
 Application Note

EasyWeb: Tiny TCP/IP Stack and Web Server APNT_164

Page 1 of 14 Revision date: 18-Feb-02

Overview
The MCB167-NET prototype board offers a 10Base-T (RJ45) Ethernet connection. This
standard interface can be used for fast data transmissions in a local area network (LAN) to PC’s
or other microcontroller. In case the LAN is connected to the internet via a router, data can be
exchanged worldwide. The software to handle the Ethernet interface is much more complex than
for a serial interface. In most cases, the TCP/IP protocol is used for data transmission because it
provides a fast and reliable connection to other members of the LAN.
This small TCP/IP stack and webserver was published in the extra issue ‘Embedded Internet’ of
the magazine Design&Elektronik. For a complete German description of this software the extra
issue can be ordered at www.elektroniknet.de/extraheft.
This TCP/IP stack is able to handle the protocols ARP, ICMP, IP and TCP. It is optimized for
low resource consumption, not for performance. However, increasing the buffer sizes can
improve the performance a lot. Because of the low resource consumption, the TCP/IP stack has
quite some restrictions:
- Only one active TCP session at the same time
- No reassembling of fragmented incoming IP frames
- No buffering of TCP segments that are received in wrong order
- No checksum verification of received data
- no support for ‘type of service (TOS)’ and security options
- received TCP options are ignored

The webserver has some restrictions, too:
- Supports only one html page
- Since there is no virtual file system, no pictures (gif or jpeg) can be used
- No POSTing of Data supported. No data can be entered on the web page

This TCP/IP stack offers an easy-to-use application programming interface (API). There is no
need to know the different protocols in detail. The API consists of a set of subroutines for
sending and receiving data and a flag register that indicates the current status of stack. As an
application example, a dynamic HTTP server is implemented.

 Application Note

EasyWeb: Tiny TCP/IP Stack and Web Server APNT_164

Page 2 of 14 Revision date: 18-Feb-02

CONTENTS

Overview... 1
Application Programming Interface (API) ... 3

Global Variables and Macro’s.. 3
MYIP_1 … MYIP_4 .. 3
SUBMASK_1 … SUBMASK_4.. 3
MYMAC_1 ... MYMAC_6 .. 3
GWIP_1 … GWIP_4 .. 3
RETRY_TIMEOUT ... 3
FIN_TIMEOUT.. 3
MAX_RETRYS.. 3
MAX_TCP_TX_DATA_SIZE... 4
MAX_TCP_RX_DATA_SIZE... 4
MAX_ETH_TX_DATA_SIZE .. 4
DEFAULT_TTL... 4
TCPLocalPort ... 4
RemoteIP .. 4
TCPRemotePort.. 4
TCPTxDataCount ... 4
TCPRxDataCount ... 5
TCP_RX_BUF.. 5
TCP_TX_BUF.. 5
SocketStatus.. 5

Functions .. 7
void DoNetworkStuff(void).. 7
void TCPLowLevelInit(void) ... 7
void TCPPassiveOpen(void) .. 7
void TCPActiveOpen(void).. 7
void TCPClose(void);... 7
void TCPReleaseRxBuffer(void) ... 8
void TCPTransmitTxBuffer(void).. 8

Using the Application Program Interface (API) ... 8
Opening a Connection .. 9

Passive Mode.. 9
Active Mode ... 9

Data Transfer .. 10
Sending Data... 10
Receiving Data.. 10

Closing a Connection.. 11
Web Server Example Application .. 11

µVision2 Project Settings... 11
Connecting the MCB167-NET to an existing LAN ... 11
Connecting the MCB167-NET to a single PC.. 11
Starting the easyWEB application.. 12

Conclusion .. 14

 Application Note

EasyWeb: Tiny TCP/IP Stack and Web Server APNT_164

Page 3 of 14 Revision date: 18-Feb-02

Application Programming Interface (API)

Global Variables and Macro’s
The following global variables and macros can be found in the TCPIP.H and CS8900.H. Please
check all these settings before compiling and running the software.

