.c for the breakout board.

In fact, software re-use is one of the most important features of the Linux kernel and espe-
cially of the ARM port, which always had to fight with an insane number of possibilities of
the System-on-Chip CPUs.

��
��
!

Note that the huge variety of possibilities offered by the phyCORE modules
makes it difficult to have a completely generic implementation on the operat-
ing system side. Nevertheless, the OSELAS.BSP() can easily be adapted
to customer specific variants. In case of interest, contact the Pengutronix
support (support@pengutronix.de) and ask for a dedicated offer.

The following sections provide an overview of the supported hardware components and
their operating system drivers.

22

5.1 NOR Flash

5.1 NOR Flash

Linux offers the Memory Technology Devices Interface (MTD) to access low level flash
chips, directly connected to a SoC CPU.

Older versions of the Linux kernel had separate mapping drivers for each board, specifying
the flash layout in a driver. Modern kernels offer a method to define flash partitions on the
kernel command line, using the ”mtdparts” command line argument:

mtdparts=phys_mapped_flash:256k(u-boot)ro,4096k(system),-(root)

This line, for example, specifies several partitions with their size and name which can
be used as /dev/mtd0, /dev/mtd1 etc. from Linux. Additionally, this argument is also
understood by reasonably new U-Boot bootloaders, so if there is any need to change the
partitioning layout, the U-Boot environment is the only place where the layout has to be
changed. In this section we assume that the standard configuration delivered with the
OSELAS.BSP-phyCORE-PXA270-3 is being used.

From userspace the flash partitions can be accessed as

• /dev/mtdblock0 (U-Boot partition)
• /dev/mtdblock1 (Linux kernel)
• /dev/mtdblock2 (Linux rootfs partition)

Only /dev/mtdblock2 has a filesystem, so the other partition cannot be mounted into
the rootfs. The only way to access them is by pushing a prepared flash image into the
corresponding /dev/mtd device node.

5.2 PWM Units

The PXA270 has four PWM units which can be programmed individually. However, as the
phyCORE-PXA270 has some hardware restrictions, not all of them can be used under all
circumstances:

• PWM#0 is used for LCD Backlight brightness (see section 5.8)
• PWM#1 is used to controll the motor speed on the GPIO expander board
• PWM#2 is not available
• PWM#3 is not available

23

5 Accessing Peripherals

To use the PWM units we have to make sure that the PWM driver is loaded (which is
automatically done when using the predefined OSELAS.BSP-phyCORE-PXA270-3):

˜# lsmod
Module Size Used by
nls_iso8859_1 3936 0
nls_cp437 5600 0
vfat 10112 0
fat 46620 1 vfat
usb_storage 32580 0
pcm027can 2848 0
sja1000 6176 1 pcm027can
can_raw 4608 0
can 5516 2 sja1000,can_raw
rtc_pcf8563 5900 0
rtc_dev 5160 0
rtc_core 7156 2 rtc_pcf8563,rtc_dev
max7301 4768 0
pxa2xx_spi 13120 0
pxa27x_gpioevent 3648 0
pxa27x_pwm 5568 0
ohci_hcd 16612 0
usbhid 32868 0

If the driver is not in place we have to load it with

˜# modprobe pxa27x_pwm

The driver uses sysfs entries for communication with userspace; so in order to control a
PWM unit we have to echo plain ASCII numbers into the corresponding sysfs entries.

For each PWM unit there are three entries:

• /sys/class/pwm/pwm ?/period
This entry can be used to change the period of the PWM signal. The unit of the values
being written here is Microseconds, and valid numbers are 1 . . . 5000 (1 us . . . 5 ms)

• /sys/class/pwm/pwm ?/duty
The duty percentage is being written into this entry. The unit of the values is per-
cent, using one position after the decimal point. Valid numbers are 0 . . . 1000 (0.0%
. . . 100.0%)

24

5.3 GPIO

• /sys/class/pwm/pwm ?/active
To activate the PWM, a ’1’ has to be written into this entry. By default the driver
comes up with this value being ’0’, so the corresponding PWM pin is always at low
level.

Note: Replace the ’?’ in each entry by the corresponding PWM unit number 0 . . . 3.

5.3 GPIO

Like most modern System-on-Chip CPUs, the PXA270 has several GPIO pins, some of
which can be used for general purpose operations. If the generic gpio driver is loaded it
offers a special sysfs entry that can be used to map a pin for userspace usage:

˜# echo 19:out:lo > /sys/class/gpio/map_gpio

A mapping command consists of the GPIO pin number, corresponding to the datasheet,
plus the direction (out or in) and, in case of an output, the initial level (hi or lo).

