
phyBOARD WEGA-AM335x
Single Board Computer

Application Development User Manual

Product No : PCL-051/PBA-CD-02
SOM PCB No : 1397.0
CB PCB No : 1405.0
Edition : Feb 26, 2014

©PHYTEC EMBEDDED PVT. LTD 1

In this manual copyrighted products are not explicitly indicated.
The absence of the trademark (™) and copyright (©) symbols does
not imply that a product is not protected. Additionally,
registered patents and trademarks are similarly not expressly
indicated in this manual.

The information in this document has been carefully checked and is
believed to be entirely reliable. However, PHYTEC Embedded Pvt.
Ltd. assumes no responsibility for any inaccuracies. PHYTEC
Embedded Pvt. Ltd neither gives any guarantee nor accepts any
liability whatsoever for consequential damages resulting from the
use of this manual or its associated product. PHYTEC Embedded Pvt.
Ltd reserves the right to alter the information contained herein
without prior notification and accepts no responsibility for any
damages that might result.

Additionally, PHYTEC Embedded Pvt. Ltd offers no guarantee nor
accepts any liability for damages arising from the improper usage
or improper installation of the hardware or software. PHYTEC
Embedded Pvt. Ltd further reserves the right to alter the layout
and/or design of the hardware without prior notification and
accepts no liability for doing so.

© Copyright 2014 PHYTEC Embedded Pvt. Ltd. Koramangala, Bangalore.

Rights - including those of translation, reprint, broadcast,
photomechanical or similar reproduction and storage or processing
in computer systems, in whole or in part - are reserved. No
reproduction may be made without the explicit written consent from
PHYTEC Embedded Pvt. Ltd.

India Europe North America

Address: PHYTEC Embedded Pvt.
Ltd.

16/9C, 3rd Floor,
3rd Main, 8th Block,
Opp: Police Station,

Koramangala,
Bangalore -560095

INDIA

PHYTEC Technologie
Holding AG

Robert-Koch-Str. 39
55129 Mainz GERMANY

PHYTEC America LLC 203
Parfitt Way SW, Suite

G100 Bainbridge
Island, WA 98110 USA

Ordering
Information:

+91-80-40867046
Sales@phytec.in

+49 (800) 0749832
order@phytec.de

1 (800) 278-9913
sales@phytec.com

Web Site: http://www.phytec.in http://www.phytec.de http://www.phytec.com

©PHYTEC EMBEDDED PVT. LTD 2

mailto:Sales@phytec.in
http://www.phytec.com/
http://www.phytec.de/
http://www.phytec.in/
mailto:sales@phytec.com
mailto:order@phytec.de

Table of Contents
Introduction..4

1. Application development using Eclipse IDE ...4
1.1. Eclipse IDE Installation...4
1.2. Eclipse IDE Configuration for phyBOARD-WEGA-AM335...5

1.2.1. Host Setup..5
For Linux:...5
For Windows:..5

1.2.2. Target IP address configuring using serial console..5
1.2.3. Eclipse Configuration for remote connection ...6

Launch the Eclipse IDE...6
For Linux:..6
For windows:-..6

2 . Remote systems Settings For Windows (or) Linux:...8
2.1. Create New Connection for Remote System login...8
 2.2. Set the Host Name and IP...9

3. Creating a New Project..13
3.1. Open new C source file...15
3.2. Running and Debugging an example project..15
3.3. Configuring to Run project in Eclipse...16
3.4. Configuring to Debug project in Eclipse...17
3.5. Setting a Breakpoint..20
3.6. Tranfer the binary file to target manually using command line:...................................20

 4. Application Program Guide:..21
 4.1. GPIO Application...
 4.2. UART Application..
 4.3. I2C Application..
 4.4. SPI Application...
 4.5. PWM Application...
 4.6. WATCHDOG Application..
 4.7. TCP-SOCKET Application..
 4.8. UDP-SOCKET Application..
 4.9. CAN Application..

©PHYTEC EMBEDDED PVT. LTD 3

Introduction

This Reference Manual describes the phyBOARD-WEGA-AM335x for
application development. First chapter describes the installation
of eclipse and how to develop an application on phyBOARD-WEGA-
AM335x using Eclipse IDE. Second chapter describes about how to
write an application using console terminal. After completing this
manual you will come to know how to use the Eclipse.

1. Application development using Eclipse IDE

 During this chapter you will learn how to build your own C/C+
+ applications for the target with the help of Eclipse. We will
start developing our own applications with the help of Eclipse.
First we will take a look on the C programming language. At the
end of this chapter we will explain how to execute your written
programs automatically when booting
the target.

1.1. Eclipse IDE Installation

Download the Eclipse IDE from the below links (Note: According to
your system configuration) and install.

For Linux:

 Install java using below command:

$ sudo apt-get install openjdk-7-jdk openjdk-7-jre

 Download eclipse from below link:

http://www.eclipse.org/downloads/packages/eclipse-ide-cc-
developers/junosr2

For windows:

 Download eclipse from below link:

 http://www.eclipse.org/downloads/packages/eclipse-ide-cc-
developers/junosr2

Note: Skip the above step if you have install the WEGA_SDK for
windows Host.

©PHYTEC EMBEDDED PVT. LTD 4

http://www.eclipse.org/downloads/packages/eclipse-ide-cc-developers/junosr2
http://www.eclipse.org/downloads/packages/eclipse-ide-cc-developers/junosr2
http://www.eclipse.org/downloads/packages/eclipse-ide-cc-developers/junosr2
http://www.eclipse.org/downloads/packages/eclipse-ide-cc-developers/junosr2

1.2. Eclipse IDE Configuration for phyBOARD-WEGA-AM335

1.2.1. Host Setup

Toolchain: For Compiling the Application we need the
toolchain which you can easily download from the below link.

For Linux:

ftp://ftp.phytec.de/pub/Products/India/phyBOARD-WEGA-
AM335x/Linux/PD14.0.0/tools/toolchain/arm-cortexa8-linux-
gnueabihf.tar.bz2

For Windows:

http://sourcery.mentor.com/public/gnu_toolchain/arm-none-linux-
gnueabi/arm-2012.09-64-arm-none-linux-gnueabi.exe

Note: Skip the above step if you have install the WEGA_SDK for
windows Host.