MYIP_1 … MYIP_4
Specifies the internet protocol (IP) address of the board. In most cases, an unused intranet IP
should be specified. Intranet IP addresses have the address range of 192.168.x.x or 10.x.x.x.

SUBMASK_1 … SUBMASK_4
Specifies the subnet mask. With this mask the TCP/IP stack checks if the remote host is in the
same LAN or if it must be addressed over the standard gateway. A typical subnet mask is
255.255.255.0 which specifies that a remote hosts is in the same LAN if the first three bytes of
the IP address is identical to the own IP address.

MYMAC_1 ... MYMAC_6
These values specify the 48-bit ethernet MAC address which must be unique in the LAN. The
broadcast address FF FF FF FF FF FF is not allowed as an individual address.

GWIP_1 … GWIP_4
Specifies the IP address of the standard gateway. This gateway is addressed if the remote IP is
not part of the subnet.

RETRY_TIMEOUT
Specifies the number of timer overflows before a TCP frame is retransmitted when no ACK has
been received. The default value is 8 which means 8 x 262ms (about 2 sec.)

FIN_TIMEOUT
Specifies the number of timer overflows before the TCP state machine is closed when no ACK or
FIN has been received. The default value is 2 which means 2 x 262ms (about 0.5 s)

MAX_RETRYS
Specifies the number of unsuccessful retransmissions before TCP connection is reset. The
default number is 4. The total number of transmissions is MAX_RETRYS + 1.

 Application Note

EasyWeb: Tiny TCP/IP Stack and Web Server APNT_164

Page 4 of 14 Revision date: 18-Feb-02

MAX_TCP_TX_DATA_SIZE
Specifies the size of the transmit buffer and the maximum size of sent datagrams. The default
value is 512. This number must be even! Increasing this number leads to better network
performance but allocates more memory in the target system.

MAX_TCP_RX_DATA_SIZE
Specifies the size of the receive buffer and the maximum size of datagrams that can be received.
The default value is 256. This number must be even! Increasing this number leads to a much
better network performance but allocates more memory in the target system.

MAX_ETH_TX_DATA_SIZE
Specifies the size of an additional buffer which is used to handle the ARP, ICMP and TCP
protocol. The default value is 60 (must be even!) which is enough for a 32 byte ping (ICMP
echo).

DEFAULT_TTL
Specifies the ‘Time To Live’ value which is used in transmitted TCP packets. The default value
is 64 which means that the maximum lifetime of a datagram in internet is 64 seconds. When the
time expires, the datagram is destroyed.

TCPLocalPort
Specifies the port which is listened to when ‘TCPPassiveOpen()’ is used (e.g. 80 for HTTP).
When ‘TCPActiveOpen()’ is used, a random value can be specified which must be bigger than
1024.

RemoteIP
Specifies the internet protocol (IP) address of the remote host. It is only used if
‘TCPActiveOpen()’ is used.

TCPRemotePort
Specifies the port of the remote host. It must only be set if ‘TCPActiveOpen()’ is used.

TCPTxDataCount
Specifies the number of bytes to be transmitted. This variable must be set before the function
‘TCPTransmitTxBuffer’ is called.

 Application Note

EasyWeb: Tiny TCP/IP Stack and Web Server APNT_164

Page 5 of 14 Revision date: 18-Feb-02

TCPRxDataCount
This variable is set by the TCP stack. It specifies the number of bytes that have been received.
These number of bytes can be read out of the receive buffer (‘TCP_RX_BUF’).

TCP_RX_BUF
Address of the receive buffer. When the status flag ‘SOCK_DATA_AVAILABLE’ is set,
‘TCPRxDataCount’ bytes can be read out of this buffer. After reading all bytes, the function
‘TCPReleaseRxBuffer()’ must be called to send an acknowledge to the remote host and to use
the receive buffer for the next data frame.