To find out which GPIO pins have been mapped by which drivers we can have a look at
the output of

˜# cat /proc/gpio
GPIO POLICY DIRECTION OWNER

19: user space output kernel

If the breakout board is installed, GPIO19 can be used to control the motor direction of the
small DC motor. In order to set the direction from the Linux command line we issue:

˜# echo 1 > /sys/class/gpio/gpio19/level

or 0 to change to the other direction. Note that this method is not very fast, so for quickly
changing GPIOs it is still necessary to write a driver. The method works fine for example
to influence an LED directly from userspace.

��
��
!

Note that this interface is a temporary one. The Open Source Automation
Development Lab (OSADL) is working on an ”Industrial I/O” driver framework
which will probably superseed this interface in the future.

25

5 Accessing Peripherals

5.4 GPIO Events

Some GPIOs are able to issue an interrupt. For example, on the breakout board the follow-
ing pins offer this feature:

• GPIO14 is used as Key1 event input

• GPIO86 is used as Key2 event input

• GPIO87 is used as Key3 event input

• GPIO91 is used as light sensor event input

To read back the currently collected events simple read from
/sys/class/gpio events/gpio event??/event
(where ?? are the numbers 14, 86, 87 or 19 in the example above). It returns the number
(in ASCII) of events since the last read. If no event arrieved since the last read it returns an
empty file. Each read access resets the event counter.

��
��
!

Note that this interface is a temporary one. The Open Source Automation
Development Lab (OSADL) is working on an ”Industrial I/O” driver framework
which will probably superseed this interface in the future.

5.5 CAN Bus

The phyCORE-PXA270 has one SJA1000 based CAN controller, which is supported by
drivers using the (currently work-in-progress) proposed Linux standard CAN framework
”Socket-CAN”. Using this framework, CAN interfaces can be programmed with the BSD
socket API.

��
��
!

The Socket-CAN API is still work in progress and was not submitted to the
upstream kernel maintainers yet. Although we think that the final API will be
very similar to what we have now, be prepared that the API can break at any
time without notice.

26

5.5 CAN Bus

5.5.1 Socket-CAN

The CAN (Controller Area Network1) bus offers a low-bandwidth, prioritised message
fieldbus for communication between microcontrollers. Unfortunately, CAN was not de-
signed with the ISO/OSI layer model in mind, so most CAN APIs available throughout
the industry don’t support a clean separation between the different logical protocol layers,
like for example known from ethernet.

The Socket-CAN framework for Linux extends the BSD socket API concept towards CAN
bus. It consists of

• a core part (can.ko)
• several protocol drivers (can raw.ko, maybe other protocols)
• chip drivers (e. g. sja1000.ko, nioscan.ko etc.)

So in order to start working with CAN interfaces we’ll have to make sure all necessary
drivers are loaded.

5.5.2 Starting and Configuring Interfaces from the Command Line

If all drivers are present in the kernel, ”ifconfig -a” shows which network interfaces are
available; as Socket-CAN chip interfaces are normal Linux network devices (with some
additional features special to CAN), not only the ethernet devices can be observed but also
CAN ports.

For this example, we are only interested in the first CAN port, so the information for can0
looks like

˜# ifconfig can0
can0 Link encap:UNSPEC HWaddr
00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00

NOARP MTU:8 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
Interrupt:90 Base address:0x8400

The output contains the usual parameters also shown for ethernet interfaces, so not all of
these are necessarily relevant for CAN (for example the MAC address). These parameters
contain useful information:

1ISO 11898/11519

27

5 Accessing Peripherals

Field Description
can0 Interface Name
NOARP CAN cannot use ARP protocol
MTU Maximum Transfer Unit, always 8
RX packets Number of Received Packets
TX packets Number of Transmitted Packets
RX bytes Number of Received Bytes
TX bytes Number of Transmitted Bytes
errors... Bus Error Statistics

Inferfaces shown by the ”ifconfig -a” command can be configured with canconfig. This
command adds CAN specific configuration possibilities for network interfaces, similar to
for example ”iwconfig” for wireless ethernet cards.

The baudrate for can0 can now be changed:

˜# canconfig can0 baudrate 250

and the interface is started with

˜# ifconfig can0 up

If the interface happens to fall into ”bus off” mode, canconfig can also be used to bring
the interface back into ”normal” mode:

˜# canconfig can0 mode start

More details about the ioctl() commands used by canconfig can be found in the
sourcecode of the canconfig utility (canutils/canconfig.c in the canutils source
code package).

5.5.3 Using the CAN Interfaces from the Command Line

After successfully configuring the local CAN interface and attaching some kind of CAN
devices to this physical bus, we can test this connection with command line tools.