Ip address settings in windows host:

 Click Start ► Control Panel ► open Network and Sharing Center
 From the Tasks menu on the left, choose Change Adaptor

Settings
 Find and Right click on the active Local Area Connection and

choose Properties
 Double-click on Internet Protocol Version 4 (TCP/IPv4)
 Click on Use the following IP address
 Enter a IP like 192.168.1.196
 Press Tab and the Subnet Mask section will populate with

default numbers
 Enter gateway 192.168.1.1
 Hit Ok .

1.2.2. Target IP address configuring using serial console

WEGA Board is configured with the default ip-address for eth0 -
192.168.1.196 and for the usb0 - 192.168.1.156. These addresses
can be change using below procedure.

- Connect the power adaptor, serial cable, usb cable or ethernet
cable to the phyBOARD-WEGA-AM335x Board & Boot the Board.

 root@phyBOARD-WEGA-AM335x:~ ifconfig -a

 All the network interfaces details will be listed.

©PHYTEC EMBEDDED PVT. LTD 5

http://sourcery.mentor.com/public/gnu_toolchain/arm-none-linux-gnueabi/arm-2012.09-64-arm-none-linux-gnueabi.exe
http://sourcery.mentor.com/public/gnu_toolchain/arm-none-linux-gnueabi/arm-2012.09-64-arm-none-linux-gnueabi.exe

 To configure the ip address manually

 root@phyBOARD-WEGA-AM335x:~ ifconfig usb0 192.168.1.156 up

 root@phyBOARD-WEGA-AM335x:~ ifconfig eth0 192.168.1.196 up

// To configure the gateway ip address

root@phyBOARD-WEGA-AM335x:~ route add default gw 192.168.1.1
root@phyBOARD-WEGA-AM335x:~ route

where usb0 & eth0 are the LAN interface.

 Note:
 - To make the ip address setting permanent make changes in
/etc/network/interfaces & /etc/init.d/networking

 - 192.168.1.156 & 192.168.1.196 is not mandatory you can use any
IP but it should be different from the server IP.

1.2.3. Eclipse Configuration for remote connection

Launch the Eclipse IDE

For Linux:

 Go to the Location where you have downloaded eclipse,
Extract it and run binary file ./eclipse

 Confirm the workspace directory with OK

For windows:-

 Click the Eclipse icon to start the application. You can find
this icon on your desktop.

©PHYTEC EMBEDDED PVT. LTD 6

 Confirm the workspace directory with OK

 Close the "Welcome to Eclipse" screen by clicking on the
"workbench" button

Now you can see the Eclipse Workbench as below:

©PHYTEC EMBEDDED PVT. LTD 7

2 . Remote systems Settings For Windows (or) Linux:

You have to set the address manually, Left-click the Window tab

Show view ► other ► Remote Systems and ok

2.1. Create New Connection for Remote System login

 Right Click on Local select new connection

 select linux

©PHYTEC EMBEDDED PVT. LTD 8

 2.2. Set the Host Name and IP

 1. Then write Host name as 192.168.56.4 and connection name as
WEGA.

 2. Select ssh.files

©PHYTEC EMBEDDED PVT. LTD 9

3. select processes.shell.linux and next

 4. select ssh.shells and next

©PHYTEC EMBEDDED PVT. LTD 10

5. select ssh.terminals and finish

Now we successfully create the connection.

Connecting to Board-IP:
 Click on the Wega-Board ► Sftp Files ► My Home

 Type User ID as root leave password blank. Then press OK.

©PHYTEC EMBEDDED PVT. LTD 11

2.3. Launch the Remote Terminal

 Right click ssh Terminal ► Launch Terminal

 Now we can see all the contents of phyBOARD-WEGA-AM335x.

©PHYTEC EMBEDDED PVT. LTD 12

3. Creating a New Project

In this section we will learn how to create a new project with
Eclipse and how to configure the project for use with the GNU -
C/C++ cross development toolchain.

 Select File ► New ► Project from the menu bar. A new dialog
will open.

 Select C Project and click Next

 Enter the project name myHelloWorld and Toolchain as Cross
GCC then click Next

©PHYTEC EMBEDDED PVT. LTD 13

 Click Next

 Set Toolchain Prefix & Path and Click Finish

 Select the Cross Compiler Prefix as arm-cortexa8-linux-
gnueabihf-
 and Cross Compiler Path as <path of toolchain bin>

 Note
 For windows you have to select the arm-none-linux-gnueabi- and
the appropriate path
 of the toolchain.

©PHYTEC EMBEDDED PVT. LTD 14

3.1. Open new C source file

 Right-click on myHelloWorld project
 Select File ► New ► Source file from the menu bar

 In Source file write myHelloWorld.c and click on Finish.

3.2. Running and Debugging an example project

In this section, we will run the application on target for
remote debugging in conjunction with the transfering the
application binary.

Here Right click on project and select build project

©PHYTEC EMBEDDED PVT. LTD 15

3.3. Configuring to Run project in Eclipse

 Start Eclipse if the application is not started yet.

 Right-click on the myHelloWorld project in the Navigator
window

 Select Run As ► Run Configurations

 A dialog to create, manage and run applications appears.

 Double click on C/C++ Remote Application ► select
myHelloWorld Debug

Make sure that check your ip Connection name as WEGA.

©PHYTEC EMBEDDED PVT. LTD 16

3.4. Configuring to Debug project in Eclipse

 Right-click on the myHelloWorld project in the Navigator
window

 Select Debug As ► Debug Configurations

 Double click on C/C++ Remote Application ► select
myHelloWorld Debug

 Select the Debugger tab
 Click the Browse button right beside the GDB debugger input

field.

 Navigate to the directory <Path of the Toolchain>/bin/arm-
cortexa8-linux-gnueabihf-gdb

 Click OK

©PHYTEC EMBEDDED PVT. LTD 17

A new dialog appears.

 Select Yes to switch to the Debug perspective

©PHYTEC EMBEDDED PVT. LTD 18

Now we can debug the project.