TCP_TX_BUF
Address of the transmit buffer. When the status flag ‘SOCK_TX_BUF_RELEASED’ is set, the
transmit buffer can be filled. The maximum number of bytes (MAX_TCP_TX_DATA_SIZE)
must not be exceeded when the transmit buffer is filled. The actual number of bytes to be
transmitted must be set in the variable ‘TXPTxDataCount’ before the function
‘TCPTransmitTxBuffer’ is called.

SocketStatus
This byte variable contains 8 status and error flags and can only be read. Details are listed
below.

Bit 7
SOCK_
ERROR

Bit 6
SOCK_
ERROR

Bit 5
SOCK_
ERROR

Bit 4
SOCK_
ERROR

Bit 3
SOCK_TX_BUF

_RELEASED

Bit2
SOCK_DATA
AVAILABLE

Bit 1
SOCK_

CONNECTED

Bit 0
SOCK_
ACTIVE

SOCK_ACTIVE (bit 0)
This flag is set when the TCP/IP stack is busy with setting up a connection to a remote host.
This happens when ‘TCPPassiveOpen’ or ‘TCPActiveOpen’ was called. As long as this flag is
set, none of these two function may be called. In case a connection cannot be established or is
closed, this flag is cleared automatically.

SOCK_CONNECTED (bit 1)
This flag indicates that a TCP connection is ‘established’. As long as this flag is set, data can be
sent and transmitted. This flag is automatically cleared when the connection is aborted or closed.

SOCK_DATA_AVAILABLE (bit 2)
This flag specifies that a new data frame has been received. If it is set, the application can read
the receive buffer at the address of ‘TCP_RX_BUF’. The length is stored in

 Application Note

EasyWeb: Tiny TCP/IP Stack and Web Server APNT_164

Page 6 of 14 Revision date: 18-Feb-02

‘TCPRxDataCount’. After reading and processing the received data, the receive buffer must be
released with the function ‘TXPReleaseRxBuffer’. If the receive buffer is not released for too
long, the TCP connection may be aborted.

SOCK_TX_BUF_RELEASED (bit 3)
This flag specifies whether the application may write into the transmit buffer and the variable
‘TCPTxDataCount’. Only when a sent data frame has been acknowledged by the remote host,
the next data frame may be written into the transmit buffer.

ERROR_CODE (bit 4-7)
The high nibble of SocketStatus indicates an error condition. All errors except SOCK_ERR_OK
cause an immediate termination of the TCP connection. SOCK_ERROR_MASK can be used to
mask the error bits. Here are the error conditions in detail:

Error Code Reason

SOCK_ERR_OK No error.

SOCK_ERR_ARP_TIMEOUT The remote host did not respond to the ARP-request. The
MAC address of the remote host was not determined. The
remote host is either not connected to the network or is not able
to answer.

SOCK_ERR_TCP_TIMEOUT Even after several resends, the remote host did not
acknowledge the sent data segment. This may happen if the
connection is very unreliable or if the remote host is not able to
anwer.

SOCK_ERR_CONN_RESET A connection that is about to be established or an existing
connection has been reset by the remote host. The remote host
either does not accept a connection to the specified port or the
remote application has reset the connection (STOP button of a
internet browser).

SOCK_ERR_REMOTE Because of a severe mistake in the remote TCP stack a
corrupted TCP segment was received.

SOCK_ERR_ETHERNET The TCP stack was not able was not able to send data over the
ethernet. This happens when network cable is not connected.