The tools cansend and candump are dedicated to this purpose.

To send a simple CAN message with ID 0x20 and one data byte of value 0xAA just enter:

˜# cansend can0 --identifier=0x20 0xAA

28

5.5 CAN Bus

To receive CAN messages run the candump command:

˜# candump can0
interface = can0, family = 29, type = 3, proto = 0
<0x020> [1] aa

The output of candump shown in this example was the result of running the cansend
example above on a different machine.

See cansend’s and candump’s manual pages for further information about using and op-
tions.

5.5.4 Programming CAN Interfaces in C

With Socket-CAN we can use the standard Berkeley Socket Interface for sending and re-
ceiving CAN messages. The first step is to get a socket, using the socket() function:

int socket(int domain, int type, int protocol);

We have to prepare the protocol family (domain), which is ”Protocol Family CAN
(PF CAN), the type (a raw socket, SOCK RAW) and the protocol (CAN PROTO RAW) for
the call to the socket() function:

domain = PF_CAN;
type = SOCK_RAW;
protocol = CAN_PROTO_RAW;

int sockdf;
sockfd = socket(PF_CAN, SOCK_RAW, CAN_PROTO_RAW);

If everything succeeds, a filedescriptor for the new socket will be returned; on error, the
socket() function returns -1.

Now we have to bind the socket to a CAN interface and specify which CAN identifiers
we are interested in for reading. Binding to an interface is done with a call to the bind()
function:

int bind(int sockfd,
struct sockaddr *my_addr,
socklen_t addrlen);

29

5 Accessing Peripherals

sockfd is the filedescriptor of the socket we have created in the last step; my addr is a
pointer to a datastructure describing the interface and the CAN indentifier. The datastruc-
ture looks like this as is declared in can.h :

struct sockaddr_can {
sa_family_t can_family;
int can_ifindex;
int can_id;

};

struct sockaddr_can adr;

can family is in our case again PF CAN:

addr.can_family = PF_CAN;

can ifindex is the index number of the interface we want to send or listen to. The de-
coding from the symbolic string ”can0” to the interface index is done with an ioctl:

struct ifreq ifr;

ifr.ifr_name = "can0";
ioctl(sockfd, SIOCGIFINDEX, &ifr);
addr.can_ifindex = ifr.ifr_ifindex;

It’s up to the user to specify which CAN identifier he is interested in; for unfiltered traffic,
the CAN FLAG ALL macro can be used:

addr.can_id = CAN_FLAG_ALL;

Now that the sockaddr and addr structs are defined, we can actually call bind():

bind(sockfd, (struct sockaddr *)&addr, sizeof(addr));

When bind returns successfully with 0, the socket is open and ready to receive or send data.

5.5.5 Sending CAN Messages

To send a CAN frame, we put the can id , can dlc and payload files into a can frame
and call the write function, looking like

30

5.5 CAN Bus

ssize_t write(int fd, const void *buf, size_t count);

In our example, the call is

write(sockfd, &frame, sizeof(frame));

5.5.6 Receiving CAN Messages

To receive messages, we call the read function:

ssize_t read(int fd, void *buf, size_t count);

fd is the filedescriptor we want to read from, buf is a pointer to the memory block to write
to and count is the length of this block. With one call to the read function we read one
frame from the socket.

struct can_frame {
int can_id;
int can_dlc;
union {

int64_t data_64;
int32_t data_32[2];
int16_t data_16[4];
int8_t data_8[8];
uint64_t data_u64;
uint32_t data_u32[2];
uint16_t data_u16[4];
uint8_t data_u8[8];
int8_t data[8]; /* shortcut */

} payload;
};
struct can_frame frame;

read(sockfd, &frame, sizeof(struct can_frame));

The struct can frame contains the CAN identifier (can id) and the length of the CAN
message (can dlc) as well as the payload.

In case the received CAN frame had the RTR (Remote Transmission Request) bit or the
Extended bit set, the corresponding flags can be read from the struct can frame. The flags
are defined like this:

31

5 Accessing Peripherals

#define CAN_FLAG_RTR 0x40000000 /* remote transmission flag*/
#define CAN_FLAG_EXTENDED 0x80000000 /* extended frame */

To filter out the flags, corresponding masks are defined in can.h:

#define CAN_ID_EXT_MASK 0x1FFFFFFF /* extended CAN id mask */
#define CAN_ID_STD_MASK 0x000007FF /* standard CAN id mask */

5.5.7 Closing Interfaces & Further Reading

If the userspace application is finished, the socket filedescriptors have to be closed:

int close(int fd);

So in our example we’ll have to close the socket with:

close(sockfd);

More details about the mentioned functions can be taken from the Linux manual pages:

• man 2 socket
• man 2 bind
• man 2 write
• man 2 read
• man 2 close

5.5.8 Getting help

Community supports three CAN specific mailings lists, hosted at berlios. You can subscribe
to this lists for further discussion and help.

http://lists.berlios.de/mailman/listinfo/

Search for the lists:

• Socketcan-core
Discussion about the socket-CAN core system

• Socketcan-users
Help and discussion about using socket-CAN

• Socketcan-commit

32

5.6 Network

5.6 Network

The phyCORE-PXA270 module has an SMSC 91C111 ethernet chip onboard, which is being
used to provide the eth0 network interface. The interface offers a standard Linux network
port which can be programmed using the BSD socket interface.

5.7 LCD Graphics

phyCORE-PXA270’s LCD support uses the standard PXA2XX’s framebuffer support and
can be used as a regular console when also an USB keyboard is attached to the system.
fb-tools can be used to manipulate the frame buffer (colour depth).

For display definitions (resolution and frequency) see source file
arch/arm/mach-pxa/pcm027-baseboard.c
in the kernel tree.

5.8 LCD Backlight

The LCD backlight can be controlled by using the backlight class driver. This driver offers
a sysfs entry to control the brightness and a connection to the frame buffer console and to
the X-server for power management.

You can find the sysfs entries in /sys/class/backlight/pcm027-bl and control them
with plain numbers.

• max brightness
To read back the maximum value (hardware dependend). This value feeded into the
brightness entry gives the maximum backlight brightness.

• brightness
Set the current brightness value (0 . . . max brightness).

• power
Set or read back backlight power. 0 means backlight is off, 1 means on.

• actual brightness
To read back the current brightness setting. Its the same as brightness.

More information about the backlight driver can be found in the following files in the Linux
kernel:

33

5 Accessing Peripherals

• video/backlight/backlight.c
• video/backlight/pcm027 bl.c

Note: On the development board, J23 must be in position 1-2 to make the PWM#0 control
the inverter. See chapter ”LCD interface” in the phyCORE-PXA270 manual for further
details.

5.9 SPI

The phyCORE-PXA270 board supports an SPI bus, based on the PXA270’s integrated SPI
controller. It is connected to the onboard devices using the standard kernel method, so all
methods described here are not special to the phyCORE-PXA270.

On the phyCORE-PXA270, channel 1 of the SPI controller is connected to the MAX7301
GPIO expander chip. The BSP currently uses the ”Chip Select” alternate function of GPIO
24 to select the MAX7301; This mean the controller handles chip selection by its own in
hardware. This SPI controller mode works fine if only one SPI slave device is connected (in
the case of phyCORE-PXA270 it is the MAX7301, see below).
If its planned in a custome design to add more devices to this SPI channel 1 (to let it act like
a bus) any chip selection has to be done in software. In this case also for the MAX7301, so
GPIO 24 must be a regular GPIO without any alternate function enabled.

For a description of the SPI framework see
Documentation/spi/spi-summary
and for PXA2xx’s SPI driver see
Documentation/spi/pxa2xx

5.10 GPIO Expander

This is a GPIO expander that supports 28 additional EGPIOs.
To control the direction and level of each EGPIO echo plain numbers into special sysfs
entries:
/sys/class/egpio/egpio??/level
Replace ?? with numbers from 4 to 31 for EGPIO4 to EGPIO31.
To control each EGPIO echo one of the following numbers into its level entry:

• -2 to set the corresponding EGPIO as input only

• -1 to set the corresponding EGPIO is input with internal pullup enabled

34

5.11 AC97 Based Audio

• 0 to set the corresponding EGPIO as output and its level to low

• 1 to set the corresponding EGPIO as output and its level to high

If the EGPIO is configured as input, cat level will show its current level. If it is config-
ured as output this command will read back the current output level setting. Note: The
latter case uses a cached value, so no SPI transmissions will occure.
At power up all EGPIO are defined as input without internal pullup.

Note: There is an offset between the EGPIO number of the MAX7301 and the card con-
nector’s EGPIO numbers. The MAX7301 only supports EGPIO4 to EGPIO31. The EGPIO4
of the MAX7301 is at the card connector EGPIO0, the EGPIO5 of the MAX7301 is at the
card connector EGPIO1 and so on. The entries in /sys/class/egpio correspond to the
MAX7301 numbering scheme.

5.11 AC97 Based Audio

The sound features can be used through standard PXA2xx AC97 ALSA support for the
onboard Wolfson WM9712 device. See sources in sound/arm/pxa2xx.c in the kernel
source tree for further information.