©PHYTEC EMBEDDED PVT. LTD 19

3.5. Setting a Breakpoint

Now we will set a breakpoint in our program. This breakpoint will
be set on the last line of the function main(). If you resume the
application, the debugger will stop on this line.

Select the last line in main(). Right-click into the small grey
border on the left-hand side and select Toggle Breakpoint to set a
new breakpoint.

 Click on the step into(F5) button to observer the step into
the program.

 Click the Step Over button in the Debug window to step to the
next line

We will see the content of the debug output in the Variables
window.

3.6. Tranfer the binary file to target manually using command line:

In Host:
here below is the file to transfer from your existance project
workspace to target board by using command line in linux host.
Ex:
narasimha@phytec:~/work/WEGA/eclipse-work/myhelloworld/Debug$ scp
myhelloworld root@192.168.56.4:/home

In Target:
Open the terminal using minicom.

 Enter user name as root and press Enter then type ls to see
all the file.

root@phyBOARD-WEGA-AM335x:~ls

 Type ./myHelloWorld to start the application
root@phyBOARD-WEGA-AM335x:~./myHelloWorld

©PHYTEC EMBEDDED PVT. LTD 20

mailto:root@192.168.56.4

4. APPLICATION PROGRAM GUIDE

Contents

 1. GPIO
2. UART
3. I2C
4. SPI
5. PWM
6. WATCHDOG
7. TCP-SOCKET
8. UDP-SOCKET
9. CAN

©PHYTEC EMBEDDED PVT. LTD 21

1. GPIO APPLICATION
Contents:

1. GPIO Introduction
2. GPIO Driver Configuration
3. GPIO access from shell
4. GPIO access from user application
5. Test Procedure of GPIO on
 <BOARD_NAME> using command line
6. Test Procedure of GPIO on
 <BOARD_NAME> using Eclipse IDE

1. GPIO Introduction:
A "General Purpose Input/Output" (GPIO) is a flexible software-
controlled digital signal.

<Board_Name> Linux-Kernel comes with default GPIO Driver selected
and pins available are GPIO0_7, GPIO3_7 & GPIO3_8 . For more
details of GPIO pins on Expansion see the
<Board_Name>_Hardware_Manual.pdf

2. GPIO - Driver Configuration:

To add additional GPIO pins, the pin-muxing in kernel board file
need to be done. Follow the GPIO Section of
<Board_Name>_System_Development_Guide.pdf

3. GPIO access from shell:

 The GPIOs can be accessed using sysfs from below instructions.
a. Export: /sys/class/gpio/export
b. Unexport: /sys/class/gpio/unexport
c. Configure direction: /sys/class/gpio/gpio<num>/direction
d. Read / Write: /sys/class/gpio/gpio<num>/value

 Ex: For GPIO0_7 the pin# will be (0 x 32) + 7 = 7
$ export GPIO_NUM=7
$ ls /sys/class/gpio

$ echo $GPIO_NUM > /sys/class/gpio/export
$ ls /sys/class/gpio

To make the pin “high”
$ echo 1 > /sys/class/gpio/gpio$GPIO_NUM/value
To make the pin “low”
$ echo 0 > /sys/class/gpio/gpio$GPIO_NUM/value

To read the pin status
$ cat /sys/class/gpio/gpio$GPIO_NUM/value

Note: Above commands can be used to access any gpio by modifying the GPIO_NUM
variable.

©PHYTEC EMBEDDED PVT. LTD 22

4. GPIO access from user application:

<Board_Name>_Board comes with sample library and test programs
and also can be downloaded here.

GPIO library and test program-files:

File-Name Description

gpio.c Library file

gpio.h Library header

gpio_test.c Test application for gpio library

Makefile To build the gpio test program.

GPIO API's for user programming :

Function Name Description

gpio_export To Export the gpio

gpio_set_dir To set the GPIO Pin [Direction - OUT/IN]

gpio_set_value To set the value for the GPIO Pin.

gpio_fd_close To close the GPIO at the end of GPIO Operations.

Code-Snippet:

©PHYTEC EMBEDDED PVT. LTD 23

 gpio_num = argv[1]; /* for gpio number */
 gpio_dir = argv[2]; /* for output direction */
 gpio_val = argv[3]; /* for value (1 or 0) */

 #Functions:
 gpio_export(&gpio_desc);

 gpio_set_dir(&gpio_desc, dir);
 gpio_set_value(&gpio_desc, val);

 gpio_fd_close(&gpio_desc);

5. Test Procedure of GPIO on <BOARD_NAME> using command line:

Procedure:

a. Set the tool-chain path

b. Switch to the gpio dir and run make command

c. Transfer the bin to the target using scp

d. Open the target shell and execute it.

e. Exit the target shell

©PHYTEC EMBEDDED PVT. LTD 24

$ export PATH=$PATH:<the path of toolchain bin>

$ cd <code_base>/app/gpio

$ make clean

$ make

$ scp gpio-check root@<BOARD_NAME>:/home/

$ ssh root@<BOARD IP-address>

$./gpio-check <GPIO_NUM> <DIR> <VALUE>

To Set/Enable:

$./gpio-check 7 out 1

 [GPIO_NUM : GPIO0_7, Dir : out, Value : 1]

To Clear/Disable:

 $./gpio-check 7 out __

 [GPIO_NUM : GPIO0_7, Dir : out, Value : <empty>]

 [Note: At argv[3], we donot pass anything for making value as “0”]

 $ exit

6. Test Procedure of GPIO on <BOARD_NAME> using Eclipse IDE:

1. Select all files as below and click Finish.

2. Select/Set Tool-chain PATH as shown below:

©PHYTEC EMBEDDED PVT. LTD 25

3. Here, select the project and Build the project.

 4. Right-Click on GPIO from Project-Explorer & select Run-
As(from Drop-Down-Menu). Then, do settings and below:

 [Note: Connection:WEGA, Project:GPIO & C/C++ Application:gpio-check etc.,]

©PHYTEC EMBEDDED PVT. LTD 26

5. Below figure gives details about gpio-source, gpio-binary
and the Remote Console-output.

©PHYTEC EMBEDDED PVT. LTD 27

2. UART APPLICATION
Contents:

1. UART Introduction
2. UART Driver Configuration
3. UART access from shell
4. UART access from user application
5. Test Procedure of UART on
 <BOARD_NAME> using command line
6. Test Procedure of UART on
 <BOARD_NAME> using Eclipse IDE

1. UART Introduction:

Linux names its serial ports in the UNIX tradition. The first
serial port has the file name /dev/ttyS0, the second serial port
has the file name /dev/ttyS1, and so on.