 Application Note

EasyWeb: Tiny TCP/IP Stack and Web Server APNT_164

Page 7 of 14 Revision date: 18-Feb-02

Functions
The following functions are declared in the TCPIP.H header file.

void DoNetworkStuff(void)
This function polls the status of the ethernet controller, decodes the received frames, checks TCP
timeouts, answers ARP requests and updates the SocketStatus variable. This TCP/IP stack polls
the status of the ethernet controller and does not use interrupts for sending and receiving data.
The function ‘DoNetworkStuff’ has to be called as often as possible get good network
performance.

void TCPLowLevelInit(void)
This function initializes the ethernet contoller, the timer and the status flags. It must be called
before any other TCP function is called.

void TCPPassiveOpen(void)
This function sets the Stack into ‘LISTEN’ mode and the status flag ‘SOCK_ACTIVE’ is set. In
this mode, the stack waits for a connection. Before this function is called, the global variable
‘TCPLocalPort’ must be set to the port number the socket should listen to. When a connection is
established, the status flag ‘SOCK_CONNECTED’ is set. This function does not block the
program execution until a connection is established.

void TCPActiveOpen(void)
This function tries to establish a connection with a remote host. The status flag
‘SOCK_ACTIVE’ is set and a ARP-request is sent to determine the Ethernet MAC address of the
remote host. Before this function is called, the variables ‘RemoteIP’, ‘TCPRemotePort’ and
‘TCPLocalPort’ must be set to the right values. In case the RemoteIP is not located within the
local subnet, the standard gateway is addressed instead. This function does not block the
program execution until a connection is established. After connecting to the remote system
successfully, the status flag ‘SOCK_CONNECTED’ is set and the status of the TCP stack
changes to ‘ESTABLISHED’. If the remote host cannot be reached, an error status is set in the
variable ‘SocketStatus’.

void TCPClose(void);
This function closes the current TCP connection to the remote host. Pending data transmissions
are finished before the connection is actually closed. After the connection is closed, the stack
can be reconfigured to a different IP address and port before a new connection is opened.

 Application Note

EasyWeb: Tiny TCP/IP Stack and Web Server APNT_164

Page 8 of 14 Revision date: 18-Feb-02

void TCPReleaseRxBuffer(void)
This function tells the stack that the data in the receive buffer are read and are not needed any
more. The stack sends an acknowledge to the remote host and uses the receive buffer for the
next data frame. The status flag ‘SOCK_DATA_AVAILABLE’ indicates whether a new data
frame has been received or not.

void TCPTransmitTxBuffer(void)
This function transmits the content of the transmit buffer to the remote host. Before the transmit
buffer can be filled, the status flag SOCK_TX_BUF_RELEASED must be checked. Only if this
flag is set, data can be written into the transmit buffer. The pointer TXP_TX_BUF points to the
beginning of the transmit buffer. The maximum number of bytes
(MAX_TCP_TX_DATA_SIZE) must not be exceeded when the transmit buffer is filled. The
actual number of bytes to be transmitted must be set in the variable TXPTxDataCount before the
function ‘TCPTransmitTxBuffer’ is called.

Using the Application Program Interface (API)
This section describes how to use the API functions. The following figure shows in principle
how to open a TCP connection and to transfer data.

Yes

No

TCPLowLevelInit()

Initialize Application

DoNetworkStuff()

SOCK_ACTIVE? TCPActiveOpen() or
TCPPassiveOpen()

Send or Receive Data

Other Application Functions

 Application Note

EasyWeb: Tiny TCP/IP Stack and Web Server APNT_164

Page 9 of 14 Revision date: 18-Feb-02

Opening a Connection
A connection can be opened in two different modes, the passive or the active mode. This is done
by calling the API function ‘TCPPassiveOpen()’ or ‘TCPActiveOpen()’. When one of these
functions is called, the status flag SOCK_ACTIVE is set. When the connection with a remote
host is established, the flag SOCK_CONNECTED is set. This only happens after one or more
calls to ‘DoNetworkStuff()’.

Passive Mode
The function ‘TCPPassiveOpen()’ puts the stack into ‘Listen’ or ‘Server’ mode and waits for a
connection from a remote host. Before this function is called, the ‘TCPLocalPort’ variable must
be set to the port number the stack should listen to.

Active Mode
This function ‘TCPActiveOpen()’ tries to establish a connection with a remote host. An ARP-
request is sent to determine the Ethernet MAC address of the remote host. Before this function is
called, the variables ‘RemoteIP’, ‘TCPRemotePort’ and ‘TCPLocalPort’ must be set to the right
values. In case the RemoteIP is not located within the local subnet, the standard gateway is
addressed instead.