5.11.1 Sound Output

To play a sound, copy your favorite mp3 file to the phyCORE-PXA270, pop up the volume
and play your mp3 file.

˜# amixer sset PCM,0 20,20 unmute
˜# amixer sset Headphone,0 20,20 unmute
˜# amixer sset ’Master Left Inv’,0 on
˜# madplay <mp3file_name>

If external loudspeakers are connected it is possible to mute the built in speaker with
amixer sset ’Master Left Inv’,0 off .

5.11.2 Sound Record

Note: When the Wolfson WM9712 chip comes up after power on, every sound source is
muted as default. To record any sound the desired audio source must be unmuted first.

To activate sound capturing the internal ADCs have to be powered up and unmuted first:

35

5 Accessing Peripherals

˜# amixer sset ADC,0 on
˜# amixer sset Capture 15,15 unmute

Now its time to select the desired audio source for capturing. The following commands
select the stereo line in as the source:

˜# amixer sset Line 30,30 unmute
˜# amixer sset ’Capture Select’,0 Line

To select the microphone instead of the stereo line in, these commands are required:

˜# amixer sset ’Mic 1’,0 30
˜# amixer sset Capture Select,0 ’Mic 1’

To record any sound the command arecord is the recommended way to do it. This exam-
ple records about 20 seconds from the desired source:

˜# arecord -f dat -d 20 -D hw:0,0 test.wav

See arecord ’s manual for further meaning of the command line parameters.

5.11.3 Advanced Sound Handling

Note: The Wolfson WM9712 is a complex beast with many features. Sometimes its hard to
understand why it works or why it fails. Armed with it’s datasheet, the AC’97 specification
and kernel’s powerful AC97 debug feature it is much easier to use WM9712’s features in the
manner you like or the way the chip supports it. Not all WM9712’s features are supported
by the ALSA utils out of the box. Some of this features needs kernel driver patches to let
the ALSA utils aware of it.

To see the current WM9712’s register settings simply enter:

˜# cat /proc/asound/card0/codec97#0/ac97#0-0+regs

This is an easy way to check the results of the amixer command and if it supports this
feature out of the box.

To change any register’s value manually (without amixer command for test purposes
only) simply enter:

˜# echo "1a 0404" > /proc/asound/card0/codec97#0/ac97#0-0+regs

This example updates WM9712’s register 0x1A to the new value 0x0404. You will also need
the datasheet here to know the registers, their offset and meaning.
Note: Give all values in hex but without leading 0x .

36

5.12 AC97 Based Touchscreen

5.12 AC97 Based Touchscreen

This device is supported through PXA2xx’s standard AC97 support for the onboard Wolf-
sson WM9712 device driver for touchscreen. In userspace this device is supported through
the tslib, so it can be used by an X server as a pointing device. See sources in
driver/input/touchscreen/wm97xx.c
in the kernel source tree for further information.

Modul parameters to control the driver:

• cont rate Sample rate in continuous mode (Hz).
Default is 200 samples per second.

• pen int Pen down detection (1 = interrupt, 0 = polling).
This driver can either poll or use an interrupt to indicate a pen down event. If the
IRQ request fails then it will fall back to polling mode. Default is interrupt.

• pressure Pressure readback (1 = pressure, 0 = no pressure).

• ac97 touch slot Touch screen data slot AC97 number.
enable/disable AUX ADC sysfs, default is enabled

• aux sys disable AUX ADC sysfs entries.

• status sys disable codec status sysfs entries.
enable/disable codec status sysfs, default is enabled

• These parameters are used to help the input layer discard out of range readings and
reduce jitter etc.

– min, max: indicate the min and max values our touch screen returns
– fuzz: use a higher number to reduce jitter

The default values correspond to Mainstone II in QVGA mode Please read
Documentation/input/input-programming.txt for more details.

– abs x Touchscreen absolute X min, max, fuzz.
– abs y Touchscreen absolute Y min, max, fuzz.
– abs p Touchscreen absolute Pressure min, max, fuzz.

• rpu Set internal pull up resistor for pen detect.
Pull up is in the range 1.02k (least sensitive) to 64k (most sensitive) i.e. pull up resis-
tance = 64k Ohms / rpu.
We adjust this value if we are having problems with pen detect not detecting any
down event.

37

5 Accessing Peripherals

• pil Set current used for pressure measurement.
Set

– pil = 2 to use 400µA

– pil = 1 to use 200µA and

– pil = 0 to disable pressure measurement.

This is used to increase the range of values returned by the ADC when measuring
touchpanel pressure.

• pressure Set threshold for pressure measurement.
Pen down pressure below threshold is ignored.