<Board_Name> Linux-Kernel comes with UART Driver for user-
selection. For more details of UART pins on Expansion see the
<Board_Name>_Hardware_Manual.pdf

2. UART - Driver Configuration:

To add additional UART's, the pin-muxing in kernel board file need
to be done. Follow the UART Section of
<Board_Name>_System_Development_Guide.pdf

3. UART access from shell:

 The UARTs can be known/viewed using sysfs from below
instructions.

 Ex: Enquire about tty devices,

 $ ls /sys/class/tty/

 Check for ttyXX enabled,

 $ cd /sys/class/tty/ttyXX/

 Configuring Serial-Port[ttyXX]:

 /* Issue below command to configure serial-port */

 $ minicom -s

 /* minicom - Friendly Serial-Communication Program */

 Note: Above commands can be used to access any UART.

4. UART access from user application:

<Board_Name>_Board comes with sample library and test programs
and also can be downloaded here.

UART library and test program-files:

File-Name Description

UART.c Library file

UART.h Library header

UART_test.c Test application for UART library

Makefile To build the UART test program.

UART API's for user programming :

Function Name Description

UART_INIT To initialize the UART

UART_CONF To configure the UART

UART_WRITE To write into UART buffer

UART_READ To read from UART buffer

Code-Snippet:

struct uart_config_t u1;

 struct uart_descriptor_t u2;

 Functions:
 uart_init(&u1,&u2);

uart_conf(&u1,&u2);

uart_write(&u1,&u2);

 uart_read(&u1,&u2);

5. Test Procedure of UART on <BOARD_NAME> using command line:

Procedure:

a. Set the tool-chain path

b. Switch to the UART dir and run make command

c. Transfer the bin to the target using scp

d. Open the target shell and execute it.

e. Exit the target shell

$ export PATH=$PATH:<the path of toolchain bin>

$ cd <code_base>/app/UART

$ make clean

$ make

$ scp uart-check root@<BOARD_NAME>:/home/

$ ssh root@<BOARD IP-address>

 Syntax to Run:

$./uart-check “/dev/ttyXX” “<some-data>”

 For Ex:

$./uart-check “/dev/ttyO1” “PHYTEC”

[Note: Check serial terminal for data]

 $ exit

6. Test Procedure of UART on <BOARD_NAME> using Eclipse IDE:

1. Select all files as below and click Finish.

2. Select/Set Tool-chain PATH as shown below:

3. Here, select the project and Build it as shown below.

4. Right-Click on UART from Project-Explorer & select Run-
As(from Drop-Down-Menu). Then, do settings and below:

 [Note: Connection:WEGA, Project:UART & C/C++ Application:uart-check etc.,]

5. Below figure gives details about UART-Source, UART-binary
and the Remote Console-output.

3. I2C APPLICATION

Contents:

1. I2C Introduction
2. I2C Driver Configuration
3. I2C access from shell
4. I2C access from user application
5. Test Procedure of I2C on
 <BOARD_NAME> using command line
6. Test Procedure of I2C on
 <BOARD_NAME> using Eclipse IDE

1. I2C Introduction:

The I²C bus is commonly used to connect relatively low-speed
sensors and other peripherals to equipment varying in complexity
from a simple to a full-on motherboard.

<Board_Name> Linux-Kernel comes with I2C Driver for user-
selection, and the buses available are I2C < 0|1|2 >. For more
details of I2C pins on Expansion see the
<Board_Name>_Hardware_Manual.pdf

2. I2C - Driver Configuration:

To add additional I2C pins, the pin-muxing in kernel board file
need to be done. Follow the I2C Section of
<Board_Name>_System_Development_Guide.pdf

3. I2C access from shell:

 The I2C's(EEPROM) can be accessed using sysfs from below
instructions.

Ex:
For EEPROM Dir-access:

 $ ls /sys/bus/i2c/devices/0-00XX/eeprom

To write into eeprom
$ echo “<some-text>” > /sys/class/i2c/devices/0-00XX/eeprom

To read from eeprom
$ cat /sys/class/i2c/devices/0-00XX/eeprom

Note: Above commands can be used to access I2C based devices by passing <some-
test> into eeprom device.

4. I2C access from user application:

<Board_Name>_Board comes with sample library and test programs
and also can be downloaded here.

I2C library and test program-files:

File-Name Description

I2C.c Library file

I2C.h Library header

I2C_test.c Test application for I2C library

Makefile To build the I2C test program.

I2C API's for user programming :

Function Name Description

I2C_FD_OPEN To Initialize the I2C

I2C_WRITE_DATA To Write Byte data into Register

I2C_READ_DATA To Read Byte data from Register

I2C_FD_CLOSE To close the I2C at the end of I2C Operations.

Code-Snippet:

i2c_desc.i2c_dev = "/dev/i2c-X”; /* Where X : I2C Bus-No */

Functions:
i2c_fd_open(&i2c_desc);

 i2c_write_data(&i2c_desc);

 i2c_read_data(&i2c_desc);

i2c_fd_close(&i2c_desc);

5. Test Procedure of I2C on <BOARD_NAME> using command line:

Procedure:

a. Set the tool-chain path

b. Switch to the I2C dir and run make command

c. Transfer the bin to the target using scp

d. Open the target shell and execute it.

e. Exit the target shell

$ export PATH=$PATH:<the path of toolchain bin>

$ cd <code_base>/app/i2c

$ make clean

$ make

$ scp i2c-check root@<BOARD_NAME>:/home/

$ ssh root@<BOARD IP-address>

 Syntax for Run:

$./i2c-check REG_VAL

 [Note: 1. I2C Bus-no, Addr & Reg-Addr are already passed from program]

 [Note: 2. Only REG_VAL should be passed as argv[1] from command-line]

 Ex:

$./i2c-check 0x04

$ exit

6. Test Procedure of I2C on <BOARD_NAME> using Eclipse IDE:

 1. Select all files as below and click Finish.

2. Select/Set Tool-chain PATH as shown below:

3. Right-Click on I2C from Project-Explorer & select Run-As(from
Drop-Down-Menu). Then, do settings and below:

 [Note: Connection:WEGA, Project:I2C & C/C++ Application:i2c-check etc.,]

4. Below figure gives details about i2c-source, i2c-binary and
the Remote Console-output.

4. SPI APPLICATION

Contents:

1. SPI Introduction
2. SPI Driver Configuration
3. SPI access from shell
4. SPI access from user application
5. Test Procedure of SPI on
 <BOARD_NAME> using command line
6. Test Procedure of SPI on
 <BOARD_NAME> using Eclipse IDE

1. SPI Introduction:

SPI (Synchronous Peripheral Interface) is a synchronous serial
interface to connect peripheral chips like ADCs, EEPROMS, Sensors
or other devices.

SPI works in master and slave mode, the master provides the clock
signal and each slave has a dedicated chip-select.

<Board_Name> Linux-Kernel comes with SPI Driver for user-
selection. For more details of SPI pins on Expansion see the
<Board_Name>_Hardware_Manual.pdf

2. SPI - Driver Configuration:

<BOARD_NAME> The pin-muxing in kernel board file needed for SPI<0|
1>.

SPI Interface with <BOARD_NAME> on the Expansion Connector can be
accessed from userspace using the spidev Interface. Follow the
SPI Section of <Board_Name>_System_Development_Guide.pdf

3. SPI access from shell:

 The SPIs can be known/viewed using sysfs from below instructions.

$ ls /sys/class/spidev/spidevB.C

Note: i) B in spidev is Bus-no.
 ii) C in spidev is Chip-select.

 iii) async read/write is not available in userspace.

4. SPI access from user application:

<Board_Name>_Board comes with sample library and test programs
and also can be downloaded here.

SPI library and test program-files:

File-Name Description

spi.c Library file

spi.h Library header

spi_test.c Test application for SPI library

Makefile To build the SPI test program.

SPI API's for user programming :

Function Name Description

SPI_OPEN To open the SPI Interface

SPI_CONFIG To Configure the SPI[mode, bits-per-word and speed]

SPI_WRITE To write into write-buffer

SPI_READ To read from read-buffer

SPI_CLOSE To close the SPI at the end of SPI Operations.

Code-Snippet:

 spi_init(&spi_desc);

spi_config(&spi_desc);

txbuff[0] = spi_htoi(argv[1]); /* value to be transmitted */

 For Transaction:

spi_trx(&spi_desc,1);

 For Half-Duplex(Write/Read):
 spi_write(&spi_desc,txbuff,tx_len);

spi_read(&spi_desc,rxBuff,rx_len);

 spi_free(&spi_desc);

5. Test Procedure of SPI on <BOARD_NAME> using command line:

Procedure:

a. Set the tool-chain path

b. Switch to the SPI dir and run make command

c. Transfer the bin to the target using scp

d. Open the target shell and execute it.

e. Exit the target shell

$ export PATH=$PATH:<the path of toolchain bin>

$ cd <code_base>/app/spi

$ make clean

$ make

$ scp spi-check root@<BOARD_NAME>:/home/

$ ssh root@<BOARD IP-address>

 Syntax to Run:

$./spi-check <txbuff-value>

 For Ex:

$./spi-check 0xFA

$ exit

6. Test Procedure of SPI on <BOARD_NAME> using Eclipse IDE:

 1. After importing Watchdog-source from existing
location(local storage), select all files as below and click
Finish.

2. Select/Set Tool-chain PATH as shown below:

3. Right-Click on SPI from Project-Explorer & select Run-As(from
Drop-Down-Menu). Then, do settings and below:

 [Note: Connection:WEGA, Project:SPI & C/C++ Application:spi-check etc.,]

4. This step provides info about the spi-source, spi-binary and
Remote Console-output.

5. PWM APPLICATION
Contents:

1. PWM Introduction
2. PWM Driver Configuration
3. PWM access from shell
4. PWM access from user application
5. Test Procedure of PWM on
 <BOARD_NAME> using command line
6. Test Procedure of PWM on
 <BOARD_NAME> using Eclipse IDE

1. PWM Introduction:

Pulse-width modulation(PWM), is a modulation technique that
conforms the width of the pulse, based on modulator signal
information.

<Board_Name> Linux-Kernel PWM Driver selection. For more
details of PWM - see the <Board_Name>_Hardware_Manual.pdf

2. PWM - Driver Configuration:

To set PWM and eCAP.x, pin-muxing in kernel board file need to
be done. Follow the PWM Section of
<Board_Name>_System_Development_Guide.pdf

3. PWM access from shell:

 The PWM can be accessed from sysfs from below instructions.

 a. Request: /sys/class/pwm/ecap:x/request
 b. Run: /sys/class/pwm/ecap:x/run
 c. Period_frequency: /sys/class/pwm/ecap:x/period_frequency
 d. Duty Cycle: /sys/class/pwm/ecap:x/duty_percent

 Ex: # To request the device,
$ echo 1 > /sys/class/pwm/ecap:x/request
$ ls /sys/class/pwm/ecap:x/request

To start the PWM
$ echo 1 > /sys/class/pwm/ecap:x/run /* echo 0 to stop */
$ ls /sys/class/pwm/ecap:x/run

To set the Period Frequency
$ echo 50 > /sys/class/pwm/ecap:x/period_freq

To set the Duty-cycle
$ echo 10 > /sys/class/pwm/ecap:x/duty_percent

Note: Above commands can be used to access pwm by modifying the various pwm
attributes.

4. PWM access from user application:

<Board_Name>_Board comes with sample library and test programs
and also can be downloaded here.

PWM library and test program-files:

File-Name Description

pwm.c Library file

pwm.h Library header

pwm_test.c Test application for PWM library

Makefile To build the pwm test program.