 Application Note

EasyWeb: Tiny TCP/IP Stack and Web Server APNT_164

Page 10 of 14 Revision date: 18-Feb-02

Data Transfer
Once a connection is established, the data transfer can be started. The following sections show
how to send and receive data.

Sending Data
First, the flag SOCK_TX_BUF_RELEASED it must be checked if the transmit buffer is empty.
If this is the case data can be copied into the transmit buffer. The API variable TCPTxDataCount
must then be set to the number of bytes to be send. Finally, calling the function
TCPTransmitTxBuffer() sends to data to the remote host and clears the flag
SOCK_TX_BUF_RELEASED. This flag is set again when the remote host has acknowledged
the datagram.

Receiving Data
The flag SOCK_DATA_AVAILABLE indicates whether a new datagram has been received. If
this is the case, the API variable TCPRxDataCount specifies the number of bytes received. After
copying the data out of the receive buffer the function TCPReleaseBuffer() must be called to free
the receive buffer for new data.

Yes

No

Copy Data to TCP_TX_BUF

TCPTxDataCount = Number of Bytes to Send

TCPTransmitTxBuffer()

TX_BUF_RELEASED?

Yes

No

Number of Bytes Received = TCPRxDataCount

Read Out and Process TCP_RX_BUF

TCPReleaseRxBuffer()

DATA_AVAILABLE?

 Application Note

EasyWeb: Tiny TCP/IP Stack and Web Server APNT_164

Page 11 of 14 Revision date: 18-Feb-02

Closing a Connection
A TCP connection can be closed because of different events. Usually this is done either locally
by calling the API function ‘TCPClose()’ or remotely by the remote host. On the other hand, a
connection is also closed because of an error condition like an overflow of the retransmission
counter or a received RST (reset) flag. Error conditions are indicated by the ‘SocketStatus’
variable.

Web Server Example Application
This very simple web server uses the TCP/IP stack described above. It can only handle one web
page but it already can insert dynamic values. The web page that comes with this example shows
the input voltage of analog input 0 and 1 as a bar graph on the screen (see below). The values of
the A/D converter are inserted instead special strings (e.g. ‘ADA%’) in this case.

µVision2 Project Settings
The RAM is mapped into the address range 0x00000 – 0xFFFFF (1MB), the ethernet controller
is mapped into the address range 0x100000 – 0x100FFF (4KB). The timer 2 is used as a system
timer for the TCP stack.

Connecting the MCB167-NET to an existing LAN
If the MCB167-NET should be connected to a LAN a standard shielded (STP) or unshielded
(UTP) patch cable is used. The IP address, the MAC address and the gateway IP address needs
to be adapted to the network. Please ask your network administrator if you are not sure about the
addresses to use.

Connecting the MCB167-NET to a single PC
If one MCB167-NET should be connected to single PC, a crossover patch cable can be used
instead of a hub or switch. The network interface card (NIC) of the PC must be configured to a

HUB

 Application Note

EasyWeb: Tiny TCP/IP Stack and Web Server APNT_164

Page 12 of 14 Revision date: 18-Feb-02

fixed IP address in this case. Usually the intranet IP range 192.168.x.x or 10.x.x.x with a subnet
mask of 255.255.255.0 is used. The IP address of the MCB167-NET must be within the same
subnet.

Starting the easyWEB application
Perform the following steps to run the easyWEB application on the MCB167-NET board.

♣ Connect the serial interface, network and power supply to the board.

♣ Start µVision2 with the easyWEB.uv2 project file.

♣ Modify the IP address, gateway address and MAC address in the module TCPIP.H
according to your network requirements.

♣ Compile and link the project with ‘Project’ -> ‘Rebuild all target files’. Please note, that
this application is already too big to be compiled with a free evaluation version.

♣ Start the µVision debugger with ‘Debug’ -> ‘Start Debug Session’

♣ Start the application with ‘Debug’ -> ‘Go’

♣ Check if the MCB167-NET responds to a ping. Open a command prompt window and
type:
ping <boards IP address>
An output similar to the one below should be displayed:
C:\>ping 192.168.0.110
Pinging 192.168.0.110 with 32 bytes of data:
Reply from 192.168.0.110: bytes=32 time<10ms TTL=64
Reply from 192.168.0.110: bytes=32 time<10ms TTL=64
Reply from 192.168.0.110: bytes=32 time=10ms TTL=64
Reply from 192.168.0.110: bytes=32 time<10ms TTL=64

Ping statistics for 192.168.0.110:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 10ms, Average = 2ms

 Application Note

EasyWeb: Tiny TCP/IP Stack and Web Server APNT_164

Page 13 of 14 Revision date: 18-Feb-02

When only timeouts are reported, the application does not work and you have to check
all network setting again.

♣ Open your web-browser and enter the board’s IP address in the address line.
Example: http://192.168.0.110
Now, you should see a screen similar to the one below.

 Application Note

EasyWeb: Tiny TCP/IP Stack and Web Server APNT_164

Page 14 of 14 Revision date: 18-Feb-02

Conclusion
This application note shows how TCP/IP and ethernet can be used even in small microcontroller
environments. It can be extended in many ways. The performance could be improved by using
the memory interface instead of the IO interface of ethernet controller. Using the interrupt
output of the ethernet controller instead of ‘DoNetworkStuff’ would yield better network
response times. The web server could support more than one page and could support the ‘post’
method to enter data in the web page. Of course, all these features are covered by other
commercial TCP/IP stacks.

Here are some useful links to get more information:

MCB167-NET manual: www.keil.com/mcb167net

Crystal ethernet controller CS8900: www.crystal.com

RFC’s: www.faqs.org/rfcs/index.html

Copyright © 2001 Keil Software, Inc. All rights reserved.

In the USA: In Europe:
Keil Software, Inc. Keil Elektronik GmbH
1501 10th Street, Suite 110 Bretonischer Ring 15
Plano, TC 75074 D-85630 Grasbrunn b. Munchen
USA Germany

Sales: 800-348-8051 Phone: (49) (089) 45 60 40 - 0
Phone: 972-312-1107 FAX: (49) (089) 46 81 62
FAX: 972-312-1159

E-mail: sales.us@keil.com Internet: http://www.keil.com/ E-mail: sales.intl@keil.com
 support.us@keil.com support.intl@keil.com

	Overview
	Application Programming Interface (API)
	Global Variables and Macro’s
	MYIP_1 … MYIP_4
	SUBMASK_1 … SUBMASK_4
	MYMAC_1 ... MYMAC_6
	GWIP_1 … GWIP_4
	RETRY_TIMEOUT
	FIN_TIMEOUT
	MAX_RETRYS
	MAX_TCP_TX_DATA_SIZE
	MAX_TCP_RX_DATA_SIZE
	MAX_ETH_TX_DATA_SIZE
	DEFAULT_TTL
	TCPLocalPort
	RemoteIP
	TCPRemotePort
	TCPTxDataCount
	TCPRxDataCount
	TCP_RX_BUF
	TCP_TX_BUF
	SocketStatus

	Functions
	void DoNetworkStuff(void)
	void TCPLowLevelInit(void)
	void TCPPassiveOpen(void)
	void TCPActiveOpen(void)
	void TCPClose(void);
	void TCPReleaseRxBuffer(void)
	void TCPTransmitTxBuffer(void)

	Using the Application Program Interface (API)
	Opening a Connection
	Passive Mode
	Active Mode

	Data Transfer
	Sending Data
	Receiving Data

	Closing a Connection

	Web Server Example Application
	µVision2 Project Settings
	Connecting the MCB167-NET to an existing LAN
	Connecting the MCB167-NET to a single PC
	Starting the easyWEB application

	Conclusion