• delay Set ADC sample delay.
For accurate touchpanel measurements, some settling time may be required between
the switch matrix applying a voltage across the touchpanel plate and the ADC sam-
pling the signal.
This delay can be set by setting delay = n. Valid values of n can be looked up in the
’delay table’ in the driver source. Long delays >1ms are supported for completeness,
but are not recommended.

• five wire Set to ’1’ to use 5-wire touchscreen.
NOTE: Five wire mode does not allow for readback of pressure.

• mask Set ADC mask function.
Sources of glitch noise, such as signals driving an LCD display, may feed through to
the touch screen plates and affect measurement accuracy. In order to minimise this, a
signal may be applied to the MASK pin to delay or synchronise the sampling.

– 0 = No delay or sync

– 1 = High on pin stops conversions

– 2 = Edge triggered, edge on pin delays conversion by delay param (above)

– 3 = Edge triggered, edge on pin starts conversion after delay param

Using the touchscreen requires a calibration. This has to be done the first time a newly built
OSELAS.BSP-phyCORE-PXA270-3 runs on the target to create the calibration information.

To do so run the command:

˜# ts_calibrate

38

5.13 AC97 Based Analogue Converter

The command uses the environt variable /textttTSLIB TSDEVICE (defined in /etc/pro-
files) and the so called ts-lib, configured in /etc/ts.conf.

Note: When you intend to calibrate the touch stop an already running X server prior start-
ing ts calibrate . They can’t share the framebuffer, so the X server gets killed and the
ts calibrate command hangs forever.

5.13 AC97 Based Analogue Converter

The Wolfsson WM9712L AC97 device supports up to four analogue inputs (AUX1 . . .
AUX4) with 12 bit resolution for general purpose (in addition to the audio inputs). See
WM9712L’s data sheet for proper use.

1. AUX1
Can be used for battery monitoring (analogue up to 3.3V) or dead battery detection
(comparator). Read back via
/sys/devices/platform/pxa2xx-ac97/0-0:WM9711,WM9712/aux1

2. AUX2
Can be used for battery monitoring (analogue up to 3.3V) or low battery detection
(comparator). Read back via
/sys/devices/platform/pxa2xx-ac97/0-0:WM9711,WM9712/aux2

3. AUX3
Can be used for battery monitoring (analogue up to 5.0V). Read back via
/sys/devices/platform/pxa2xx-ac97/0-0:WM9711,WM9712/aux3

4. AUX4
General purpose analogue input (up to 3.3V) or reference voltage for dead/low bat-
tery detection comparator. Read back via
/sys/devices/platform/pxa2xx-ac97/0-0:WM9711,WM9712/aux4

5.14 AC97 Based GPIO

The Wolfsson WM9712L AC97 device supports up to five digital inputs/outputs (GPIO1
. . . GPIO5). While these pins shares other functions see WM9712L’s data sheet for proper
use. Beside the real GPIOs the WM9712L AC97 device has also five virtual GPIO. They are
only internal and report status information only. All 10 bits of information can be read back
from
/sys/devices/platform/pxa2xx-ac97/0-0:WM9711,WM9712/gpio .
See datasheet in chapter ”GPIO and Interrupt Control” for bit assignments.

39

5 Accessing Peripherals

5.15 X11 Graphics

In OSELAS.BSP-phyCORE-PXA270-3’s full configuration an Xorg server is supported
through PXA270’s framebuffer device. It supports the attached 640 x 480 TFT display with
16 bit colour depth and runs a windwo manager on top of it. To control it a USB mouse or
the touchscreen can be used.

5.16 USB Host Controller

Standard OHCI Rev. 1.0a implementation.
Only channel 1 is supported, channel 2 and 3 are not available.

Make sure the required USB device module for the device to be attached is already loaded.
The OSELAS.BSP-phyCORE-PXA270-3 supports USB mice and USB Mass Storage devices
(MemorySticks aso.) as default.

5.17 I²C Master

The PXA270 processor based phyCORE-PXA270 supports a dedicated I²C controller on
chip. The kernel supports this controller as a master controller.

Additional I²C device drivers can use the standard I²C device API to gain access to their
devices through this master controller.

For further information about the I²C framework see
Documentation/i2c
in the kernel source tree.

5.17.1 I²C Realtime Clock (RTC8564)

Due to the kernel’s Real Time Clock framework the RTC8564 clock chip can be accesses
using the same tools as any other clocks.

Date and time can be manipulated with the hwclock tool, using the –systohc and –hctosys
options. For more information about this tool refer to hwclock’s manpages.

40

5.18 Status LEDs

5.18 Status LEDs

These LEDs are supported to display CPU activity and heart beat. They occupy the two
processor’s GPIOs 90 and 91 for this purpose.