PWM API's for user programming :

Function Name Description

PWM_ON To request the pwm

PWM_START To start with pwm Operations

PWM_PERIOD_FREQ To set the period freq

PWM_DUTY_CYCLE To set the duty-cycle

PWM_OFF To free the device request and stop the pwm.

Code-Snippet:

 pwm_on(&pwm_desc);
pwm_start(&pwm_desc);
pwm_period_freq(&pwm_desc);
pwm_duty_cycle(&pwm_desc);
pwm_off(&pwm_desc);

5. Test Procedure of PWM on <BOARD_NAME> using command line:

Procedure:

a. Set the tool-chain path

b. Switch to the pwm dir and run make command

c. Transfer the bin to the target using scp

d. Open the target shell and execute it.

e. Exit the target shell

$ export PATH=$PATH:<the path of toolchain bin>

$ cd <code_base>/app/pwm

$ make clean

 [Syntax to Compile: $ make CC=<compiler>]

 $ make CC=arm-cortexa8-linux-gnueabi-gcc

$ scp pwm-check root@<BOARD_NAME>:/home/

$ ssh root@<BOARD IP-address>

 [Syntax to Run: $./pwm-check <freq> <duty-cycle> <interface>]

$./pwm_test 50 10 ecap.2

$ exit

6. Test Procedure of PWM on <BOARD_NAME> using Eclipse IDE:

 1. After importing PWM-source from existing location(local
storage), select all files as below and click Finish.

2. Select/Set Tool-chain PATH as shown below:

3. Right-Click on PWM from Project-Explorer & select Run-As(from
Drop-Down-Menu). Then, do settings and below:

 [Note: Connection:WEGA, Project:PWM & C/C++ Application:pwm-check etc.,]

4. Below figure gives details about pwm-source, pwm-binary and
the Remote Console-output.

6. WATCHDOG APPLICATION

Contents:

1. WATCHDOG Introduction
2. WATCHDOG Driver Configuration
3. WATCHDOG access from shell
4. WATCHDOG access from user-
application
5. Test Procedure of WATCHDOG on
 <BOARD_NAME> using command line
6. Test Procedure of WATCHDOG on
 <BOARD_NAME> using Eclipse IDE

1. WATCHDOG Introduction:

A Watchdog Timer(WDT) is a hardware circuit that can reset the
computer system in case of a software fault.

<Board_Name> Linux-Kernel comes with WATCHDOG Driver for user-
selection. For more details on WATCHDOG see the
<Board_Name>_Hardware_Manual.pdf

2. WATCHDOG - Driver Configuration:

<Board_Name>_Board has a 32-bit Watchdog Timer, when the
/dev/watchdog is opened it will reboot the system unless a
userspace daemon resets the timer at regular intervals under
certain timeout-period.

Default timeout of this Driver is 60 seconds.

Follow WATCHDOG Section
of<Board_Name>_System_Development_Guide.pdf

3. WATCHDOG access from shell:

 The WATCHDOG can be using sysfs from below instructions.

Entry: /sys/class/WATCHDOG/Watdhdog0

$ ls /sys/class/watchdog/

$ ls /sys/class/watchdog/watchdog0

Note: Above commands can be used to access WATCHDOG.

4. WATCHDOG access from user application:

<Board_Name>_Board comes with sample library and test programs
and also can be downloaded here.

WATCHDOG library and test program-files:

File-Name Description

wdt.c Library file

wdt.h Library header

wdt_test.c Test application for WATCHDOG Library

Makefile To build the WATCHDOG test program.

WATCHDOG API's for user programming :

Function Name Description

wdt_open To Open the WATCHDOG for operations

wdt_config
To Configure the Watchdog Timer

To set the timeout on the with the SETTIMEOUT
ioctl, used value - WDIOC_SETTIMEOUT

To query the current timeout using the GETTIMEOUT
ioctl, used value - WDIOC_GETTIMEOUT

wdt_write To write the new Watchdog-Timer Value

wdt_close To close the WATCHDOG at the end of WATCHDOG
Operations.

Code-Snippet:

 struct wdt_descriptor_t wdt_desc;

 Functions:
 wdt_open(&wdt_desc);

wdt_config(&wdt_desc);

wdt_write(&wdt_desc);

wdt_close(&wdt_desc);

5. Test Procedure of WATCHDOG on <BOARD_NAME> using command line:

Procedure:

a. Set the tool-chain path

b. Switch to the WATCHDOG dir and run make command

c. Transfer the bin to the target using scp

d. Open the target shell and execute it.

e. Exit the target shell

$ export PATH=$PATH:<the path of toolchain bin>

$ cd <code_base>/app/watchdog

$ make clean

$ make

$ scp wdt-check root@<BOARD_NAME>:/home/

$ ssh root@<BOARD IP-address>

 Syntax to Run:

$./wdt-check <a value less-than the watchdog reset time>

(or)

$./wdt-check <a value greater-than the watchdog reset time>

 For EX:

 $./wdt-check 6

 [Note: “6” is greater-than the set-value(5), so will reboot the <Board>]

$ exit

6. Test Procedure of WATCHDOG on <BOARD_NAME> using Eclipse IDE:

1. After importing Watchdog-source from existing location(local
storage), select all files as below and click Finish.

2. Select/Set Tool-chain PATH as shown below:

3. Right-Click on WDT from Project-Explorer & select Run-As(from
Drop-Down-Menu). Then, do settings and below:

 [Note: Connection:WEGA, Project:WDT & C/C++ Application:wdt-check etc.,]

4. This step provides info about Project-Building, and details
about the watchdog-source, watchdog-binary and Remote Console-
output.

7. TCP-SOCKET APPLICATION

Contents:

1. SOCKET Introduction
2. SOCKET Driver Configuration
3. SOCKET access from user
application
4. Test Procedure of SOCKET on
 <BOARD_NAME> using command line
5. Test Procedure of SOCKET on
 <BOARD_NAME> using command line

1. SOCKET Introduction:

A Socket is an end point of communication between two systems on a
network. To be a bit precise, a socket is a combination of IP
address and port on one system.