Note: These GPIOs are also used with the breakout board. So activity and heart beat func-
tion are disabled as default.

41

6 Some hints on using
phyCORE-PXA270

6.1 Manually Setting up Flash Based Root Filesystem

6.1.1 Partitioning the Local Flash Device

phyCORE-PXA270’s onboard flash is 32 MiB in size divided into 128 individual blocks each
of 256kiB in size.

The first block is occupied by the U-Boot boot loader itself. From the CPU’s view the base
address of the whole flash is 0x00000000.

��
��
!

Don’t write anything to the first 256kiB block in flash (from address
0x00000000 up to 0x0003FFFF). This destroys the U-Boot binary and the
board won’t start anymore. In this case you need a JTAG based hardware
debugger to restore the U-Boot.

We divide the flash into two independent partitions (see figure 6.1) by setting the
mtdparts , partition and mtdids environment variable:

uboot > setenv mtdids nor0=phys mapped flash

uboot > setenv mtdparts mtdparts=phys mapped flash:256k(u-boot)ro,-(root)

uboot > setenv partition nor0,1

The first partition is 256kiB read only and protects the U-Boot image. The second partition
starts at offset 0x00040000 and occupies the remaining space on this flash. The offset is
important, we will need it in various later commands.

To write anything into the second partition we must erase the entire partition first.

uboot > erase 0x00040000 0x01FFFFFF

The partition is now ready to be written to.

42

6.1 Manually Setting up Flash Based Root Filesystem

Figure 6.1: Partitioning the flash device.

6.1.2 Writing a Root Filesystem into Flash

PTXdist generates a root filesystem image in JFFS2 format. Here is the way to instantly use
it as the root filesystem. It also embeds the kernel image.

Note: This description only replaces the root filesystem part. It does not change anything
in U-Boot’s part of the flash.

To be able to download, we first have to copy the root.jffs2 file from our active project
(see directory images) into the TFTP server’s directory on our host.

˜/work/myproject > cp images/root.jffs2 /tftpboot

From the target’s point of view the tftp command downloads this image file and a cp
command finally copies it into the flash.

Downloading the image file into phyCORE-PXA270’s RAM:

uboot > tftp 0xA3000000 root.jffs2

��
��
!

Double check both parameters given to the tftp command! If a wrong ad-
dress (or no address!) is given tftp destroys the U-Boot!
Avoid using the tftp command without any argument!

The next step is to copy the root image from RAM into flash memory:

uboot > cp.b 0xA3000000 0x40000 $(filesize)

This copying process may take a while. After it’s done, this partition is ready to be used as
a root filesystem.

43

6 Some hints on using phyCORE-PXA270

6.1.3 Booting from Local Flash

U-Boot can handle JFFS2 based flash partitions. To load a kernel image from inside this
filesystem, U-Boot supports the fsload command.

PTXdist generates a JFFS2 root filesystem image that embeds a kernel image in
/boot/uImage as default. To load this kernel image we can run:

uboot > fsload /boot/uImage

U-Boot scans the JFFS2 filesystem and copies this kernel image into system RAM. After this
is done we can start this kernel image with the command

uboot > bootm

To automatise this, we replace the current U-Boot bootcmd environment variable contents:

uboot > setenv bootcmd ’fsload /boot/uImage; run setup bootargs;
bootm’

��
��
! Note the two ’ (single quotes)! Without them, U-Boot tries to run the com-

mands immediately!

See next section about the contents of the setup bootargs environment variable to get a
correct kernel setup.

6.1.4 Using Local Flash at Runtime

When Linux kernel initialisation is finished, it automatically mounts the root filesystem.

To use the correct root filesystem we should setup a kernel parameter to define the root
filesystem to use.

The Linux kernel expects the parameter root to define the device that contains the root
filesystem, and the parameter rootfstype to define its filesystem type. On many systems
we can omit the rootfstype kernel parameter, the kernel can autodetect the filesystem.
But not with JFFS2!

The flash access driver comes with the MTD subsystem, so the device nodes are called
mtdblockX with X as the partition number. We have more than one partition in our flash
device so we have to define the right one as the root filesystem.
In this case the correct kernel parameter is:

root=/dev/mtdblock2 rootfstype=jffs2

44

6.2 Decreasing Boot Time

To complete the U-Boot environment (with regard to the section before) we should also set
the setup bootargs variable:

uboot > setenv setup bootargs ’setenv bootargs root=/dev/mtdblock2
rootfstype=jffs2 $(mtdparts)’

��
��
! Note the two ’ (single quotes)! Without them, U-Boot tries to run the com-

mands immediately!

With this U-Boot environment setup we can simply enter

uboot > boot

and U-Boot automatically searches for the kernel in the flash, loads and starts it and the
Linux kernel itself automatically mounts the root filesystem from the flash partition.

6.2 Decreasing Boot Time

6.2.1 Disabling Console Output During Kernel Startup

Console output during kernel startup consumes a lot of time. Most of the information we
will see at this point of time are more useful when we are developing our system. If our
system runs in production it’s more useful to save time when booting. If we add the kernel
parameter quiet this will suppress printk messages. Note that printk messages are still
buffered in the kernel and can be retrieved after booting using the dmesg command.

When the init process starts the console is activated again.

45

7 Getting help

Here are a list of locations where you can get help in case of trouble or questions how to
do something special within PTXdist or general questions about Linux in the embedded
world.

7.1 Mailing lists

About PTXdist in special

This is an english language public mailing list for questions about PTXdist. See web site

http://www.pengutronix.de/maillists/index en.html

how to subscribe to this list.

About embedded Linux in general

This is a german language public mailing list for general questions about Linux in embed-
ded environments. See web site

http://www.pengutronix.de/maillists/index de.html

how to subscribe to this list. Note: You also can send english language mails.

7.2 News groups

About Linux in embedded environments

This is an english language news group for general questions about Linux in embedded
environments.

comp.os.linux.embedded

46

7.3 Chat/IRC

About general Unix/Linux questions

This is a german language news group for general questions about Unix/Linux program-
ming.

de.comp.os.unix.programming

7.3 Chat/IRC

About PTXdist in special

irc.freenode.net:6667

Create a connection to the irc.freenode.net:6667 server and enter the chat group #ptxdist.
This is an english language group to answer questions about PTXdist. Best time to meet
somebody in there is at europeen daytime.

7.4 Miscellaneous

Online Linux Kernel Cross Reference

A powerful cross reference to be used online.

http://www.rts.uni-hannover.de/linux/lxr/source

U-Boot manual (partially)

Manual how to survive in an embedded environment and how to use the U-Boot on target’s
side

http://www.denx.de/wiki/DULG

47

8 Customer Support

8.1 Free of charge support

Everytime you can get free of charge support through mailing lists and IRC discussion
groups. Up to date information about presently offered public mailing lists and IRC chan-
nels you can find at our web site:

http://www.pengutronix.de

For additional information see also chapter 7 at page 44.

8.2 Commercial support

You can order immediate support through customer specific mailing lists, by telephone or
also on site. Ask our sales representative for a price quotation for your special require-
ments.

Contact us at:

Pengutronix
Hannoversche Strasse 2

D-31134 Hildesheim
Germany

Phone: +49 - 51 21 / 20 69 17 - 0
Fax: +49 - 51 21 / 20 69 17 - 9

or by electronic mail:

sales@pengutronix.de

48

	PTXdist Installation
	Building Blocks
	Prerequisites
	Installation from the Sources

	Toolchain
	Using Existing Toolchains
	Toolchain Building

	Building the "light" Image for phyCORE-PXA270
	Preparing a Build
	Compiling the Root Filesystem
	Building a Flash Image

	Booting Linux
	Target Side Preparation
	Default U-Boot environment
	Remote-Booting Linux
	Development Host Preparations
	Preparations on the Embedded Board
	Booting the Embedded Board

	Stand-Alone Booting Linux
	Development Host Preparations
	Preparations on the Embedded Board
	Booting the Embedded Board

	Accessing Peripherals
	NOR Flash
	PWM Units
	GPIO
	GPIO Events
	CAN Bus
	Socket-CAN
	Starting and Configuring Interfaces from the Command Line
	Using the CAN Interfaces from the Command Line
	Programming CAN Interfaces in C
	Sending CAN Messages
	Receiving CAN Messages
	Closing Interfaces & Further Reading
	Getting help

	Network
	LCD Graphics
	LCD Backlight
	SPI
	GPIO Expander
	AC97 Based Audio
	Sound Output
	Sound Record
	Advanced Sound Handling

	AC97 Based Touchscreen
	AC97 Based Analogue Converter
	AC97 Based GPIO
	X11 Graphics
	USB Host Controller
	I²C Master
	I²C Realtime Clock (RTC8564)

	Status LEDs

	Some hints on using phyCORE-PXA270
	Manually Setting up Flash Based Root Filesystem
	Partitioning the Local Flash Device
	Writing a Root Filesystem into Flash
	Booting from Local Flash
	Using Local Flash at Runtime

	Decreasing Boot Time
	Disabling Console Output During Kernel Startup

	Getting help
	Mailing lists
	News groups
	Chat/IRC
	Miscellaneous

	Customer Support
	Free of charge support
	Commercial support