<Board_Name> Linux-Kernel comes with SOCKET Driver for user-
selection. For more details of Ethernet(10/100 MB/s) for SOCKET
Connections, see the <Board_Name>_Hardware_Manual.pdf

2. SOCKET - Driver Configuration:

For [Ethernet(10/100) – RMII] selection, the pin-muxing in kernel
board file need to be done. Follow the SOCKET Section of
<Board_Name>_System_Development_Guide.pdf

3. TCP-SOCKET access from user application:
<Board_Name>_Board comes with sample library and test programs

and also can be downloaded here.

TCP-SOCKET library and test program-files:

File-Name Description

tcpserver.c Server file

tcplient.c Client file

Makefile To build the SOCKET Test Programs.

TCP-SOCKET API's for user programming:

[server-side]

Function Name Description

SOCKET To create the SOCKET

BIND Bind a name to a SOCKET

LISTEN Listen for connections on a SOCKET

ACCEPT Accept a connection on a SOCKET

RECV Receive a message from a Client

CLOSE Close the SERVER-SOCKET

[client-side]

Function Name Description

SOCKET To create the SOCKET

CONNECT Initiate a connection on a SOCKET

SEND Send a message to Server

CLOSE Close the CLIENT-SOCKET

Code-Snippet:

 Server:
 Sd = socket(PF_INET,SOCK_STREAM,0)
 bind(Sd,(struct sockaddr *)&server,sizeof(server))
 listen(Sd,<Backlog>)
 /* Backlog defines maximum length -- queue of pending Connections */

 accept(sd,(struct sockaddr *)&client,&length))
 recv(<socket-desc>,<buffer>,<buff-len>,<flag>))
 close(Sd)

 Client:
 Sd = socket(PF_INET,SOCK_STREAM,0)
 connect(Sd,(struct sockaddr *)&server,sizeof(server))
 send(<socket-desc>,<buff>,<buff-length>,<flag>)
 close(Sd)

4. Test Procedure of TCP-SOCKET on <BOARD_NAME> using command
line:

Procedure:

a. Set the tool-chain path

b. Switch to the TCP-SOCKET dir and run make command

c. Transfer the bin to the target using scp

d. Open the target shell and execute it.

e. Exit the target shell

$ export PATH=$PATH:<the path of toolchain bin>

$ cd <code_base>/app/TCP-SOCKET

$ make clean

$ make

$ scp tcpserver tcpclient root@<BOARD_NAME>:/home/

$ ssh root@<BOARD IP-address>

 For TCP:

$./tcpserver &

$./tcpclient

$ exit

5. Test Procedure of SOCKET on <BOARD_NAME> using Eclipse IDE:

1. Select all files as below and click Finish.

2. Select/Set Tool-chain PATH as shown below:

3. Right-Click on SOCKET from Project-Explorer & select Run-
As(from Drop-Down-Menu). Then, do settings and below:

[Note: Connection:WEGA, Project:SOCKET & C/C++ Application:tcpserver etc.,]

4. Below figure gives details about tcpserver-source, tcpserver-
binary and the Remote Console-output.

5. Right-Click on SOCKET from Project-Explorer & select Run-
As(from Drop-Down-Menu). Then, do settings and below:

 [Note: Connection:WEGA, Project:SOCKET & C/C++ Application:tcpclient etc.,]

6. Below figure gives details about tcpclient-source, tcpclient-
binary and the Remote Console-output.

8. UDP-SOCKET APPLICATION

Contents:

1. SOCKET Introduction
2. SOCKET Driver Configuration
3. SOCKET access from user
application
4. Test Procedure of SOCKET on
 <BOARD_NAME> using command line
5. Test Procedure of SOCKET on
 <BOARD_NAME> using command line

1. SOCKET Introduction:

A Socket is an end point of communication between two systems on a
network. To be a bit precise, a socket is a combination of IP
address and port on one system.

<Board_Name> Linux-Kernel comes with SOCKET Driver for user-
selection. For more details of Ethernet(10/100 MB/s) for SOCKET
Connections, see the <Board_Name>_Hardware_Manual.pdf

2. SOCKET - Driver Configuration:

For [Ethernet(10/100) – RMII] selection, the pin-muxing in kernel
board file need to be done. Follow the SOCKET Section of
<Board_Name>_System_Development_Guide.pdf

3. UDP-SOCKET access from user application:
<Board_Name>_Board comes with sample library and test programs

and also can be downloaded here.

UDP-SOCKET library and test program-files:

File-Name Description

udpserver.c Server file

udpClient.c Client file

Makefile To build the SOCKET Test Programs.

UDP-SOCKET API's for user programming:

[server-side]

Function Name Description

SOCKET To create the SOCKET

BIND Bind a name to a SOCKET

RECVFROM Receive a message from a Client

SENDTO Send a message to a Client

CLOSE Close the UDP-SERVER-SOCKET

[client-side]

Function Name Description

SOCKET To create the SOCKET

SENDTO Send a message to Server

RECVFROM Receive a message to Server

CLOSE Close the UDP-CLIENT-SOCKET

Code-Snippet:

 Server:
 sock_sd = socket(PF_INET, SOCK_DGRAM, 0)
 bind(sd,(struct sockaddr *)&server,sizeof(server))
 recvfrom(sock_sd, Buff, 100, 0,(struct sockaddr*)&client,&cli_len)
 sendto(sock_sd, Buff, 100, 0, (struct sockaddr *)&client,cli_len);
 close(sock_sd);

 Client:
 sock_sd = socket(PF_INET, SOCK_DGRAM, 0)
 sendto(sock_sd,Buff,100,0,(struct sockaddr *)&client,sizeof(server)
 recvfrom(sock_sd, Buff, 100, 0, (struct sockaddr *)&server,&cli_len);
 close(sock_sd)

4. Test Procedure of UDP-SOCKET on <BOARD_NAME> using command
line:

Procedure:

a. Set the tool-chain path

b. Switch to the UDP-SOCKET dir and run make command

c. Transfer the bin to the target using scp

d. Open the target shell and execute it.

e. Exit the target shell

$ export PATH=$PATH:<the path of toolchain bin>

$ cd <code_base>/app/UDP-SOCKET

$ make clean

$ make

$ scp udpserver udpclient root@<BOARD_NAME>:/home/

$ ssh root@<BOARD IP-address>

 For UDP:

$./udpserver &

$./udpclient

$ exit

5. Test Procedure of SOCKET on <BOARD_NAME> using Eclipse IDE:

 1. Select all files as below and click Finish.

 2. Select/Set Tool-chain PATH as shown below:

3. Right-Click on SOCKET2 from Project-Explorer & select Run-
As(from Drop-Down-Menu). Then, do settings as below:

[Note: Connection:WEGA, Project:SOCKET2 & C/C++ Application:udpserver etc.,]

4. Below figure gives details about udpserver-source, udpserver-
binary and the Remote Console-output.

5. Right-Click on SOCKET2 from Project-Explorer & select Run-
As(from Drop-Down-Menu). Then, do settings as below:

 [Note: Connection:WEGA, Project:SOCKET2 & C/C++ Application:udpclient etc.,]

6. Below figure gives details about udpclient-source, udpclient-
binary and the Remote Console-output.

9. CAN APPLICATION

Contents:

1. CAN Introduction
2. CAN Driver Configuration
3. CAN access from user application
4. Test Procedure of CAN on
 <BOARD_NAME> using command line
5. Test Procedure of CAN on
 <BOARD_NAME> using Eclipse IDE

1. CAN Introduction:

 CAN is a networking technology which has widespread use in
automation, embedded devices, and automotive fields.

 <BOARD_NAME> provides a CAN feature, which is supported by
drivers using the proposed Linux standard CAN framework ”Socket-
CAN”.

 Using this framework, CAN interfaces can be programmed with
the BSD socket API.

 For more details of CAN pins on Expansion see the
<Board_Name>_Hardware_Manual.pdf

2. CAN - Driver Configuration:

Socketcan interface provides a socket interface to user space
applications and which builds upon the Linux network layer.

The pin-muxing for CAN selection in kernel board file need to be
done.
Follow the CAN Section of
<Board_Name>_System_Development_Guide.pdf

3. CAN access from user application:

<Board_Name>_Board comes with sample library and test programs
and also can be downloaded here.

CAN library and test program-files:

File-Name Description

cansend.c Sender file

Canreceive.c Receiver file

Makefile To build the CAN test program.

CAN API's for user programming :

Function Name Description

SOCKET To open/initialize the CAN

WRITE To send the message

READ To receive the message.

Code-Snippet:

 /* can-send */
 s = socket(PF_CAN, SOCK_RAW, CAN_RAW)
 nbytes = write(s, &frame, sizeof(struct can_frame))

 /* can-receive */
 s = socket(PF_CAN, SOCK_RAW, CAN_RAW)
 nbytes = read(s, &frame, sizeof(struct can_frame))

4. Test Procedure of CAN on <BOARD_NAME> using command line:

Procedure:

a. Set the tool-chain path

b. Switch to the CAN dir and run make command

c. Transfer the bin to the target using scp

d. Open the target shell and execute it.

e. Exit the target shell

$ export PATH=$PATH:<the path of toolchain bin>

$ cd <code_base>/app/CAN

$ make clean

 $ make

 $ scp cansend root@<BOARD_NAME-A>:/home/

$ scp canreceive root@<BOARD_NAME-B>:/home/

$ ssh root@<BOARD IP-address>

 /* Configure CAN */

$ canconfig can0 stop

 $ canconfig can0 bitrate 50000 ctrlmode triple-sampling on

 - [configure can to 50k B/s bitrate]

$ canconfig can0 start

 /* On Board-A : Transmitter */

$./cansend

 /* On Board-B : Receiver */

$./canreceive

$ exit

5. Test Procedure of CAN on <BOARD_NAME> using Eclipse IDE:

1. Select all files as below and click Finish.

2. Select/Set Tool-chain PATH as shown below:

3. Right-Click on CAN from Project-Explorer & select Run-As(from
Drop-Down-Menu). Then, do settings and below:

 [Note: Connection:WEGA, Project:CAN & C/C++ Application:cansend etc.,]

4. Right-Click on CAN from Project-Explorer & select RUN-AS(from
Drop-Down-Menu). Then, do settings and below:

[Note: Connection: WEGA, Project: CAN & C/C++ Application: canreceive etc.,]

5. Below figure gives details about can-source, cansend/canreceive -
binaries and the Remote Console-output.

Get the dialog going ...
 ... and stay in touch

India
PHYTEC Embedded Pvt. Ltd.

16/9C, 3rd Floor,
3rd Main, 8th Block,
Opp: Police Station,

Koramangala,
Bangalore -560095
www.phytec.in

Germany
PHYTEC Messtechnik GmbH
Robert-Koch-Straße 39

D-55129 Mainz
Tel.: +49 6131 9221-32
Fax: +49 6131 9221-33

www.phytec.de
www.phytec.eu

America
PHYTEC America LLC

203 Parfitt Way SW, Suite G100
Bainbridge Island, WA 98110

Tel.: +1 206 780-9047
Fax: +1 206 780-9135

www.phytec.com

France
PHYTEC France SARL

17, place St. Etienne
F-72140 Sillé le Guillaume
Tel.: +33 2 43 29 22 33
Fax: +33 2 43 29 22 34

www.phytec.fr

*** We are looking forward to hear from you ...! ***

http://www.phytec.fr/
http://www.phytec.com/
http://www.phytec.eu/
http://www.phytec.de/
http://www.phytec.in/

	Introduction
	1. Application development using Eclipse IDE
	1.1. Eclipse IDE Installation
	1.2. Eclipse IDE Configuration for phyBOARD-WEGA-AM335
	1.2.1. Host Setup
	For Linux:
	For Windows:

	1.2.2. Target IP address configuring using serial console
	1.2.3. Eclipse Configuration for remote connection
	Launch the Eclipse IDE
	For Linux:
	For windows:-

	2 . Remote systems Settings For Windows (or) Linux:
	2.1. Create New Connection for Remote System login
	2.2. Set the Host Name and IP

	3. Creating a New Project
	3.1. Open new C source file
	3.2. Running and Debugging an example project
	3.3. Configuring to Run project in Eclipse
	3.4. Configuring to Debug project in Eclipse
	3.5. Setting a Breakpoint
	3.6. Tranfer the binary file to target manually using command line:

